

PaaSage

CAMEL
Model
Creation
A Brief Tutorial

Tutorial version 1.0
5/4/2016

Created by: Manos Papoutsakis

Based on: CAMEL Documentation v2015.9 (contributors: Alessandro
Rossini, Kiriakos Kritikos, Nikolay Nikolov, Jorg Domaschka, Frank
Griesinger, Daniel Seybold, Daniel Romero)

1. Camel Model Creation

1.1. Overview
The Cloud Application Modeling and Execution Language (CAMEL) [D2.1.3] super-DSL
has been formed by aggregating pre-existing domain-specific languages (DSLs) (e.g.,
CloudML [CloudML] and Saloon feature model [SALOON]) as well as new ones
developed in the context of the PaaSage project (e.g., Scalability Rule Language (SRL)
[SRL]). This super-DSL provides significant support to the model-driven engineering
approach adopted by the PaaSage project in order to facilitate the whole multi-cloud
application management lifecycle. To this end, CAMEL is able to capture various
aspects in the latter lifecycle, including deployment and non-functional requirements
as well as scalability rules. This documentfocuses mainly on the latter three aspects
as they reflect the needs of application developers/owners, which guide the
deployment plan derivation process, as well as the way the way this deployment
plan can be evolved during application runtime. Apart from the aforementioned
three main aspects, additional ones are also outlined by relying solely on the
explication of the way respective aspect-specific modelling constructs can be
specified such that are re-used to support the modelling of these three aspects.

While there are different ways via which CAMEL models can be specified, CAMEL
Textual Editor is used here, which relies on the textual syntax of CAMEL. This is in
accordance to the latest documentation in CAMEL (see [D2.1.3]) as well as to the fact
that, as the main target users for this language are devops users, such type of users
will benefit the most from textual rather than graphical-based editors. Instructions
about how to install and use the CAMEL Textual Editor can be found in the CAMEL
documentation at http://camel-dsl.org/documentation/.

In the following, we adopt the Scalarm use case as a running example to exemplify
how to specify CAMEL models in textual syntax. The complete Scalarm CAMEL model
in textual syntax can be downloaded at:
https://tuleap.ow2.org/plugins/git/paasage/camel?p=camel.git&a=blob&h=421be9e
1caa955ee9d15725a6c26966cc5df9e9f&hb=f8905ee94cbef60fdf49a6aabe274e33b3
2ff022&f=examples/Scalarm.camel.
Scalarm stands for Massively Scalable Platform for Data Farming and intends to fulfil
the following requirements:

 support all phases of a data farming experiment, starting from the
experiment design phase, through simulation execution and progress
monitoring, to statistical analysis of results,

 support different sizes of experiments from dozens to millions of simulations
through massive scalability,

 support for heterogeneous computational infrastructure including private
servers, computer clusters, grids and clouds.

Scalarm’s architecture utilizes a service-oriented approach with an additional
modification, which addresses the scalability requirement.

http://camel-dsl.org/documentation/
https://tuleap.ow2.org/plugins/git/paasage/camel?p=camel.git&a=blob&h=421be9e1caa955ee9d15725a6c26966cc5df9e9f&hb=f8905ee94cbef60fdf49a6aabe274e33b32ff022&f=examples/Scalarm.camel
https://tuleap.ow2.org/plugins/git/paasage/camel?p=camel.git&a=blob&h=421be9e1caa955ee9d15725a6c26966cc5df9e9f&hb=f8905ee94cbef60fdf49a6aabe274e33b32ff022&f=examples/Scalarm.camel
https://tuleap.ow2.org/plugins/git/paasage/camel?p=camel.git&a=blob&h=421be9e1caa955ee9d15725a6c26966cc5df9e9f&hb=f8905ee94cbef60fdf49a6aabe274e33b32ff022&f=examples/Scalarm.camel

Pre-Requisites
In order to follow this tutorial, it is recommended that the CAMEL Textual Editor is
installed and launched in your system. This will enable you to copy the models
illustrated in this tutorial and play with them such that you get accustomed and learn
CAMEL. You should also be aware of some of the main features of this editor (see
last section in this document as well as https://eclipse.org/Xtext/#feature-overview),
such as auto-completion, which can assist you in the rapid specification and updating
of your models. The prospective reader does not need to have any knowledge of
CAMEL to understand the content of this tutorial but in some cases it is
recommended that the user reverts to the CAMEL documentation in order to fully
comprehend some relevant notions or inspect further details, if needed – this might
happen in some cases as the goal of this tutorial is not to cover CAMEL in its entirety.

Audience
We consider that the specification of a CAMEL application model involves input from
three types of users. To this end, this tutorial targets all of them. These user types
are the following:

Application Designer: This type of user is expected to have knowledge of the
main deployment and non-functional requirements of the application at hand, such
as the application topology and requirements on application response time.

Business User: This type of user will set the higher level business
requirements, such as the cost of application execution, and specific business
policies/restrictions, such as data processing only using EU hosts.

Systems Admin: This type of user will know the wider technical context from
an organizational perspective that the application should execute within.
Requirements such as the wider security policies and technical details (e.g., OS-
specific component configuration demands) can be set by this user type.

The end user which monitors the application execution in the Cloud against the
requirements posed could belong to either one of the user types above depending
also on the level of detail and interference required. The end user choice also
depends on the organization’s characteristics. It may also be possible that the setting
of requirements is delegated to one of the above user types, although, as already
stated, requirements from each type of user is needed for the PaaSage platform to
provide the optimum Cloud-based application management.

1.2. CAMEL creation
A CamelModel is a collection of sub-models mapping to the capturing of different
information aspects, including deployment, requirement, measurement/metric,
scalability and organization, relevant for the multi-cloud application management
lifecycle. Each aspect is mapped to a respective sub-model. All relevant aspects and
corresponding sub-models, associated to the different types of user requirements,
policies and rules that can be specified, are discussed in detail in the sequel in
different sub-sections.

1.2.1. Deployment Aspect – DeploymentModel

https://eclipse.org/Xtext/%23feature-overview

A DeploymentModel is a collection of DeploymentElements. A deployment element
can be a Component, a Communication, or a Hosting. A deployment element can
refer to Configurations, which represent sets of commands to handle the
deployment element’s life cycle.

1.2.1.1. Components

A Component represents a reusable type of application component. A
component can be an InternalComponent managed by the PaaSage platform,
or a requirement for a VM (short for virtual machine) offering maintained by
the cloud provider. A virtual machine or a deployment model can be
associated to a VMRequirementSet, which refers to a set of requirements for a
single virtual machine or for all virtual machines, respectively, such as
hardware, operating system and location requirements. These requirements
are specified via a CAMEL requirement model (see also Listing 6).
Assume that we have to specify the Experiment Manager component of the
Scalarm use case. Listing 1 shows this specification in textual syntax where the
corresponding component has been mapped to the definition of an
internal component (i.e., an internal software component of the
application) called ExperimentManager. provided

communication ExpManPort represents that the Experiment Manager
offers a communication port (443) via which its features can be exploited.
required communication StoManPortReq and InfSerPortReq
specify that the Experiment Manager requires features from the Information
Service, which is another internal component, through port 11300 and from
the Storage Manager through port 20001, respectively. The property
mandatory of the latter signifies that the communication between the
components should be obligatorily established, as the Execution Manager
component needs to exploit the Storage Manager features from the very
beginning of its initialization. As such, the Storage Manager will have to be
started before the start of the Execution Manager.

required host CoreIntensiveUbuntuGermanyReq indicates that
the Experiment Manager needs to be hosted on a specific VM that satisfies
certain requirements indicated in the description of this VM in the model.
configuration ExperimentManagerConfiguration specifies the

commands to handle the life cycle of the Experiment Manager. download,
install, and start specify the Unix shell scripts for downloading,
installing, and starting the Experiment Manager, respectively.
Then, assume that we have to specify the virtual machine on which the
Experiment Manager needs to be deployed (which can be used for other VMs,
if this is necessary). Listing 2 shows this specification in textual syntax.
requirement set CoreIntensiveUbuntuGermanyRS specifies a

reusable set of requirements for the VM being modelled. quantitative
hardware, os, and location refer to the requirements
CoreIntensive, Ubuntu, and GermanyReq, respectively, from the requirement
model ScalarmRequirement (cf. Listing 6), mapping to the specification of the
hardware requirements.
In vm CoreIntensiveUbuntuGermany the previous requirementSet is
connected to the specification of the VM on which the Experiment Manager
will be hosted.
provided host CoreIntensiveUbuntuGermany is the hosting port
of the VM via which a respective component can be connected to indicate to
the system that it should be hosted on that VM.

1.2.1.2. Communications

A Communication represents a reusable type of communication binding
between a required and a provided communication port.
Assume that we have to specify the communication binding between the
Experiment Manager and the Storage Manager. Listing 3 shows this
specification in textual syntax. Communication

ExperimentManagerToStorageManager specifies that reusable type
of communication binding between the two internal components in question.
from .. to .. block specifies that the communication binding is from
the required communication port StoManPortReq of the component
ExperimentManager to the provided communication port StoManPort of the

component StorageManager. type: REMOTE specifies that the Experiment

Manager and the Storage Manager is chosen to be deployed on separate
virtual machine instances.

1.2.1.3. Hostings

A Hosting represents a reusable type of containment binding between a
required and a provided host port.
Assume that we have to specify the hosting binding between the Experiment
Manager and the virtual machine CoreIntensiveUbuntuGermany.
Listing 4 shows this specification in textual syntax.
hosting ExperimentManagerToCoreIntensiveUbuntuGermany
in Listing 4 below, specifies such a hosting binding. from .. to ..
block specifies that the hosting binding is from the required hosting port
CoreIntensiveUbuntuGermanyPortReq of the component

ExperimentManager to the provided hosting port
CoreIntensiveUbuntuGermanyPortReq of the virtual machine
CoreIntensiveUbuntuGermany.

1.2.2. Requirement Aspect – RequirementModel
A RequirementModel is a collection of Requirements which can be associated to an
application and/or its main components. A requirement can be a HardRequirement,
such as a service level objective (SLO) (e.g., response time < 100ms), which the
PaaSage platform must satisfy at all costs, or a SoftRequirement, such as an
optimization objective (e.g., minimize cost), which the platform will attempt to
satisfy in the best possible way with no precise guarantees.

A RequirementGroup represents a tree-based requirement structure which can
contain simple requirements as well as requirement sub-structures (i.e., complex
requirements / requirement groups). The property requirementOperator of
RequirementGroup represents the logical operator that is used to connect these
requirements and it can be assigned two different alternative values mapping to
known logical operators (AND (logical conjunction) or OR (logical disjunction)). A
requirement group refers to an Application for which all the requirements must be
satisfied.

Different kinds of requirements are supported by CAMEL, each analysed in
respective subsections.

1.2.2.1. Hard requirements

A hard requirement can be attached to the specification of the requirements
for a VM, or to a whole deployment model. In the former case, it specifies that
instances of the VM must conform to the requirement in question. In the
latter case, it specifies that all VM instances should be constrained according
to that requirement.

Hardware, OS & Image and Provider Requirements

Two types of a HardwareRequirement exist. On the one hand, a
QualitativeHardwareRequirement represents benchmarking constraints /
requirements with the intention to have a better classification and respective
filtering of the VMs according to particular aspects like computation, memory,
networking (e.g., computationally-large VMs vs memory-intensive VMs) or in
an overall manner (by combining benchmark results over different aspects).
As such, the respective properties min- and maxBenchmark of
QualitativeHardwareRequirement of this class represent the range of
benchmark results that a virtual machine instance must satisfy. On the other
hand, a QuantitativeHardwareRequirement represents a set of constraints
over the features of a VM (e.g., core number and RAM size) which can be used
to perform typical filtering over the VM offerings across all cloud providers.
For instance, in Listing 6, we can see that the user imposes for a respective
hardware requirement that the number of cores provided should be from 8 to
32 while the size of main memory should range from 4096 to 8192 MB.

An OsOrImageRequirement can be specialized into an OSRequirement or an
ImageRequirement. The former represents a requirement on the operating
system run by a virtual machine, where the property os of OSRequirement
represents the required operating system (e.g., “Ubuntu”, “Windows”, etc.),
while the property is64os represents whether the operating system must
conform to a 64bit architectures (e.g., x86-64). The latter represents a
requirement on the image deployed on a virtual machine, where the property
imageId of ImageRequirement represents the identifier of the required image.

A ProviderRequirement represents alternative cloud providers that could only
be considered for the application deployment (e.g., Amazon and Rackspace
only).

Location Requirements

A LocationRequirement refers to one or more Locations, which represent
either geographical regions (e.g., a continent, a subcontinent, a country, or
even a region) or cloud locations (i.e., regions and availability zones in Amazon
cloud like us-east-1a).

Security Requirements

A SecurityRequirement refers to one or more SecurityControls, which
represent the security controls that must be supported for a cloud provider in
order to make it amenable for selection for application VM deployment (see
also Section 1.2.7 to comprehend the way security controls can be specified).
Moreover, it can refer to an Application or InternalComponent, which
represent the application or component on which the security controls must
be enforced. If the security requirement refers to an application, then all cloud
providers’ offerings and services, which are used by the application, must
support the corresponding security controls. In case the security requirement
refers to a single component, such as a virtual machine, then only offerings
from cloud providers supporting the respective security controls can be
selected for the particular component.

Scale Requirements

A ScaleRequirement can be referred to by a ScalabilityRule such that the way
corresponding scaling actions can be performed is restrained. A
ScaleRequirement can be a HorizontalScaleRequirement, which represents the
minimum and maximum amount of instances allowed for a component, so
that scale-out and scale-in actions will not exceed these bounds, respectively.
Alternatively, it can be a VerticalScaleRequirement, which represents the
minimum and maximum values allowed for virtual machine properties (e.g.,
number of CPU cores), so that scale-up and scale-down actions will not exceed
these bounds, respectively.

Service Level Objectives

A ServiceLevelObjective represents an SLO. SLOs are used to specify
measurable performance objectives (e.g., upper and/or lower thresholds
regarding availability, response time, throughput, etc.) of a cloud service. In
CAMEL, a ServiceLevelObjective refers to a Condition, such as a
MetricCondition, which represents the metric condition that must be satisfied
(i.e., the corresponding measurement values must not cross a particular
threshold). Such a condition is specified via a metric model (see Section 1.2.4).

1.2.2.2. Soft requirements

Optimization Requirements

An OptimisationRequirement refers to a Metric, which represents the metric
that should be optimized. Moreover, it refers to an Application or
InternalComponent. The property optimisationFunction of
OptimisationRequirement represents the optimization function applied to the
metric and can be assigned the values of MINIMISE or MAXIMISE.

Assume that we have to specify the requirements for the components of the Scalarm
use case. Listing 6 show this specification in textual syntax. quantitative
hardware CoreIntensive specifies that a VM must have from 8 to 32 CPU

cores and from 4 to 8 GB of RAM. os Ubuntu specifies a quantitative hardware
requirement prescribing that a VM must support the 64-bit edition of the Ubuntu
operating system. location requirement GermanyReq specifies that a VM
must be deployed in Germany. All three above requirements are referred to by the
requirement set CoreIntensiveUbuntuGermanyRS in the deployment model

ScalarmDeployment (cf. Listing 2). locations refers to the location DE, indicating
the iso2 code for the country of Germany, in the location model ScalarmLocation (cf.
Listing 7).

horizontal scale requirement

HorizontalScaleSimulationManager specifies that the component

SimulationManager must scale horizontally between 1 and 5 instances. component
refers to the internal component SimulationManager in the deployment model
ScalarmDeployment (cf. Listing 2).

slo CPUMetricSLO is a specific SLO which is associated via the service

level property to the metric condition CPUMetricCondition in the metric model
ScalarmModel (cf. Listing 9). optimization requirement

MinimisePerformanceDegradationOfExperimentManager specifies
that the metric MeanValueOfResponseTimeOfAllExperimentManagersMetric of the
component ExperimentManager, which is the average response time over all
instances of the Experiment Manager application component, should be minimized
and that this minimization has a priority of 0.8.

1.2.3. Location Aspect – Location Model

A LocationModel is a container for locations which can be mainly used to represent
location requirements. Two kinds of locations can be captured. On the one hand,
physical locations are represented by GeographicalRegions. The property name of
such a location represents its name in English, while the property alternativeNames
represents alternative names of this location in other natural languages. A
geographical region can refer to a parent region, which allows creating hierarchies of
geographical regions. A GeographicalLocation can be a Country, which represents a
distinct entity in the political geography.

On the other hand, a CloudLocation represents a virtual location that is specific to a
particular cloud (e.g., the eu-west-1 availability zone in Amazon EC2). Similar to the
geographical region, a cloud location can refer to a parent location, which allows
creating hierarchies of cloud-specific locations (e.g., regions and encompassing
availability zones in Amazon EC2).

Assume that we have to specify the locations for the Scalarm use case. Listing 7
shows this specification in textual syntax. region EU specifies the region
(continent) Europe. country DE specifies the country Germany. parent

regions refers to the parent region of Europe for this country. Only the parents of
a region need to be specified and not all possible ancestors. The ancestors of a
country can be inferred in a recursive way by exploring the aforementioned parent-
to-child relationship/property.

1.2.4. Measurement/Metric Aspect – MetricModel

A metric model can be used to specific conditions over quality metrics or properties
for applications and components (sw components and VMs), which can be
associated to SLOs or (scalability rule) events, as well as all appropriate details to
measure these metrics and properties. A condition can be specified by exploiting the
following constructs analysed in the next sub-sections.

1.2.4.1. Metrics

A Metric is a standard of measurement which encapsulates all appropriate
details for measuring non-functional properties. A RawMetric (e.g., raw
response time) maps to the description of how raw measurements over a
certain non-functional property (e.g., response time) can be produced. A
CompositeMetric, in turn, represents an aggregated metric computed from
other metrics. A metric refers to a Unit of measurement (e.g., the unit of
SECONDS for the raw response time metric). In order to assist in checking the
correctness of measurement values or their aggregations, a metric also refers
to a ValueType, which represents the range of values the metric is allowed to
take.

1.2.4.2. Metric Formulas

Each CompositeMetric refers to a MetricFormula, which explicates the
computation formula used for deriving the composite metric measurements.
For that purpose, a MetricFormula refers to one or more
MetricFormulaParameters, which constitute its input, as well as to a pre-
defined function to be applied on this input. There exist three kinds of
parameters: constants, Metrics, or MetricFormulas. As such, a MetricFormula
actually represents a measurement aggregation tree over particular metrics
connecting different sub-formulas into a coherent whole.

1.2.4.3. Properties

Any Metric also refers to a measurable Property, i.e., the non-functional
property of a component or an application that is measured by this metric.
The attribute type represents the kind of property, where a value of
MEASURABLE represents that the property can be measured, e.g., in the case
of response time or CPU load, while a value of ABSTRACT represents that the

property is not measurable. An abstract property that is not measurable can
be realized by more concrete and possibly measurable properties. In this way,
the construction of property hierarchies is supported.

1.2.4.4. Metric Conditions

A MetricCondition represents a constraint imposed on a metric. A constraint is
violated when the respective condition threshold is not met by the produced
measurements of this metric. The violation of a metric condition may lead to
the triggering of a simple, non-functional event, which might be part of the
overall event pattern of a scalability rule, and/or to the violation of an SLO.

1.2.4.5. Property Conditions

A PropertyCondition represents a condition on a non-functional property. This
way, it is possible to specify, e.g., constraints on the cost for the whole
application or one or more of its components. Then, it is up to the PaaSage
platform to interpret these constraints appropriately in order to derive the
required property values (e.g., based on a particular internal to the platform
metric used for producing the respective property value).

1.2.4.6. Condition Contexts

A condition, either pertaining to a metric or to a property, refers to a
particular ConditionContext, which represents the context under which it
should hold. The context explicates whether the condition must be enforced
on the whole application or a particular component/VM. It also indicates for
how many instances of the application or component/VM the condition must
be checked. Two different types of quantification are distinguished: relative, in
the form of percentages over the number of instances for an application or a
component, and absolute, in the form of the actual number of instances for
these applications or components.

1.2.4.7. Metric Context

A MetricContext is a condition context that also refers to the metric to be used
for evaluating a respective condition as well as to information regarding the
measurement schedule and window for this metric. For a composite metric, a
CompositeMetricContext includes a reference to the contexts of the
composing metrics of this metric. For a raw metric, a RawMetricContext
represents a reference to the sensor that produces the measurements of this
metric. The PaaSage runtime generates contextual information whenever
possible so that it is not necessary to create all composing contexts by hand.
This is possible as some information is inherited from the composite metric’s
context to its composing metrics’ contexts (actually scheduling and window of
measurement information). Consequently, the definition of a context is only
obligatory when information should not be inherited but differentiated for a
specific composing context. For example, if we have specified the context of
raw availability, the context of raw uptime (component of raw availability)
does not need to include measurement scheduling and window information

(e.g., measure the metric every 10 seconds) as this will be identical to the one
encompassed in the availability’s context.

1.2.5. Scalability Aspect – ScalabilityModel
A scalability model encompasses the specification of a set of scalability rules,
regulating the adaptive runtime behaviour of particular application, along with the
events used to trigger them as well as the scaling actions executed upon this
triggering. These three latter constructs are analysed in more detail below in
separate subsections.

1.2.5.1. Scalability Rules

A ScalabilityRule associates an Event and a set of Actions. The Event
represents either a single event or an event pattern/aggregation that triggers
the execution of the actions. The Actions either specify which components and
virtual machines should be scaled (i.e., case of scaling actions) and how or just
remark that a global deployment decision has to be made (i.e., for event
creation actions) in case local adaptation fails or scalability limits based on
given scaling requirements have been reached (that need to be associated to
the respective ScalabilityRule). A scalability rule also refers to Entities, such as
the user or the organization, which has specified it.

1.2.5.2. Actions

An Action can be specialized into a ScalingAction or an EventCreationAction.
The ScalingAction, in turn, can be specialized into a HorizontalScalingAction or
a VerticalScalingAction. The HorizontalScalingAction refers to a VM and an
InternalComponent (both specified via the deployment package). In case such
an action is executed, the specified component is scaled (out or in) along with
the virtual machine hosting it. The property count defines the number of
additional instances to create, or the number of existing instances to destroy.
In contrast to horizontal scaling, the VerticalScalingAction refers to a concrete
VMInstance. The properties named by the *Update pattern define the amount
of virtual resources (e.g., CPU cores, RAM, etc.) to be added to or removed
from the virtual machine instance. An EventCreationAction signifies via the
creation of an event that the scaling actions are not sufficient to maintain the
target service level of a multi-cloud application. For instance, a multi-cloud
application may still violate the target response time defined in an SLO despite
the scale-out or scale-up actions performed.

1.2.5.3. Events

Events can be simple or composite (i.e., event patterns). A SimpleEvent can be
specialized into a FunctionalEvent or a NonFunctionalEvent. The
FunctionalEvent represents a functional error (e.g., a virtual machine or a
component has failed). A NonFunctionalEvent that refers to a metric or
property condition is triggered when this condition is violated. (e.g., the
response time of a component exceeds the target response time in an SLO).
The NonFunctionalEvent refers to a MetricCondition, which defines the
threshold for the metric. On the other hand, an event pattern is an

aggregation of events based on logical or time-based operators (e.g., a logical
conjunction of two other events via the AND logical operator).

Listing 8 shows the Scalarm’s scalability model in textual syntax. This model
encompasses one scalability rule that associates one binary event pattern with a
scale-out action, while it is restricted by the scaling policy specified in Listing 6. The
semantics of this rule specifies that we need to scale-out the SimulationManager
component of Scalarm when particular bounds/conditions of two metrics are
violated, mapping to respective events aggregated via a logical conjunction into the
corresponding binary event pattern, provided that the number of instances of this
component is less than 5. The scale-out action specification indicates important
information about the scaling, such as the scale action type, which is the component
to be scaled and on which VM type/offering it will be hosted.

Listing 9 shows the Scalarm’s metric model in textual syntax, which encloses the
specification of the event conditions involved in the previously analysed scalability
rules, and the corresponding metrics encompassed in these conditions along with
their scheduling information. The two metrics map to common information for two
families of metrics: (a) a raw (sensor) metric measuring CPU load and (b) an average
CPU load metric; the latter metric will be instantiated with two different contexts,
one with a window of five minutes, and another with a window of one minute. This
is due to the semantics of the corresponding conditions mapping to these contexts
which impose applying different bounds on the same composite metric with
however different measurement scheduling and window directives. In particular,
one condition (CPUAvgMetricConditionAll) will be violated when the average CPU,
computed every 1 minute with a sliding window of 5 minute, for all instances of the
SimulationManager component is greater than 50%, while the other condition
(CPUAvgMetricConditionAny) will be violated when the average CPU, computed
every 1 minute with a sliding window of 1 minute, for any instance of
SimulationManager is greater than 80%.

1.2.6. Security Aspect – SecurityModel

A SecurityModel is container of security-related constructs which can be exploited to
specify security requirements and capabilities that can assist in the filtering of the
cloud provider space during deployment plan reasoning. Such constructs are now
analysed in detail.

A SecurityControl represents a technical or administrative countermeasure that aims
at addressing security risks in a cloud-based application. Such a construct actually
characterises high-level security requirements or capabilities that have to be
satisfied or realised by the application owner or cloud provider, respectively. The
property specification is used to specify textual descriptions of security controls in
the CAMEL model. A security control can be linked to raw or composite security
metrics which are specialisations of non-functional metrics (see Section 1.2.4). This
kind of linkage enables connecting high-level requirements or capabilities expressed
via security controls to more concrete requirements or capabilities expressed via
conditions on security metrics. As such, we can evaluate whether a particular
security control is satisfied via assessing the respective conditions on metrics
associated to this control. A security control is also associated to a security domain
and sub-domain. The latter constructs can be exploited to perform a partitioning of
security-related building blocks in terms of security controls, metrics and properties.

A security property is a kind of a non-functional property. Certifiable security
properties can actually be measured/certified and are thus connected to respective
security metrics. A SecuritySLO is a kind of SLO which involves security metrics and
properties in its conditions.

Assume that we have to specify a security model for the Scalarm use case. Listing 12
above shows this specification model in textual syntax. domain IAM specifies the

security domain of Identity & Access Management (IAM). domain IAM_CLCPM
and IAM_UAR specify two sub-domains of IAM, namely Credential Life
Cycle/Provision Management (CLCPM) and User Access Revocation (UAR),
respectively. Property IdentityAssurance specifies an abstract security
property associated with the security domain IAM.

security control IAM_02 (related to the establishment of user-control
access and policies at the cloud provider side) specifies a security control associated
with the security sub-domain (CLCPM) and the property IdentityAssurance.
Similarly, security control IAM_11 (related to the timely deprovisioning of
user access) specifies a security control associated with the security sub-domain
(UAR) and the property IdentityAssurance. Note that these security controls
are part of the set of security controls of the Cloud Control Matrix1 identified by the
Cloud Security Alliance (CSA)2. security capability SecCap specifies a
security capability associated with the security controls IAM_02 and IAM_11.

Finally, the organisation model AmazonExt refers to the security

capability SecCap, which specifies that the Amazon provider supports this security
capability.

1.2.7. Type Aspect - TypeModel

The type model includes the specification of values as well as of the types to which
these values conform. Such types can be associated to metrics and feature
attributes.

A Value represents a generic value. It can be specialised into a NumericValue,
StringValue, BooleanValue, and EnumerateValue. A numeric value can be further
specialised into the IntValue, DoubleValue, and FloatValue. A numeric value can also
be specialized into NegativeInf and PositiveInf, which represent negative and positive
infinity, respectively, and can be used for specifying one of the two bounds of range-
based value types.

The StringValue and BooleanValue classes represent string and boolean values,
respectively. On the other hand, the EnumerateValue represents an enumerated
value. The property name represents the string associated with the value, while the
property value represents the integer associated with the value (or position in the
enumeration).

1
 https://cloudsecurityalliance.org/download/cloud-controls-matrix-v3-0-1/

2
 http://www.cloudsecurityalliance.org

ValueType represents a generic value type. It can be specialised into a
StringValueType, BooleanValueType, Enumeration, List, Range and RangeUnion.
StringValueType and BooleanValueType represent string and boolean value types,
respectively. Enumeration represents an enumeration type that can take
EnumerateValues.

List represents a list type having members which can be of a basic (i.e., a numeric,
string, or boolean value) or complex value type (e.g., an enumeration or a range).
The property primitiveType represents the basic value type, and it has to be used in
the first case. The referenced type represents the complex value type, and it has to
be used in the second case.

A Range represents a range-based value type. It has two references lowerLimit and
upperLimit to a Limit. A limit represents an actual bound, either upper or lower, of a
range. The property included indicates whether the limit’s value is included or not in
the range. The RangeUnion represents a union of range-based value types. It refers
to the contained range-based value types as well as to the primitive type that is
common across all the contained value types.

Assume that we have to record the types of the Scalarm use case. Listing 14 shows
this specification in textual syntax. The range statements specify two integer-
based ranges and one double-based range. The first range is associated as a value
type to the CPUMetric (cf. Listing 9 to represent that CPU metric values should be
between 0 and 100, both included). The second range is associated as a value type to
the ResponseTimeMetric to signify that the values of this metric should be
between 0, not included (i.e., between 1), and 10000, included. The third range is
associated to the AvailabilityMetric and signifies that the respective metric
values should be between 0.0 and 100.0, where both bound/limit values are
included.

1.2.8. Unit Aspect – UnitModel
A UnitModel is a collection of units that can be associated to metrics of a metric
model or attributes of a provider model. A Unit represents an abstract unit. It can be
specialised into the following classes:

• CoreUnit, which represents the unit of CPU cores
• MonetaryUnit, which represents a monetary unit (e.g., EUROS)
• RequestUnit, which represents the unit of number of requests
• StorageUnit, which represents the unit of storage (e.g., BYTES)
• ThroughputUnit, which represents the unit of throughput (e.g., REQUESTS

_PER_SECOND)
• TimeIntervalUnit, which represents the unit of time interval (e.g., SECONDS)
• TransactionUnit, which represents the number of transactions
• Dimensionless, which represents a unit without dimension (e.g., a unit of

PERCENTAGE is dimensionless).
Assume that we have to specify the units of the Scalarm use case. Listing 15 shows
this specification in textual syntax. The unit model encompasses seven units that are
used in the metric model. The specification of each unit follows the pattern:
<unit_class> <unit_name>: <unit_type> (where the latter is an enumeration of all
possible unit types). For instance, monetary unit {Euro: EUROS} specifies a monetary
unit named “euros” and typed EUROS.

1.3. Conclusion
In this document, we have shortly analysed each aspect that can be captured by
CAMEL, mostly related to the specification of non-functional and deployment
requirements as well as scalability rules. For each aspect, we have described the
main modelling concepts, their properties and relations, while we have provided
concrete examples of the respective aspect-specific part of the CAMEL syntax by
relying on the Scalarm use case.
Through the use of the CAMEL textual editor, we believe that the prospective user
does not only have access to many interesting editing services but also have the
capability to learn the CAMEL essentials without reverting to any extensive CAMEL
documentation as well as produce in the end CAMEL models in a quite rapid manner.

The editor’s services encompass capabilities for syntactic and semantic highlighting,
domain validation reporting, auto-completion and clever suggestion (by also catering
for user-intuitive cross-reference specification within or across CAMEL sub-models),
while the automatic generation of the XMI CAMEL form is also supported. Such
capabilities and editing mode cater mainly devops and admin types of users as they
are more close to the way these user types work. If the remaining user type, i.e., a
business user, is not comfortable with this editing mode, then he/she can revert to
the alternative ways to specify CAMEL models which are graphics-based. These latter
ways include the default graphical tree-based CAMEL editor offered by the Eclipse
Environment which can operate over the file system or the MDDB CDO Repository
[D4.1.2], or a web-based editor developed via Eclipse’s RAP3 technology which
enables the on-line editing of CAMEL application (application + requirement) and
organisation models over the MDDB CDO Repository.

References

[CloudML] N. Ferry, A. Rossini, F. Chauvel, B. Morin, A. Solberg, Towards model-
driven provisioning, deployment, monitoring, and adaptation of multi-cloud systems,
in: L. O’Conner (Ed.), Proceedings of CLOUD 2013: 6th IEEE International Conference
on Cloud Computing, IEEE Computer Society, ISBN 978-0-7695-5028-2, 887–894,
2013.

[D2.1.3] A. Rossini, K. Kritikos, N. Nikolov, J. Domaschka, F. Griesinger, D. Seybold, D.
Romero, D2.1.3 – CloudML Implementation Documentation (Final version), PaaSage
project deliverable, 2015.

[D4.1.2] T. Kirkham, K. Kritikos, B. Kryza, K. Magoutis, P. Massonet, C. Papoulas, M.
Korozi, A. Leonidis, S. Ntoa, C. Sheridan, A. Innes, Douglas A. Imrie, D4.1.2 – Product
Database and Social Network System, PaaSage project deliverable, 2016.

[SALOON] C. Quinton, D. Romero, L. Duchien, Cardinality-based feature models with
constraints: a pragmatic approach, in: T. Kishi, S. Jarzabek, S. Gnesi (Eds.), SPLC 2013:
17th International Software Product Line Conference, ACM, 162–166, 2013.

[SRL] K. Kritikos, J. Domaschka, A. Rossini, SRL: A Scalability Rule Language for Multi-
cloud Environments, in: CloudCom, IEEE, 1–9, 2014.

3
 Eclipse.org/rap

