
D2.1.1	
 –	
 CloudML	
 Guide	
 and	
 Assessment	
 Report	
 	
 Page	
 1	
 of	
 39	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

	

	

	

	

	

PaaSage	

	

	

Model	
 Based	
 Cloud	
 Platform	
 Upperware	

	

	

	

	

Deliverable	
 D2.1.1	

	

CloudML	
 Guide	
 and	
 Assessment	
 Report	

	

	

	

Version:	
 1.0	

��� ���

D2.1.1	
 –	
 CloudML	
 Guide	
 and	
 Assessment	
 Report	
 	
 Page	
 2	
 of	
 39	

D2.1.1	

Name,	
 title	
 and	
 organisation	
 of	
 the	
 scientific	
 representative	
 of	
 the	
 project's	
 coordinator:	
 	

Mr	
 Tom	
 Williamson	
 	
 	
 Tel:	
 +33	
 4	
 9238	
 5072	
 	
 	
 Fax:	
 +33	
 4	
 92385011	
 	
 	
 E-­‐mail:	
 tom.williamson@ercim.eu	

Project	
 website	
 address:	
 http://www.paasage.eu	

Project

Grant Agreement number 317715

Project acronym: PaaSage

Project title: Model Based Cloud Platform Upperware

Funding Scheme: Integrated Project

Date of latest version of Annex I against which the
assessment will be made:

29th August 2012

Document

Period covered:

Deliverable number: D2.1.1

Deliverable title CloudML Guide and Assessment Report

Contractual Date of Delivery: 30th September 2013 (M12)

Actual Date of Delivery: 25th October 2013

Editor (s): Alessandro Rossini

Author (s): Alessandro Rossini, Arnor Solberg, Daniel Romero, Jörg
Domaschka, Kostas Magoutis, Nicolas Ferry, Tom
Kirkham

Reviewer (s): Philippe Massonet, Geir Horn

Participant(s): Lutz Schubert, Keith Jeffery

Work package no.: 2

Work package title: Languages

Work package leader: Arnor Solberg

Distribution:

Version/Revision: 1.0

Draft/Final: Final

Total number of pages (including cover): 39

D2.1.1	
 –	
 CloudML	
 Guide	
 and	
 Assessment	
 Report	
 	
 Page	
 3	
 of	
 39	

DISCLAIMER	

	

This	
 document	
 contains	
 description	
 of	
 the	
 PaaSage	
 project	
 work	
 and	
 findings.	

The	
 authors	
 of	
 this	
 document	
 have	
 taken	
 any	
 available	
 measure	
 in	
 order	
 for	
 its	
 content	
 to	
 be	
 accurate,	
 consistent	
 and	

lawful.	
 However,	
 neither	
 the	
 project	
 consortium	
 as	
 a	
 whole	
 nor	
 the	
 individual	
 partners	
 that	
 implicitly	
 or	
 explicitly	

participated	
 in	
 the	
 creation	
 and	
 publication	
 of	
 this	
 document	
 hold	
 any	
 responsibility	
 for	
 actions	
 that	
 might	
 occur	
 as	
 a	

result	
 of	
 using	
 its	
 content.	

This	
 publication	
 has	
 been	
 produced	
 with	
 the	
 assistance	
 of	
 the	
 European	
 Union.	
 The	
 content	
 of	
 this	
 publication	
 is	
 the	

sole	
 responsibility	
 of	
 the	
 PaaSage	
 consortium	
 and	
 can	
 in	
 no	
 way	
 be	
 taken	
 to	
 reflect	
 the	
 views	
 of	
 the	
 European	
 Union.	

	

The	
 European	
 Union	
 is	
 established	
 in	
 accordance	
 with	
 the	

Treaty	
 on	
 European	
 Union	
 (Maastricht).	
 There	
 are	
 currently	

28	
 Member	
 States	
 of	
 the	
 Union.	
 It	
 is	
 based	
 on	
 the	
 European	

Communities	
 and	
 the	
 member	
 states	
 cooperation	
 in	
 the	

fields	
 of	
 Common	
 Foreign	
 and	
 Security	
 Policy	
 and	
 Justice	

and	
 Home	
 Affairs.	
 The	
 five	
 main	
 institutions	
 of	
 the	

European	
 Union	
 are	
 the	
 European	
 Parliament,	
 the	
 Council	

of	
 Ministers,	
 the	
 European	
 Commission,	
 the	
 Court	
 of	
 Justice	

and	
 the	
 Court	
 of	
 Auditors.	
 (http://europa.eu)	

	

	

PaaSage	
 is	
 a	
 project	
 funded	
 in	
 part	
 by	
 the	
 European	
 Union.	

Contents
1 Introduction . 7
2 PaaSage life-cycle . 9
3 SENSAPP running example . 11
4 Provisioning and deployment: CLOUDML 12

4.1 Cloud provider-independent and -specific models 13
4.2 Execution . 15
4.3 Running example . 16

5 Cloud providers, requirements, and goals: Saloon 21
5.1 Variability of cloud providers 22
5.2 Requirements . 23
5.3 Goals . 23
5.4 Running example . 24

6 Service-level agreement: WS-Agreement 26
6.1 Running example . 26

7 Scalability: Rules . 28
7.1 Scope and actions . 29
7.2 Triggers and emitters 29
7.3 Running example . 30

8 Integration: Metadata Database 31
8.1 Running example . 33

9 Related work . 33
10 Conclusions and Future Work 35
References . 36

D2.1.1 - CloudML Guide and Assessment Report Page 4 of 39

Executive Summary
Cloud computing provides a ubiquitous networked access to a shared and vir-
tualised pool of computing capabilities that can be provisioned with minimal
management effort. Cloud-based applications are applications that are deployed
on cloud infrastructures and platforms, and delivered as services. PaaSage aims
to facilitate the specification and execution of cloud-based applications by lever-
aging upon model-driven engineering (MDE) techniques and methods, and by
exploiting multiple cloud infrastructures and platforms.

MDE is a branch of software engineering that aims at improving the pro-
ductivity, quality, and cost-effectiveness of software development by shifting the
paradigm from code-centric to model-centric. Models enable the abstraction
from the implementation details of heterogeneous cloud services, while model
transformations facilitate the automatic generation of the source code that ex-
ploits these services. This approach, which is commonly summarised as “model
once, generate anywhere”, is particularly relevant when it comes to the specifica-
tion and execution of multi-cloud applications (i.e., applications deployed across
multiple cloud infrastructures and platforms), which allow for exploiting the pe-
culiarities of each cloud service and hence optimising performance, availability,
and cost of the applications.

Models are frequently specified using domain-specific languages (DSLs),
which are tailored to a specific domain of concern. In order to cover the neces-
sary aspects of the specification and execution of multi-cloud applications, PaaS-
age encompasses a family of DSLs. These DSLs, namely CLOUDML, Saloon,
WS-Agreement, and a language for scalability rules, allow for modelling mul-
tiple concerns of multi-cloud applications, such as provisioning, deployment,
requirements, goals, SLAs, and execution.

In this deliverable, we present an initial guide and assessment of the DSLs
adopted in PaaSage by:

• relating each DSL to the PaaSage life-cycle phases;

• describing the domain covered by each DSL;

• describing the capabilities offered by each DSL;

• discussing the integration of the DSLs;

• exemplifying the usage of the DSLs by means of a running example.

D2.1.1 - CloudML Guide and Assessment Report Page 5 of 39

Please note that these DSLs are under development and will evolve through-
out the course of the PaaSage project. Hence, the capabilities offered by these
DSLs and presented in this deliverable reflect our understanding of the require-
ments of PaaSage at month 12.

Please also note that a technical specification of these DSLs is beyond the
scope of this deliverable. Low-level technical details, such as specifications of
metamodels, grammars, and semantics, will be provided in D2.1.2 [29].

Intended Audience
This deliverable is a public document intended for readers with some experience
in cloud computing and modelling, as well as some familiarity with the initial
architecture design of PaaSage, as described in deliverable D1.6.1 [16].

For the external reader, this deliverable provides an insight of the domain
covered- and the capabilities offered by each DSL, as well as a justification for
their adoption in the context of the PaaSage life-cycle phases.

For the research partners in PaaSage, this deliverable provides an understand-
ing of the elements of each DSL that can be manipulated by the components of
the PaaSage platform.

For the industrial partners in PaaSage, this deliverable provides an under-
standing of the elements of each DSL that can be used for modelling the use
cases of PaaSage.

D2.1.1 - CloudML Guide and Assessment Report Page 6 of 39

1 Introduction
Nowadays, software systems are leveraging upon an aggregation of dedicated
solutions, which leads to the design of large scale, distributed, dynamic systems.
However, the complexity of managing such systems challenges current software
engineering approaches.

Dynamically adaptive systems (DAS) [19] have recently emerged to cope
with this challenge by enabling the continuous design and adaptation of complex
software systems. DAS facilitates handling short-term changes in the execu-
tion environment as well as long-term changes in the system requirements [21].
However, the focus of DAS is typically limited to the application itself rather
than the underlying infrastructure and platform.

Cloud computing provides a ubiquitous networked access to a shared and
virtualised pool of computing capabilities (e.g., network, storage, processing,
and memory) that can be provisioned with minimal management effort [20].
In contrast to DAS, cloud computing enables the management of the complete
software stack, i.e., infrastructure, platform, and application, where each layer is
exposed as a service. In particular, cloud computing offers two types of scalabil-
ity: vertical (e.g., increase or decrease the virtual resources allocated to a virtual
machine) and horizontal (e.g., increase or decrease the number of virtual ma-
chines).

A key challenge is then to enable dynamically adaptive cloud-based applic-
ations, i.e., to integrate the management capabilities of recent cloud solutions
with software engineering approaches, techniques, and methods of DAS. PaaS-
age aims to tackle this challenge by leveraging upon model-driven engineering
(MDE) techniques and methods, and by exploiting multiple cloud infrastructures
and platforms.

MDE is a branch of software engineering that aims at improving the pro-
ductivity, quality, and cost-effectiveness of software development by shifting the
paradigm from code-centric to model-centric. MDE promotes the use of models
and model transformations as the primary assets in software development, where
they are used to specify, simulate, generate, and manage software systems. This
approach is particularly relevant when it comes to the specification and execution
of multi-cloud applications (i.e., applications deployed across multiple private,
public, or hybrid cloud infrastructures and platforms), which allow exploiting
the peculiarities of each cloud service and hence optimising performance, avail-
ability, and cost of the applications.

Models can be specified using general-purpose languages like the Unified
Modeling Language (UML). However, to fully unfold the potential of MDE,
models are frequently specified using domain-specific languages (DSLs), which
are tailored to a specific domain of concern. In order to cover the necessary

D2.1.1 - CloudML Guide and Assessment Report Page 7 of 39

aspects of the specification and execution of multi-cloud applications, PaaSage
encompasses a family of DSLs called Cloud Application Modelling and Exe-
cution Language (CAMEL). In particular, PaaSage provides the Cloud Model-
ling Language (CLOUDML), a DSL for modelling and enacting the provision-
ing and deployment of multi-cloud applications [12, 13]. Besides CLOUDML,
PaaSage adopts: Saloon [28, 27, 26], a framework for specifying requirements
and goals of multi-cloud applications, and selecting compatible cloud providers;
WS-Agreement [1], a framework for creating SLAs and monitoring them at run-
time; and a language for specifying scalability rules (currently subject to an on-
going assessment).

In this deliverable, we present an initial guide and assessment of the DSLs
adopted in PaaSage by:

• relating each DSL to the PaaSage life-cycle phases;

• describing the domain covered by each DSL;

• describing the capabilities offered by each DSL;

• discussing the integration of the DSLs;

• exemplifying the usage of the DSLs by means of a running example.

Please note that these DSLs are under development and will evolve through-
out the course of the PaaSage project. Hence, the capabilities offered by these
DSLs and presented in this deliverable reflect our understanding of the require-
ments of PaaSage at month 12.

Please also note that a technical specification of these DSLs is beyond the
scope of this deliverable. Low-level technical details, such as specifications of
metamodels, grammars, and semantics, will be provided in D2.1.2 [29].

Structure of the document

The remainder of the document is organised as follows. Section 2 summar-
ises the life-cycle of multi-cloud applications envisioned in PaaSage. Section 3
presents a running example based on generic architectural scenarios for PaaS-
age that will be adopted throughout the document. Sections 4, 5, 6, 7, and 8
present the DSLs adopted in PaaSage, and exemplify how they can be used for
specifying and executing the running example. Finally, Section 9 compares the
proposed approach with related work, while Section 10 draws some conclusions
and outlines some plans for future work.

D2.1.1 - CloudML Guide and Assessment Report Page 8 of 39

2 PaaSage life-cycle
PaaSage’s model-driven methodology is based upon the key cloud life-cycle
phases of configuration, deployment, and execution of multi-cloud applications
(see Figure 1, cf. D1.6.1 [16] for more information about the PaaSage architec-
ture).

Configura)on	

•  Model	
 provisioning	
 and	

deployment	
 of	
 applica)ons	

•  Specify	
 requirements	
 and	

goals	

•  Specify	
 SLAs	

Deployment	

•  Select	
 cloud	
 providers	

•  Select	
 provisioning	
 and	

deployment	
 models	

•  Select	
 KPIs	

Execu)on	

•  Enact	
 provisioning	
 and	

deployment	
 of	
 applica)ons	

•  Monitor	
 KPIs	

•  Adapt	
 provisioning	
 and	

deployment	
 of	
 applica)ons	

Figure 1: The PaaSage life-cycle phases

The configuration phase is concerned with modelling the deployment of ap-
plications, specifying requirements and goals, and specifying SLAs. The de-
ployment phase is concerned with matching the configuration models of applic-
ations with the profile of cloud providers, and selecting the most suitable deploy-
ment models based on requirements and goals, SLAs, and historical data about
the executions of applications. Finally, the execution phase is concerned with
monitoring and recording key performance indicators (KPIs), and managing the
execution of applications accordingly.

In order to facilitate the integration across the components responsible for
each life-cycle phase, PaaSage adopts a series of interlinked models, which are
progressively refined throughout the PaaSage work-flow (see Figure 2).

Configuration: The users of PaaSage use CLOUDML, Saloon, and WS-
Agreement to design a configuration model, which specifies the deployment
of applications along with their requirements and goals in a cloud provider-
independent way. This allows the users of PaaSage to express their requirements
and goals at the level of abstraction that is suitable for their technical and busi-
ness needs.

D2.1.1 - CloudML Guide and Assessment Report Page 9 of 39

Applica'on	

implementa'

on	

Java,	
 Python,	
 …	

Applica'on	
 source	

code,	
 binaries,	
 scripts	

Deployment	

design	

CloudML	

Provisioning	
 and	

deployment	
 model	

Applica'on	

design	

UML	

Applica'on	
 model	

Commercial	

nego'a'on	

WS-­‐Agreement	

Service-­‐level	

agreement	

Requirements	

and	
 goals	

iden'fica'on	

Saloon	

Requirements	
 and	

goals	

CAMEL	

Configura'on	
 model	
 Profiler	

CAMEL	

Deployment	
 template	

CAMEL	

Deployment	
 model	

Adapter	

Execu'on	
 models	

Execu'onware	

Metadata	
 Database	

Historical	
 data	

Reasoner	

Infrastructure	

/	
 PlaGorm	

Figure 2: The PaaSage work-flow

Deployment: The Profiler component (cf. D1.6.1 [16]) consumes the con-
figuration model, matches this model with the profile of cloud providers, and
produces a deployment template, which specifies the deployment of applica-
tions along with their requirements, goals, and compatible cloud providers. The
Reasoner component (cf. D1.6.1 [16]) consumes the deployment template from
the Profiler and produces a deployment model, which specifies the deployment of
applications along with their requirements and goals in a cloud provider-specific
way. This model and historical data related to its execution are stored in the
Metadata Database component (cf. D1.6.1 [16]), which allows the Reasoner to
look at the performance of previous deployment models when producing a new
one. This model can also be shared and reused across different PaaSage plat-
forms, which enables a knowledge foundation that related services such as the
Social Network (cf. D1.6.1 [16]) will be built upon.

Execution: The Adapter component (cf. D1.6.1 [16]) consumes the deploy-
ment model from the Reasoner and produces execution models, which comple-
ment the deployment model with deployment scripts along with monitoring and
scalability rules that are necessary for managing the execution. This allows for
the dynamic adaptation of multi-cloud applications and the maintenance of their
quality of service (QoS) throughout their execution. Finally, the Executionware
(cf. D1.6.1 [16]) consumes the execution models from the Adapter and enacts

D2.1.1 - CloudML Guide and Assessment Report Page 10 of 39

the deployment of the application components along with suitable infrastructure
and platform services to support the execution.

In the following, we present a running example that will be adopted through-
out the document to describe the DSLs.

3 SENSAPP running example
SENSAPP1 is an open-source, service-oriented application for storing and ex-
ploiting large data sets collected from sensors and devices. It is designed to
seamlessly bridge the gap between the Internet of things (IoT) and the cloud [22].
The SENSAPP application can register sensors, store their data, and notify clients
when new data are pushed.

data
miner

sensor
architect

sensors

end users

SensApp Admin

database
registry

notification
dispatcher

Internet of Services Internet of Things

Figure 3: The SENSAPP architecture [22]

SENSAPP provides four essential components to support the definition of IoT
applications (see Figure 3). The Registry component stores metadata about the
sensors (e.g., description and creation date). The Database component stores
raw data from the sensors using a MongoDB database. The Notifier compon-
ent sends notifications to third-party applications when relevant data are pushed
(e.g., when new data collected by air quality sensors become available). The
Dispatcher component orchestrates the other components: it receives data from
the sensors, stores these data in the Database according to the metadata from the
Registry, and then triggers the notification mechanisms for the new data. Finally,
the Admin component provides capabilities to manage sensors and visualise data
using a graphical user interface.

1http://sensapp.org

D2.1.1 - CloudML Guide and Assessment Report Page 11 of 39

http://sensapp.org

In the following, we adopt a running example illustrating different scenarios
of provisioning and deployment of SENSAPP. First, the Dispatcher and the Data-
base are deployed on a private cloud, the Notifier on a public cloud, and the
Admin on another public cloud. Then, the virtual machines are scaled vertic-
ally while the Dispatcher, the Database, and the Notifier are scaled horizontally
to tackle with the increase of requests. This running example can be regarded
as an instance of the generic architectural scenarios for PaaSage presented in
D1.6.1 [16], which are intended to cover the requirements of the PaaSage use
cases. In the following, we show how the various aspect of the running example
can be specified using the DSLs adopted in PaaSage.

4 Provisioning and deployment: CLOUDML
Provisioning and deployment models specify the topology of virtual machines
and application components of cloud-based applications. PaaSage envisions the
usage of provisioning and deployment models in all life-cycle phases of con-
figuration, deployment, and execution (see Section 2), meaning that they are
progressively refined throughout the PaaSage work-flow. For this purpose, we
adopt CLOUDML2 [12, 13]. CLOUDML consists of a tool-supported DSL for
modelling and enacting the provisioning and deployment of multi-cloud applic-
ations as well as for facilitating their dynamic adaptation by leveraging upon
MDE techniques and methods.

The life-cycle phases of configuration, deployment, and execution motivate
for the following requirements for CLOUDML:

Cloud provider-independence (R1): CLOUDML should support a cloud pro-
vider-agnostic specification of the provisioning and deployment, which
will simplify the design of multi-cloud applications and prevent vendor
lock-in;

Reusability (R2): CLOUDML should support the specification of types of com-
ponents that can be seamlessly reused, which will ease the modelling of
the provisioning and deployment;

Modularity (R3): CLOUDML should support the specification of modular,
loosely-coupled components that can be seamlessly substituted, which
will facilitate the dynamic adaptation of the provisioning and deployment;

Abstraction (R4): CLOUDML should provide an up-to-date, abstract repres-
entation of the running system, which will facilitate reasoning, simulation,
and validation of adaptation actions before their actual executions.

2http://cloumdml.org

D2.1.1 - CloudML Guide and Assessment Report Page 12 of 39

http://cloumdml.org

4.1 Cloud provider-independent and -specific models
CLOUDML allows the specification of provisioning and deployment at various
levels of abstraction. The two proposed levels are:

• the Cloud Provider-Independent Model (CPIM), which specifies the pro-
visioning and deployment of a multi-cloud application in a cloud provider-
independent way;

• the Cloud Provider-Specific Model (CPSM), which refines the CPIM and
specifies the provisioning and deployment of a multi-cloud application in
a cloud provider-specific way.

This two-level approach is agnostic to any development paradigm and tech-
nology, meaning that the application developers can design and implement their
applications based on their preferred paradigms and technologies.

CloudML	

Cloud	
 provider-­‐

independent	
 model	

CAMEL	

Configura3on	
 model	

CloudML	

Cloud	
 provider-­‐
specific	
 model	

CAMEL	

Deployment	

template/model	

Figure 4: The CLOUDML modelling stack

Please note that the CPIM and CPSM constitute a subset of the configura-
tion model and deployment template/model used in PaaSage, respectively (see
Figures 4 and 2).

CLOUDML is inspired by component-based approaches and implements the
type-instance pattern [3]. It allows expressing the following concepts (see Fig-
ure 5): clouds, virtual machines, application components, ports, and relation-
ships.

Clouds

A cloud represents a collection of virtual machines on a particular cloud pro-
vider. This element can be parametrised by provisioning requirements (e.g., loc-
ation = Europe).

D2.1.1 - CloudML Guide and Assessment Report Page 13 of 39

Cloud (public)

Cloud (private)

Application component

Virtual machine

Containment

Communication (mandatory)

Communication (optional)

Communication (mandatory, local)

Communication (optional, local)

Figure 5: The CLOUDML visual syntax

Virtual machines

A virtual machine type represents a reusable type of virtual machine. This ele-
ment can also be parametrised by provisioning requirements (e.g., 2 cores ≤
compute ≤ 4 cores, 2 GiB ≤ memory ≤ 4 GiB, storage ≥ 10 GiB) and op-
erating system (e.g., GNU/Linux or Windows) an. A virtual machine instance
represents an instance of a virtual machine (e.g., an instance of a virtual machine
running GNU/Linux).

Application components

An application component type represents a reusable type of application com-
ponent. In particular, an application component type can be internal, meaning
that it represents a component to be deployed on a virtual machine (e.g., a ser-
vlet, a Tomcat servlet container, and a MongoDB database), or external, meaning
that it represents a component managed and provided as a service by an external
party (e.g., the Google Maps service). An application component type can be as-
sociated to resources specifying how to manage their deployment life-cycle (e.g.,
download the servlet from http://cloudml.org/, install it, and start it). An
application component instance represents an instance of an application com-
ponent (e.g., an instance of Tomcat deployed on an instance of a virtual machine
running GNU/Linux).

D2.1.1 - CloudML Guide and Assessment Report Page 14 of 39

http://cloudml.org/

Ports

A port represents the interface of a feature of an application component. In
particular, a port can be provided, meaning that it serves a feature provided by
the application component (e.g., Tomcat provides a Java servlet container), or
required, meaning that it consumes a feature required by the application com-
ponent (e.g., the servlet requires a Java servlet container). A required port can
be mandatory, meaning that the application component requesting the feature
depends on the application component providing the feature (e.g., the servlet de-
pends on MongoDB and so MongoDB has to be deployed before the servlet). A
required port can also be local, meaning that the application component request-
ing the feature and the application component providing the feature have to be
deployed on the same virtual machine (e.g., the servlet and MongoDB have to
be deployed on the same virtual machine).

Relationships

Finally, a relationship represents a relationship between ports of two applica-
tion components. In particular, a relationship can be a communication, meaning
that an application component communicates with another application compon-
ent through an (IP-based) communication channel (e.g., a servlet communicates
with another servlet through Hypertext Transfer Protocol (HTTP) on port 8080),
or a containment, meaning that an application component is contained by another
application component (e.g., the servlet is contained by Tomcat). A relationship
type can be associated to resources specifying how to configure the application
component types in order to communicate with- or contain each other.

4.2 Execution
As mentioned, the CPSM specifies the components of a multi-cloud applica-
tion of and, in addition, which components shall be deployed on which cloud
environments using which credentials and configurations. In order to bring the
application to life, the content of the CPSM has to be transformed into opera-
tions executed against the interface of the actual cloud providers the components
shall be deployed on. This is performed by the Executionware.

The Adapter splits the content of the CPSM on a per-cloud environment basis
and passes each chunk to a Deployer instance in the Executionware. Each De-
ployer is responsible for a specific cloud environment. First, it replaces general
configuration parameters to a set of specific parameters understandable by the
cloud environment. For instance, the Amazon EC2 Deployer may translate a vir-
tual machine running GNU/Linux and parametrised by 4 compute cores and 16

D2.1.1 - CloudML Guide and Assessment Report Page 15 of 39

GiB of memory to an m3.xlarge3 virtual machine with an Ubuntu Sec Amazon
Machine Image (AMI), and take similar steps for the storage and networking
services. Finally, the Deployers instantiate the application components.

In the following, we build upon the SENSAPP running example (see Sec-
tion 3) to exemplify the usage of CLOUDML.

4.3 Running example
During the life-cycle phase of configuration, the users of PaaSage use the Model-
ler to design a CPIM of SENSAPP. This CPIM describes a possible provisioning
and deployment of SENSAPP in a cloud provider-independent way. Figure 6
shows a CPIM of SENSAPP using the CLOUDML visual syntax (see Figure 5).

No#fier	

SC	

VM	

Admin	

SC	

VM	

Dispatcher	

SC	

VM	

MongoDB	

VM: Virtual machine
SC: Servlet container

Figure 6: A sample CPIM for SENSAPP

3http://aws.amazon.com/ec2/instance-types/

D2.1.1 - CloudML Guide and Assessment Report Page 16 of 39

http://aws.amazon.com/ec2/instance-types/

The CPIM consists of a Dispatcher, a Notifier, and an Admin servlet from
SENSAPP. These servlets are contained by generic servlet containers, which in
turn are contained by generic virtual machines. The Dispatcher communicates
with MongoDB. This connection is mandatory, meaning that the Dispatcher de-
pends on MongoDB and so MongoDB has to be deployed before the Dispatcher
(i.e., deploy MongoDB, deploy the Dispatcher, and configure the connection
from the Dispatcher to MongoDB). This connection is also local, meaning that
the Dispatcher and MongoDB have to be contained by the same virtual machine.
The Dispatcher also communicates with the Notifier. This connection is op-
tional, meaning that the Dispatcher does not depend on the Notifier. Finally, the
Admin communicates with MongoDB. This connection is optional.

Please note that the CPIM allows the specifications of requirements at dif-
ferent levels of abstractions. The generic servlet containers and virtual machines
denote that SENSAPP can be executed on any servlet container (e.g., Tomcat
or Jetty, etc.) on any virtual machine (e.g., running Ubuntu Linux or Windows
Server, and having 2 or 16 compute cores). In contrast, MongoDB denotes that
SENSAPP can only be executed with this database.

During the life-cycle phase of deployment, the CPIM is refined into a CPSM
of SENSAPP. This CPSM specifies the provisioning and deployment in a cloud
provider-specific way. The refinement of a CPIM into a CPSM can be performed
either manually or automatically. In the former case, the users of PaaSage manu-
ally select the cloud providers and the cloud provider-specific aspects of the pro-
visioning and deployment through the Modeller. In the latter case, the users
of PaaSage let the Profiler match the requirements and goals with the compat-
ible providers (see Section 5), and then let the Reasoner select the most suitable
CPSM based on requirements and goals, SLAs, and historical data about the
executions of applications (cf. D1.6.1 [16]).

D2.1.1 - CloudML Guide and Assessment Report Page 17 of 39

Amazon	
 [loca+on:	
 EU]	
 Flexiant	
 [loca+on:	
 UK]	

SINTEF	
 (OpenStack)	
 [loca+on:	
 NO]	

No+fier	

Tomcat:SC	

SL:VM	

[compute cores: 2..4,
memory: 2..4 GiB]

Admin	

JeGy:SC	

ML:VM	

[compute cores: 4..8,
memory: 4..8 GiB]

Dispatcher	

Tomcat:SC	

LL:VM	

MongoDB	

[compute cores: 8..16,
memory: 16..32 GiB]

VM: Virtual machine
SC: Servlet container
LB: Load balancer
SL: Small GNU/Linux
ML: Medium GNU/Linux
LL: Large GNU/Linux

[scalability: 1..4]

[scalability: 1..8]

[scalability: 1..8]

Figure 7: A sample CPSM for SENSAPP

Figure 7 shows a CPSM of SENSAPP. The generic virtual machines are re-
fined to a Small Linux (SL), a Medium Linux (ML), and a Large Linux (LL)
virtual machine. The SL virtual machine has 2 to 4 compute cores and 2 to 4
GiB memory, meaning that the Execution Engine in the Executionware can scale
vertically these resources within these ranges. Similarly, the ML virtual machine
has 4 to 8 compute cores and 4 to 8 GiB memory, while the LL virtual machine
has 8 to 16 compute cores and 16 to 32 GiB memory. The generic servlet con-
tainers are refined to two Tomcat and a Jetty. The Dispatcher and MongoDB are
refined to be scalable from from 1 to 8 times, meaning that the Execution Engine
can scale horizontally their instances within this range. Similarly, the Notifier is
refined to be scalable from 1 to 4 times. Finally, these virtual machines are par-
titioned into three clouds, namely a public cloud located in the EU based on
Amazon EC24, another public cloud located in the UK based on Flexiant5, and
a third private SINTEF cloud located in Norway and based on OpenStack6.

During the life-cycle phase of execution, the Executionware consumes the
CPSM and enacts the provisioning and deployment of the SENSAPP components
along with suitable infrastructure and platform services to support the execution.

4http://aws.amazon.com/ec2/
5http://www.flexiant.com/
6http://www.openstack.org/

D2.1.1 - CloudML Guide and Assessment Report Page 18 of 39

http://aws.amazon.com/ec2/
http://www.flexiant.com/
http://www.openstack.org/

Amazon	
 [loca+on:	
 EU]	
 Flexiant	
 [loca+on:	
 UK]	

SINTEF	
 (OpenStack)	
 [loca+on:	
 NO]	

LB	

LB	

LB	

1:No+fier	

2:Tomcat	

1:SL	

[compute cores: 2,
memory: 2 GiB]

1:Admin	

1:JeGy	

1:ML	

[compute cores: 4,
memory: 4 GiB]

1:Dispatcher	

1:Tomcat	

1:LL	

1:MongoDB	
 2:MongoDB	

[compute cores: 8,
memory: 16 GiB]

VM: Virtual machine
SC: Servlet container
LB: Load balancer
SL: Small GNU/Linux
ML: Medium GNU/Linux
LL: Large GNU/Linux

Figure 8: A first snapshot of the CPSM at run-time

Figure 8 shows a first snapshot of the CPSM at run-time. The Executionware
has deployed an instance of the Notifier contained by an instance of Tomcat
behind a Load Balancer on an instance of SL with 2 compute cores and 2 GiB
memory. Similarly, it has deployed an instance of the Dispatcher contained by an
instance of Tomcat behind a Load Balancer, as well as an instance of MongoDB
behind another Load Balancer, on an instance of LL with 8 compute cores and
16 GiB memory.

Figure 9 shows a second snapshot of the CPSM at run-time. The Monit-
ors in the Executionware have measured an increased number of clients. This
has led the Execution Engine to apply scalability strategies such as scale up
(i.e., increase the size of virtual compute cores and virtual memory on a virtual
machine) and scale out (i.e., add more instances of application components) in
response to the increase of requests (see Section 7). In particular, the Execution
engine has scaled up LL by increasing its resources to 12 compute cores and 24
GiB memory. Similarly, the Execution Engine has scaled out the Dispatcher by
deploying another instance of it (contained by another instance of Tomcat) on
LL.

Please note that this is just one of the possible scalability strategies. For
instance, another scalability strategy could scale out LL (instead of scale up) by
deploying another instance of it. The selection of the most suitable scalability
strategy is performed by the Reasoner based on requirements and goals, SLAs,
and historical data about the executions of applications (cf. D1.6.1 [16]).

D2.1.1 - CloudML Guide and Assessment Report Page 19 of 39

Amazon	
 [loca+on:	
 EU]	
 Flexiant	
 [loca+on:	
 UK]	

SINTEF	
 (OpenStack)	
 [loca+on:	
 NO]	

LB	

LB	

LB	

1:No+fier	

2:Tomcat	

1:SL	

[compute cores: 2,
memory: 2 GiB]

1:Admin	

1:JeGy	

1:ML	

[compute cores: 4,
memory: 4 GiB]

1:Dispatcher	

1:Tomcat	

2:Dispatcher	

3:Tomcat	

1:LL	

1:MongoDB	
 2:MongoDB	

[compute cores: 12,
memory: 24 GiB]

VM: Virtual machine
SC: Servlet container
LB: Load balancer
SL: Small GNU/Linux
ML: Medium GNU/Linux
LL: Large GNU/Linux

Figure 9: A second snapshot of the CPSM: The resources of LL are scaled up
and the Dispatcher is scaled out in the SINTEF cloud

Finally, Figure 10 shows a last snapshot of the CPSM at run-time. The Ex-
ecution Engine has scaled up SL by increasing its resources to 4 compute cores
and 4 GiB memory. Moreover, the Execution Engine has scaled out the Notifier
by deploying another instance of it (contained by another instance of Tomcat) on
SL.

As illustrated through our SENSAPP use case, CLOUDML can be used to
provision, deploy, and adapt multi-cloud applications. The following list sum-
marises how it fulfills the requirements presented in Section 4.

Cloud provider-independence (R1): The layering of the CLOUDML model-
ling stack into CPIMs and CPSMs enables a cloud provider-independent
modelling of cloud-based applications.

Reusability (R2): The type-instance pattern in CLOUDML ensures that the
types of components can be seamlessly reused within multiple CPIMs and
CPSMs.

Modularity (R3): The component-based design of CLOUDML ensures that the
components of CPIMs and CPSMs can be seamlessly substituted.

Abstraction (R4): The usage of CPSMs at run-time provides an abstract and
up-to-date representation of the running system that can be dynamically
manipulated.

D2.1.1 - CloudML Guide and Assessment Report Page 20 of 39

Amazon	
 [loca+on:	
 EU]	
 Flexiant	
 [loca+on:	
 UK]	

SINTEF	
 (OpenStack)	
 [loca+on:	
 NO]	

LB	

LB	

LB	

1:No+fier	

2:Tomcat	

2:No+fier	

4:Tomcat	

1:SL	

[compute cores: 4,
memory: 4 GiB]

1:Admin	

1:JeHy	

1:ML	

[compute cores: 4,
memory: 4 GiB]

1:Dispatcher	

1:Tomcat	

2:Dispatcher	

3:Tomcat	

1:LL	

1:MongoDB	
 2:MongoDB	

[compute cores: 12,
memory: 24 GiB]

VM: Virtual machine
SC: Servlet container
LB: Load balancer
SL: Small GNU/Linux
ML: Medium GNU/Linux
LL: Large GNU/Linux

Figure 10: A last snapshot of the CPSM: The resources of SL are scaled up and
the Notifier is scaled out in the Amazon cloud

CLOUDML is available as an open-source project7. It is implemented with
Java and Scala as programming languages and Maven as a build tool. The cur-
rent codebase consists of around 5 000 lines of Java code and 1 000 lines of
Scala code. The CLOUDML models and metamodels are represented as plain
Java objects. These models can be serialised in either JavaScript Object Nota-
tion (JSON) or XML Metadata Interchange (XMI). The JSON and XMI codecs
are based on Kotlin8 and the Kevoree Modeling Framework (KMF)9 [14], re-
spectively.

5 Cloud providers, requirements, and goals:
Saloon

The ability to run and manage multi-cloud applications allows exploiting the pe-
culiarities of different cloud providers and hence optimising performance, avail-
ability, and cost of the applications. However, the cloud providers are typically
heterogeneous and the provided capabilities are often incompatible. This may
reduce the set of compatible cloud providers when provisioning and deploying

7https://github.com/SINTEF-9012/cloudml
8http://kotlin.jetbrains.org/
9https://github.com/dukeboard/kevoree-modeling-framework

D2.1.1 - CloudML Guide and Assessment Report Page 21 of 39

https://github.com/SINTEF-9012/cloudml
http://kotlin.jetbrains.org/
https://github.com/dukeboard/kevoree-modeling-framework

applications. PaaSage envisions the usage of profiles of cloud providers in the
life-cycle phase of configuration and deployment (see Section 2) for matching
the deployment models of applications with the compatible cloud providers. For
this purpose, we adopt a modified version of Saloon [28, 27, 26]. Saloon is a
framework for specifying requirements and goals of multi-cloud applications,
and selecting compatible cloud providers, by leveraging upon feature models [5]
and ontologies [15].

5.1 Variability of cloud providers
Feature models have been introduced as part of feature-oriented domain analysis
(FODA) [18], and specify the commonality and variability of software systems,
where the features are regarded as distinctive characteristics of a software sys-
tem [18]. Feature models consist of tree-based structures, where the nodes rep-
resent the features and the edges represent the variability. Each feature can have
multiple feature groups as children.

In traditional features models, feature groups can be of four different types:
mandatory, specifying that all features in the feature group must be selected;
optional, specifying that any features in the group can be selected; alternative
(xor), specifying that exactly one feature in the group must be selected; and or,
specifying that at least one feature in the group must be selected. In feature
models with cardinalities [9, 4], feature groups can also have a cardinality spe-
cifying the lower and upper bound of features to be selected. Feature models can
also be attached dependencies between features. In Saloon, feature models with
cardinalities capture the commonality and variability of cloud providers.

Amazon
EC2

Virtual
Machine

Ubuntu
Linux

Windows

[1..*]

Resource

VM
S

VM
M

VM
L

VM
XL

RAM (GB) Storage
(GB)vCPU Bandwidth

(GB)

[1..*] [160..*] [2.. *]

...

Legend

mandatory

optional

Feature

or

alternative (xor)

Dependencies
[1] VM S → +[1] vCPU
[1] VM S → +[2] RAM (GB)
[1] VM S → +[160] Storage (GB)
[1] VM M → +[1] vCPU
[1] VM M → +[4] RAM (GB)
[1] VM M → +[410] Storage (GB)
[1] VM L → +[2] vCPU
[1] VM L → +[8] RAM (GB)
[1] VM L → +[840] Storage (GB)
[1] VM XL → +[4] vCPU
[1] VM XL → +[15] RAM (GB)
[1] VM XL → +[1680] Storage (GB)
...

Service Model: IaaS
...

Red Hat Enterprise
Linux

[1.. *]

...

VM SizeVM OS

Figure 11: A sample Saloon feature model for Amazon EC2

D2.1.1 - CloudML Guide and Assessment Report Page 22 of 39

Figure 11 shows a fragment of a feature model for Amazon EC2. According
to this feature model, in Amazon EC2 we must select from one to many virtual
machines. For each virtual machine, we must select the operating system (more
precisely, the virtual machine image providing the operating system) and the
size. The attached dependencies specify that virtual machines of specific sizes
require specific resources; e.g., a virtual machine of size S requires 1 compute
core, 2 GiB memory, etc.

5.2 Requirements
Ontologies are formal and explicit specifications of a shared conceptualisation [8],
which are used to describe the concepts and the relationships between these con-
cepts. They aim at defining a vocabulary and knowledge representation of a
concrete domain. In Saloon, the cloud ontology is used to deal with the syn-
tactic and semantic heterogeneity to express the capabilities of different cloud
providers.

Cloud
Resource

Application
Server

Database

uses

SQL

NoSQL

CPU

RAM

Frequency

Memory

range

Storage

Capacity

Dimension

...

...

...

...

Thing Goal

Criteria Thing
Max

Min

Cost

Response
Time

...

Service
Model

Deployment
Model

Public Private

PaaS IaaS

Service

Server

...

Figure 12: The Saloon cloud ontology

Figure 12 shows the cloud ontology of Saloon. This ontology contains tech-
nical elements and quantifiable elements. The former specifies the technical re-
quirements supported by cloud providers, e.g., application server and database.
The latter specifies the dimensions associated to these technical requirements,
e.g. compute core frequency or database size.

5.3 Goals
Saloon allows profiling cloud providers by means of feature models, and spe-
cifying application requirements by means of ontologies. However, the users of

D2.1.1 - CloudML Guide and Assessment Report Page 23 of 39

PaaSage may not just want to choose a set of cloud providers that satisfy their
application requirements. They may also want to specify some goals that have
an important impact on their business, such as the minimisation of cost and/or
application response time. In mathematics and computer science, this kind of
goals are reified in an optimization problem composed by a real function which
value has to be minimised or maximised [2]. In PaaSage, the cloud ontology is
extended with such concepts (see blue concepts in Figure 12). In this way, this
ontology enables the definition of minimisation and maximisation of user goals.

In the following, we build upon the SENSAPP running example (see Sec-
tion 3) to exemplify the usage of Saloon.

5.4 Running example
During the life-cycle phase of configuration, the users of PaaSage use the Mod-
eller to specify the requirements for each application component of SENSAPP.
The Admin and the Notifier require a virtual machine with GNU/Linux on a
public cloud. The Dispatcher also requires a virtual machine with GNU/Linux
but on a private cloud. Figure 13 shows a fragment of the definition of require-
ments for the Admin and the mapping between the concepts in the ontology and
the features in the feature models, which enable the identification of the com-
patible cloud providers. In the ontology, we select the concepts related to IaaS,
public deployment model, and virtual machine with GNU/Linux. Among the
feature models, we only consider five cloud providers: Amazon EC2, Flexiant,
Rackspace10, Google App Engine11, and a private Cloud from SINTEF based on
OpenStack.

During the life-cycle phase of deployment, the Profiler matches the require-
ments and goals of applications with the compatible profiles of cloud providers.
Table 1 summarizes for each application component in SENSAPP the list of
cloud providers that can be used for their deployment. The Admin and the No-
tifier component can be deployed on Amazon EC2, Rackspace, and Flexiant,
which are public and IaaS providers. Google App Engine is excluded because
it is a PaaS provider, while SINTEF (OpenStack) is excluded because it is a
private provider. The Dispatcher component can only be deployed on SINTEF
(OpenStack). This is the only candidate because Amazon EC2, Rackspace, and
Flexiant are public, while Google App Engine is public and PaaS.

10http://www.rackspace.com/
11https://developers.google.com/appengine/

D2.1.1 - CloudML Guide and Assessment Report Page 24 of 39

http://www.rackspace.com/
https://developers.google.com/appengine/

Notifier Dispatcher AdminDatabase

MongoDB

Constraints
Dispatcher → MongoDB

Cloud

Thing

Service
Model

Deployment
Model

Public

Private

PaaS

IaaS

VM

OS

Linux

SensApp Google App
Eng

Service Model: PaaS
...

...

Flexiant

Service Model: IaaS
Deployment Model: Public, Private

✗

✓
Virtual

Machine

VM OS

Linux ...

Amazon
EC2

Service Model: IaaS
...✓

...

Rackspace Service Model: IaaS
...✓

...

Application Configuration

Ontology

Cloud Providers

Legend

Concept Selection

Mapping

✓
Excluded Provider

Candidate Provider

✗

...

SINTEF
(OpenStack)

...

Service Model: IaaS
Deployment Model: Private
...

✗

Figure 13: Sample Saloon models for SENSAPP (Excerpt)

Table 1: Candidate cloud provider for the deployment of each SENSAPP com-
ponent

Appl. component Provider Candidate Comments
Admin Amazon EC2 3

Flexiant 3

Google App Engine 7 PaaS
Rackspace 3

SINTEF (OpenStack) 7 Private
Notifier Amazon EC2 3

Flexiant 3

Google App Engine 7 PaaS
Rackspace 3

SINTEF (OpenStack) 7 Private
Dispatcher Amazon EC2 7 Public

Flexiant 7 Public
Rackspace 7 Public

Google App Engine 7 Public, PaaS
SINTEF (OpenStack) 3

D2.1.1 - CloudML Guide and Assessment Report Page 25 of 39

6 Service-level agreement: WS-Agreement
Service-level agreements (SLAs) support the business relationship between pro-
viders and consumers of services. In particular, a SLA between a service con-
sumer and a service provider specifies one or more service-level objectives
(SLOs), which are requirements of the service consumer and assurances by
the service provider on the availability of resources and/or on service qualities.
Since cloud infrastructure, platform, and applications can change dynamically,
the management of SLAs should become flexible.

PaaSage envisions the usage of SLAs in the life-cycle phases of configuration
and deployment (see Section 2) for finding the most suitable deployment model
for multi-cloud applications to maintain the QoS throughout their execution. For
this purpose, we adopt Web Services Agreement (WS-Agreement) standard [1]
from the Open Grid Forum (OGF). WS-Agreement consists of a language and
a protocol for advertising the capabilities of service providers, creating SLAs
based on templates, and monitoring SLAs at run-time.

WS-Agreement extends the classical model of service discovery and usage
by enabling service consumers not only to discover and use services, but also to
dynamically negotiate the quality with which the service is provided [25]. This
is mostly done automatically, and various approaches to the negotiation exists.

A popular Java-based implementation of WS-Agreement, namely WSAG4J12,
is under consideration for being adopted in PaaSage.

6.1 Running example
During the life-cycle phase of configuration, the users of PaaSage use the Mod-
eller to specify the SLA for SENSAPP. Listings 1 shows a fragment of a WS-
Agreement specifying response time requirements measured in milliseconds for
the applications components of SENSAPP. The minimum and maximum re-
sponse time for Notifier, Dispatcher, Admin, and MongoDB.

12http://packcse0.scai.fraunhofer.de/wsag4j

D2.1.1 - CloudML Guide and Assessment Report Page 26 of 39

http://packcse0.scai.fraunhofer.de/wsag4j

Listing 1: A WS-Agreement for SensApp
<wsag:CreationConstraints >

<wsag:Item wsag:Name=" Notifier">
<wsag:ItemConstraint >

<xs:element name=" response_time_ms">
<xs:simpleType >

<xs:restriction base="xs:int">
<xs:minInclusive value ="1" />
<xs:maxInclusive value ="10" />

</xs:restriction >
</xs:simpleType >

</xs:element >
</wsag:ItemConstraint >

</wsag:Item >
<wsag:Item wsag:Name="Admin">

<wsag:ItemConstraint >
<xs:element name=" response_time_ms">

<xs:simpleType >
<xs:restriction base="xs:int">

<xs:minInclusive value ="1" />
<xs:maxInclusive value ="50" />

</xs:restriction >
</xs:simpleType >

</xs:element >
</wsag:ItemConstraint >

</wsag:Item >
<wsag:Item wsag:Name=" Dispatcher">

<wsag:ItemConstraint >
<xs:element name=" response_time_ms">

<xs:simpleType >
<xs:restriction base="xs:int">

<xs:minInclusive value ="1" />
<xs:maxInclusive value ="5" />

</xs:restriction >
</xs:simpleType >

</xs:element >
</wsag:ItemConstraint >

</wsag:Item >
<wsag:Item wsag:Name=" MongoDB">

<wsag:ItemConstraint >
<xs:element name=" response_time_ms">

<xs:simpleType >
<xs:restriction base="xs:int">

<xs:minInclusive value ="1" />
<xs:maxInclusive value ="5" />

</xs:restriction >
</xs:simpleType >

</xs:element >
</wsag:ItemConstraint >

</wsag:Item >
</wsag:CreationConstraints >

During the life-cycle phase of deployment, the Reasoner consumes the SLA
and uses it along with the requirements and goals for finding the most suitable
CPSM for SENSAPP to maintain the QoS of SENSAPP throughout its execution.

D2.1.1 - CloudML Guide and Assessment Report Page 27 of 39

7 Scalability: Rules
Cloud providers typically offer virtual computational and storage resources [17].
In this respect, these resources are postulated to be infinite, and are typically sold
on pay-per-use basis. The amount of provisioned resources will always consti-
tute a trade-off between performance and cost, since their underprovisioning
may compromise the former, while their overprovisioning may make the latter
prohibitive. Hence, it is desirable that the applications are dynamically adapted
so that the amount of used resources suits the changing demand.

A rudimentary approach would be to manually leave the adaptation to a hu-
man operator, such as a system administrator. This approach would have serious
limitations. First, it would limit the reaction time to the operation hours of the
human operator. Second, it would limit the quality of scaling to the experience
of the human operator. Hence, in order to ensure that the applications are dy-
namically adapted to the changing demand, the adaptation should not be left to
human operator alone.

Another, more sensible approach is to automate the adaptation of the applica-
tions by adopting a suitable technique, such as the automatic execution of scaling
strategies. This approach maintains the QoS of the applications throughout their
entire execution. PaaSage adopts scaling strategies in the form of scaling rules
in the life-cycle phase of execution (see Section 2). For this purpose, in addition
to the other DSLs, we will adopt a language for specifying scalability rules.

The Executionware consumes these scalability rules and maps them to prop-
erties offered by the selected cloud providers, if available. For instance, Amazon
Web Services offers the Auto Scaling service13 that scales applications up and
down according to specified conditions. In case the selected cloud provider does
not provide such a mechanism, or only an insufficient mechanism, the Execu-
tionware takes over this task. The specification of the rules is two-fold: the
Reasoner can derive simple rules from the data in the Metadata Database, or se-
lect more complex rules provided by application developers and cloud experts
through the Social Network.

The specification of a DSL for scalability rules is subject to Task T2.3 that
will start at month 13. Hence, in the following, we only provide a high-level
discussion of the specification of execution aspects in the context of PaaSage.

13http://aws.amazon.com/autoscaling/

D2.1.1 - CloudML Guide and Assessment Report Page 28 of 39

http://aws.amazon.com/autoscaling/

7.1 Scope and actions
The scalability rules typically target virtual computing (i.e., the size of compute
core and memory of a virtual machine) and storage (i.e., the size of virtual stor-
age devices and databases) resources. In particular, the adaptation actions consist
of four types: scale up (i.e., increase the size of compute core and memory on
a virtual machine or the size of a virtual storage device) and scale out (i.e., add
more virtual machines or more virtual storage devices), as well as the inverse
adaptation actions scale down and scale in, respectively.

7.2 Triggers and emitters
The application of scalability rules is triggered by specific types of events (or
sequence of events). These events may be emitted by different sources. In PaaS-
age, these events are emitted by two sources. The first source are the Monit-
ors in the Executionware, which emit an event stream (e.g., compute core load,
memory consumption, storage consumption, and network traffic) for each ap-
plication component and virtual machine. The second source is the Metadata
Database, which contains all historical data about the execution of applications.
Please note that due to the distributed nature of both multi-cloud applications
and the PaaSage platform, the execution of adaptation actions may influence the
system behaviour on a global- rather than local scale. Hence, the application
of scalability rules can be considered as an event itself, which is recorded into
the Metadata Database and emitted. This enables using the application of other
scalability rules (or even themselves) as a trigger.

While the scalability rules derived by the Reasoner only take into account
a single monitoring source and a single instance of an application component,
those defined by application developers and cloud experts may be more complex
and consider multiple monitoring sources and multiple instances of an applica-
tion component. Hence, the scalability rules have to be expressive enough for
specifying complex sequences of actions based on different events emitted by
multiple sources. This is exactly the expressive power provided by existing event
condition action (ECA) or event processing engines such as the open-source Es-
per engine14. A language from one of these engines (e.g., the Esper Processing
Language) is under consideration for being adopted in PaaSage.

14http://esper.codehaus.org/

D2.1.1 - CloudML Guide and Assessment Report Page 29 of 39

http://esper.codehaus.org/

7.3 Running example
In the following, we build upon the SENSAPP running example (see Section 3)
to exemplify the possible management of scalability rules.

The Deployers consume the CPSM of SENSAPP (see Figure 7) and enact
its provisioning and deployment. An instance of the Notifier and an instance
of Tomcat are deployed on an instance of a Small Linux virtual machine on
Amazon in the EU. An instance of the Dispatcher, an instance of Tomcat, and
an instance of MongoDB are deployed on a Large Linux virtual machine of the
private SINTEF (OpenStack) cloud in Norway. Finally, an instance of the Admin
and an instance of Jetty are deployed on an instance of Medium Linux virtual
machine on Flexiant in the UK.

The Deployers, Execution Engines, and Monitors also extract and process the
scalability strategies from the CPSM of SENSAPP as well as from the general
scalability recommendations with respect to the selected applications and cloud
providers from the Metadata Database, as follows:

• Notifier: scales out to maximally 4 instances

• Dispatcher: scales out to maximally 8 instances

• MongoDB: scales out to maximally 8 instances

Please note that the up- and downscaling behaviour of the virtual machines
depends on the selected cloud provider. In some cases, it can only be achieved
by the complete reconfiguration and thus redeployment of the virtual machines.
Since no further scalability strategies are specified by the application, the gen-
eric scalability rules provided by the cloud provider and/or external experts (cf.
D1.6.1 [16]) are extracted, as follows:

• Scale out when the response time is below a specific threshold

• Scale in when the number of accesses is below a specific threshold

• Scale DB up when less than a specific number of rows are free

• Scale DB down when more than a specific number of rows are free

As mentioned, the corresponding scalability rules will be specified in an
ECA-like format. At run-time, the Monitors will emit an event stream to match
against the ECA rules given above to execute the corresponding adaptation ac-
tions.

D2.1.1 - CloudML Guide and Assessment Report Page 30 of 39

8 Integration: Metadata Database
PaaSage envisions the usage a Metadata Database [24] for providing a holistic
coverage of all information used in the life-cycle phases of configuration, de-
ployment, and execution (see Section 2). In this respect, it stores the configur-
ation, deployment, and execution models along with historical data about their
execution. This approach is akin to models@run-time [21, 6], which enables
the continuous evolution of multi-cloud applications with no strict boundaries
between design-time and run-time activities. In the following, we discuss the
mapping between these DSLs and the Metadata Database schema.

organization

role

user

po
lic
y

app_id

cloud_provider

ar
te
fa
ct
_i
d

platform

it_slo

root_slo

it_slo

ap
p_
id

execution_context

it_slo

organization

elastic_rule

artefact_instance
execution_context

policy

src_artefact
dest_artefact

pr
ov
id
er

ph
ys
ic
al
_
no
de

vm

execution_context
node_instance

it_slo
data_object

physical_node

sr
c

execution_
context

de
stexecution_context

on
_n
od
e_
in
st
an
ce

ar
te
fa
ct
_i
ns
ta
n
ce

co
nf
ig
ur
at
io
n

on
_p
aa
s

on
_a
rt
ef
ac
t_
in
st
an
ce

ex
ec
ut
io
n_
co
nt
ex
t

pr
od
u
ce
r

co
ns
um
e
r

da
ta
_o
bj
ec
t

it_
sl
o

ex
ec
ut
io
n_
co
nt
ex
t

ar
te
fa
ct
_i
ns
ta
n
ce

root_slo

ap
p_
id

ex
ec
ut
io
n_
co
nt
ex
t

cd_vm_id

ci
_v
m
_t
yp
e

cloud_provider

role

1 name

users

1 name
organization
role

organization

1 name

application

id
name
version
user

elasticity_rule

1 name
threshold
policy
evaluate_frequency

artefact

1 id
name
depends_artefact
app_id

configuration

1 id
config

platform_as_service

1 name
api
cloud_provider
elasticity_

artefact_instance

id
name
artefact_id
deployed_info

it_slo

id
metric
metric_units
threshold
platform

root_slo

id
targeted_cost
targeted_location
targeted_revenue
it_slo

policy

1 name
root_slo
it_slo

data_object

id
replication
partitioning
consistency

execution_context

id
app_id
start_time
end_time
info
total_cost

slo_assessment

id
execution_context
it_slo
assessment

cloud_provider

name
locations
organization
public

elasticity_action

name
elastic_rule
artefact_instance
execution_context
fired_on

affinity_goal

1 name
src_artefact
dest_artefact
policy

physical_node

id
ip
provider
location
hardware

vm_to_pm_association

id
vm
physical_node
started_on
ended_on

resource_monitor

id
name
execution_context
node_instance
data_object
physical_node
it_slo
resource_class
metric
value
reported_on
raw_data

resource_coupling_monitor

name
execution_context
src
dest
reported_on
metric
raw_data

deployment_association

id
execution_context
artefact_instance
configuration
on_node_instance
on_artefact_instance
on_paas
started_on
ended_on

object_association

id
data_object
producer
consumer
execution_context
started_on
ended_on

artefact_monitor

name
execution_context
artefact_instance
it_slo
metric
value
reported_on
raw_data

appl_monitor

id
app_id
root_slo
execution_context
metric
value
rw_data

node_instance

1 name
cd_vm_id
ovf_image
ip
created_on
destroyed_on

ci_vm_type

id
cpu_class
memory_class
io_class
network_class

cd_vm_type

1 id
name
cloud_provider
ci_vm_type
classified_on
evaluated_on
location
hardware
benchmark_rate
cost_per_hour

Figure 14: The Metadata Database schema

Figure 14 depicts the Metadata Database schema in traditional Entity-Rela-
tionship (ER) diagram notation. The Metadata Database schema consolidates
the information captured by configuration, deployment, and execution models.
Moreover, it extends these models with historical data about their execution such

D2.1.1 - CloudML Guide and Assessment Report Page 31 of 39

as monitoring data, event data, application of scalability rules, and adaptations.
This information is consumed by the other components of the PaaSage platform
to perform their analytics.

CloudML	
 Saloon	
 WS-­‐
Agreement	

Scalability	

rules	

Metadata	
 database	

•  Provisioning	
 and	
 deployment	
 models	

•  Requirements	
 and	
 goals	

•  Cloud	
 providers	

•  Scalability	
 rules	

•  Execu@on	
 histories	

•  Users,	
 roles,	
 organisa@ons	

Physical store

Physical store
Integration

Figure 15: The mapping between DSLs and Metadata Database schema

Figure 15 depicts the relationship of the various models, each specified by
means of a different DSL, with the Metadata Database schema. A key challenge
is to ensure that such the mapping between the DSLs and the Metadata Database
schema remains current and valid over time despite the independent evolution of
the different DSLs adopted in PaaSage.

As mentioned, beyond consolidating the various models, the Metadata Data-
base is designed to capture the historical data about the executions of applic-
ations. These data are represented in execution contexts, i.e., all information
pertinent to a specific execution of an application. Therefore, a number of as-
sociations between entities are designed as temporal (characterised by validity –
start and end – timestamps).

In the following, we build upon the SENSAPP running example (see Sec-
tion 3) to exemplify usage of the Metadata Database.

D2.1.1 - CloudML Guide and Assessment Report Page 32 of 39

8.1 Running example

Cloud independent
 VM smallCloud provider

 Amazon
Cloud provider
 Flexiant

Cloud provider
 OpenStack

Cloud independent
 VM medium

Cloud independent
 VM large

Cloud dependent
 VM m1.small

VM instance 1 VM instance 2

Cloud dependent
 VM 3c4m

VM instance 3 VM instance 4 VM instance 5

Cloud dependent
 VM large

Containment
relationship 1

Con�g 1 Con�g 2

Noti�er 1 Noti�er 2 Tomcat 1 Tomcat 2 Admin 1Jetty Dispatcher 1 Dispatcher 2Tomcat 3 Tomcat 4

Con�g 3 Con�g 4 Con�g 7Con�g 6

MongoDB 1 MongoDB 2

Con�g 5

Noti�er Admin NoSQL DB DispatcherServlet
Container

Resource monitor
(CPU)

Resource monitor
(CPU)

Execution context

Artefact monitor

Artefact monitor

SensApp
application

SLO on
throughput

(response time)

(throughput)

Elasticity Rule 1

Elasticity
actionElasticity

actionElasticity
action

Application
monitor

Root SLO

SLO on
response time Elasticity Rule 2

Communication
relationship 1

consumerproducer
consumerproducer

Execution (time)-dependent information shown in italics
Execution (time)-dependent relationships shown in dashed lines

Communication
relationship 2

Containment
relationship 2

Containment
relationship 3

Containment
relationship 4

Containment
relationship 5

Containment
relationship 7

Containment
relationship 6

Containment
relationship 8

Containment
relationship 9

Containment
relationship 10

Containment
relationship 12

Containment
relationship 13

Figure 16: A sample Metadata Database model for SENSAPP

Figure 16 depicts the Metadata Database model for SENSAPP. This model
incorporates elements from the CPSM where instances of the SENSAPP applic-
ation components along with the corresponding servlet containers and database
are deployed on instances of different virtual machines on different cloud pro-
viders. The deployment of an applications component on a virtual machine is
represented by a temporal associations named “Containment relationship N”
rooted at a specific execution context. The communication between application
components is represented by a temporal associations named “Communication
relationship N”. The model also incorporates SLOs on different metrics that are
associated to monitoring capabilities (monitoring the corresponding metrics, as
well as resource utilisation) and scalability rules that can be invoked in the event
of SLO violations.

9 Related work
Deployment and maintenance of distributed systems have been extensively re-
searched over the past decades by various communities including server man-
agement systems, distributed systems, and cloud-based applications. To the best
of our knowledge, there is not yet any approach combining the strength of recent
cloud solutions with the flexibility of MDE.

D2.1.1 - CloudML Guide and Assessment Report Page 33 of 39

In the server management community, several solutions, such as IBM Tivo-
li [10], BCFG2 [11], or CFEngine 3 [7] initially tackled the issue of server (and
network) configuration by providing consistent, reproducible and verifiable de-
scriptions of servers configuration. However, by contrast with our approach,
these solutions are not tailored to the cloud environment, and do not leverage on
infrastructure as a service capabilities.

In the cloud community, several libraries such as jclouds15, Simple Cloud16,
or DeltaCloud17 recently emerged to help in reducing cost and effort related to
deployment and maintenance of cloud-based applications. While such librar-
ies effectively foster their deployment and maintenance, they remain code-level
tools, on which making redesign decisions is difficult and error-prone. Simil-
arly, research projects such as mOSAIC [30], which tackles the vendor lock-in
problem by providing an API for provisioning and deployment, are also limited
to the code level.

At a higher level of abstraction, more advanced frameworks such as Cloud-
ify18, Puppet19 or Chef20 provide capabilities for the automatic provisioning, de-
ployment, monitoring, and adaptation of cloud systems without being language-
dependent. Such solutions provide DSLs to capture and enact cloud-based sys-
tem management. However, by contrast with our approach, the resulting models
are not causally connected to the running system, and may become irrelevant as
manual maintenance operations are carried out.

In the models@run-time [6] community, several frameworks already provide
causal connections between a running system and its representation as a model.
Kevoree [14] provides a first complete models@run-time platform to manage
distributed Java applications, but does not leverage infrastructure as a service
to operate on cloud-based applications. The work of Shao et al. [31] was the
first attempt to build a models@run-time platform for the cloud, but remained
restricted to monitoring, without providing support for configuration enactment.

Finally, among the standards for cloud computing, the Topology and Or-
chestration Specification for Cloud Applications (TOSCA) [23] is a related spe-
cification developed by the Organization for the Advancement of Structured In-
formation Standards (OASIS). TOSCA provides a language for specifying the
components comprising the topology of cloud applications along with the pro-
cesses comprising their orchestration. Similar to our approach, TOSCA aims
at enabling interoperable deployment and management of multi-cloud applica-
tions. However, by contrast with our approach, this standard currently lacks a

15http://www.jclouds.org
16http://simplecloud.org/
17http://deltacloud.apache.org/
18http://www.cloudifysource.org/
19https://puppetlabs.com/
20http://www.opscode.com/chef/

D2.1.1 - CloudML Guide and Assessment Report Page 34 of 39

http://www.jclouds.org
http://simplecloud.org/
http://deltacloud.apache.org/
http://www.cloudifysource.org/
https://puppetlabs.com/
http://www.opscode.com/chef/

models@run-time representation that enables the continuous evolution of multi-
cloud applications with no strict boundaries between design-time and run-time
activities. The PaaSage consortium plans to contribute to this standard by filling
this gap.

10 Conclusions and Future Work
In this deliverable, we have discussed how the DSLs adopted in PaaSage can
enable dynamically adaptive multi-cloud applications by leveraging upon MDE
techniques and methods. The DSLs facilitate the specification of different cloud
concerns of multi-cloud applications at all life-cycle phases of configuration, de-
ployment, and execution. The Metadata Database provides a unified representa-
tion of these cloud concerns that facilitates reasoning, simulation, and enactment
of adaptation actions.

Please note the capabilities of the DSLs presented in this deliverable reflect
our understanding of the requirements of PaaSage at month 12. These require-
ments will be developed iteratively throughout the course of the project. There-
fore, an important task is to adapt the capabilities of the DSLs to the changing
requirements, and adapt the Metadata Database schema accordingly. In this re-
spect, the research partners in PaaSage will provide feedback on whether the
elements of each DSL are adequate to develop the components of the PaaSage
platform. Similarly, the industrial partners in PaaSage will provide feedback on
whether the elements of each DSL are satisfactory for modelling the use cases.

D2.1.1 - CloudML Guide and Assessment Report Page 35 of 39

References
[1] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig,

Toshiyuki Nakata, Jim Pruyne, John Rofrano, Steve Tuecke and Ming Xu.
Web Services Agreement Specification (WS-Agreement). Tech. rep. Open
Grid Forum, Mar. 2007.

[2] Krzysztof Apt. Principles of Constraint Programming. Cambridge Uni-
versity Press, 2009. ISBN: 978-0-521-12549-9.

[3] Colin Atkinson and Thomas Kühne. “Rearchitecting the UML infrastruc-
ture”. In: ACM Transactions on Modeling and Computer Simulation 12.4
(2002), pp. 290–321. DOI: 10.1145/643120.643123.

[4] David Benavides, Pablo Trinidad Martín-Arroyo and Antonio Ruiz Cortés.
“Automated Reasoning on Feature Models”. In: CAiSE 2005: 17th Inter-
national Conference Advanced Information Systems Engineering. Ed. by
Oscar Pastor and João Falcão e Cunha. Vol. 3520. Lecture Notes in Com-
puter Science. Springer, 2005, pp. 491–503. ISBN: 3-540-26095-1. DOI:
10.1007/11431855_34.

[5] David Benavides, Sergio Segura and Antonio Ruiz Cortés. “Automated
analysis of feature models 20 years later: A literature review”. In: Inf.
Syst. 35.6 (2010), pp. 615–636. DOI: 10.1016/j.is.2010.01.001.

[6] Gordon S. Blair, Nelly Bencomo and Robert B. France. “Models@run.time”.
In: IEEE Computer 42.10 (2009), pp. 22–27. DOI: 10.1109/MC.2009.
326.

[7] Mark Burgess and Ricky Ralston. “Distributed Resource Administration
Using Cfengine”. In: Softw., Pract. Exper. 27.9 (1997), pp. 1083–1101.
DOI: 10.1002/(SICI)1097- 024X(199709)27:9%3C1083::AID-
SPE126%3E3.0.CO;2-H.

[8] Oscar Corcho, Mariano Fernández-López and Asunción Gómez-Pérez.
“Ontological Engineering: Principles, Methods, Tools and Languages”.
In: Ontologies for Software Engineering and Software Technology. Ed. by
Coral Calero, Francisco Ruiz and Mario Piattini. Springer Berlin Heidel-
berg, 2006, pp. 1–48. ISBN: 978-3-540-34517-6. DOI: 10.1007/3-540-
34518-3_1.

[9] Krzysztof Czarnecki, Simon Helsen and Ulrich W. Eisenecker. “Form-
alizing Cardinality-based Feature Models and their Specialization”. In:
Software Process: Improvement and Practice 10.1 (2005), pp. 7–29. DOI:
10.1002/spip.213.

D2.1.1 - CloudML Guide and Assessment Report Page 36 of 39

http://dx.doi.org/10.1145/643120.643123
http://dx.doi.org/10.1007/11431855_34
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1109/MC.2009.326
http://dx.doi.org/10.1109/MC.2009.326
http://dx.doi.org/10.1002/(SICI)1097-024X(199709)27:9%3C1083::AID-SPE126%3E3.0.CO;2-H
http://dx.doi.org/10.1002/(SICI)1097-024X(199709)27:9%3C1083::AID-SPE126%3E3.0.CO;2-H
http://dx.doi.org/10.1007/3-540-34518-3_1
http://dx.doi.org/10.1007/3-540-34518-3_1
http://dx.doi.org/10.1002/spip.213

[10] Thomas Delaet, Wouter Joosen and Bart Vanbrabant. “A survey of sys-
tem configuration tools”. In: LISA 2010: 24th international conference
on Large installation system administration. USENIX Association, 2010,
pp. 1–8.

[11] Narayan Desai et al. “A Case Study in Configuration Management Tool
Deployment”. In: LISA 2005: 19th Conference on Systems Administra-
tion. USENIX, 2005, pp. 39–46.

[12] Nicolas Ferry, Franck Chauvel, Alessandro Rossini, Brice Morin and Arnor
Solberg. “Managing multi-cloud systems with CloudMF”. In: Proceed-
ings of NordiCloud 2013: 2nd Nordic Symposium on Cloud Computing
and Internet Technologies. Ed. by Arnor Solberg, Muhammad Ali Babar,
Marlon Dumas and Carlos E. Cuesta. ACM, 2013, pp. 38–45. ISBN: 978-
1-4503-2307-9. DOI: 10.1145/2513534.2513542.

[13] Nicolas Ferry, Alessandro Rossini, Franck Chauvel, Brice Morin and Arnor
Solberg. “Towards model-driven provisioning, deployment, monitoring,
and adaptation of multi-cloud systems”. In: Proceedings of CLOUD 2013:
IEEE 6th International Conference on Cloud Computing. Ed. by Lisa
O’Conner. IEEE Computer Society, 2013, pp. 887–894. ISBN: 978-0-
7695-5028-2. DOI: 10.1109/CLOUD.2013.133.

[14] François Fouquet, Erwan Daubert, Noël Plouzeau, Olivier Barais, Johann
Bourcier and Jean-Marc Jézéquel. “Dissemination of Reconfiguration Policies
on Mesh Networks”. In: DAIS 2012: 12th IFIP WG 6.1 International
Conference on Distributed Applications and Interoperable Systems. Ed.
by Karl M. Göschka and Seif Haridi. Vol. 7272. Lecture Notes in Com-
puter Science. Springer, 2012, pp. 16–30. ISBN: 978-3-642-30822-2. DOI:
10.1007/978-3-642-30823-9_2.

[15] Thomas R. Gruber. “A translation approach to portable ontology specific-
ations”. In: Knowledge Acquisition 5.2 (June 1993), pp. 199–220. ISSN:
1042-8143. DOI: 10.1006/knac.1993.1008.

[16] Keith Jeffery and Tom Kirkham. D1.6.1 – Initial Architecture Design.
PaaSage project deliverable. Oct. 2013.

[17] Steffen Kächele, Christian Spann, Franz J. Hauck and Jörg Domaschka.
“Beyond IaaS and PaaS: An Extended Cloud Taxonomy for Computation,
Storage and Networking”. In: UCC 2013: IEEE/ACM 6th International
Conference on Utility and Cloud Computing. To appear. IEEE Computer
Society, 2013.

D2.1.1 - CloudML Guide and Assessment Report Page 37 of 39

http://dx.doi.org/10.1145/2513534.2513542
http://dx.doi.org/10.1109/CLOUD.2013.133
http://dx.doi.org/10.1007/978-3-642-30823-9_2
http://dx.doi.org/10.1006/knac.1993.1008

[18] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak and
A. Spencer Peterson. Feature-Oriented Domain Analysis (FODA) - Feas-
ibility Study. Tech. rep. The Software Engineering Institute, 1990. URL:
http://www.sei.cmu.edu/reports/90tr021.pdf.

[19] Jeffrey O. Kephar and David M. Chess. “The vision of autonomic com-
puting”. In: Computer 36.1 (Jan. 2003), pp. 41–50. DOI: 10.1109/MC.
2003.1160055.

[20] Peter Mell and Timothy Grance. The NIST Definition of Cloud Com-
puting. Special Publication 800-145. National Institute of Standards and
Technology, Sept. 2001.

[21] Brice Morin, Olivier Barais, Jean-Marc Jézéquel, Franck Fleurey and Arnor
Solberg. “Models@Run.time to Support Dynamic Adaptation”. In: IEEE
Computer 42.10 (2009), pp. 44–51. DOI: 10.1109/MC.2009.327.

[22] Sébastien Mosser, Franck Fleurey, Brice Morin, Franck Chauvel, Arnor
Solberg and Iokanaan Goutier. “SENSAPP as a Reference Platform to
Support Cloud Experiments: From the Internet of Things to the Internet
of Services”. In: SYNASC 2012: 14th International Symposium on Sym-
bolic and Numeric Algorithms for Scientific Computing. IEEE Computer
Society, 2012, pp. 400–406. ISBN: 978-1-4673-5026-6. DOI: 10.1109/
SYNASC.2012.71.

[23] Derek Palma and Thomas Spatzier. Topology and Orchestration Specific-
ation for Cloud Applications (TOSCA). Tech. rep. Organization for the
Advancement of Structured Information Standards (OASIS), June 2013.
URL: http://docs.oasis-open.org/tosca/TOSCA/v1.0/cos01/
TOSCA-v1.0-cos01.pdf.

[24] Antonis Papaioannou and Kostas Magoutis. “An Architecture for Evalu-
ating Distributed Application Deployments in Multi-Clouds”. In: Cloud-
Com 2013: IEEE 5th International Conference on Cloud Computing Tech-
nology and Science. 2013.

[25] Antoine Pichot, Philipp Wieder, Oliver Wäldrich and Wolfgang Ziegler.
“Dynamic SLA-negotiation based on WS-Agreement”. In: Technical Re-
port TR-0082 (June 2007).

[26] Clément Quinton, Nicolas Haderer, Romain Rouvoy and Laurence Duch-
ien. “Towards multi-cloud configurations using feature models and on-
tologies”. In: MultiCloud 2013: International Workshop on Multi-cloud
Applications and Federated Clouds. ACM, 2013, pp. 21–26. ISBN: 978-
1-4503-2050-4. DOI: 10.1145/2462326.2462332.

D2.1.1 - CloudML Guide and Assessment Report Page 38 of 39

http://www.sei.cmu.edu/reports/90tr021.pdf
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1109/MC.2009.327
http://dx.doi.org/10.1109/SYNASC.2012.71
http://dx.doi.org/10.1109/SYNASC.2012.71
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cos01/TOSCA-v1.0-cos01.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cos01/TOSCA-v1.0-cos01.pdf
http://dx.doi.org/10.1145/2462326.2462332

[27] Clément Quinton, Daniel Romero and Laurence Duchien. “Cardinality-
based feature models with constraints: a pragmatic approach”. In: SPLC
2013: 17th International Software Product Line Conference. Ed. by To-
moji Kishi, Stan Jarzabek and Stefania Gnesi. ACM, 2013, pp. 162–166.
ISBN: 978-1-4503-1968-3. DOI: 10.1145/2491627.2491638.

[28] Clément Quinton, Romain Rouvoy and Laurence Duchien. “Leveraging
Feature Models to Configure Virtual Appliances”. In: CloudCP 2012:
2nd International Workshop on Cloud Computing Platforms. ACM, 2012,
2:1–2:6. ISBN: 978-1-4503-1161-8. DOI: 10.1145/2168697.2168699.

[29] Alessandro Rossini, Nikolay Nikolov, Daniel Romero, Jörg Domaschka,
Kiriakos Kritikos, Tom Kirkham and Arnor Solberg. D2.1.2 – CloudML
Implementation Documentation (First version). PaaSage project deliver-
able. Apr. 2014.

[30] Calin Sandru, Dana Petcu and Victor Ion Munteanu. “Building an Open-
Source Platform-as-a-Service with Intelligent Management of Multiple
Cloud Resources”. In: UCC 2012: IEEE 5th International Conference on
Utility and Cloud Computing. IEEE Computer Society, 2012, pp. 333–
338. ISBN: 978-1-4673-4432-6. DOI: 10.1109/UCC.2012.54.

[31] Jin Shao, Hao Wei, Qianxiang Wang and Hong Mei. “A Runtime Model
Based Monitoring Approach for Cloud”. In: CLOUD 2010: IEEE 3rd In-
ternational Conference on Cloud Computing. IEEE Computer Society,
2010, pp. 313–320. ISBN: 978-1-4244-8207-8. DOI: 10.1109/CLOUD.
2010.31.

D2.1.1 - CloudML Guide and Assessment Report Page 39 of 39

http://dx.doi.org/10.1145/2491627.2491638
http://dx.doi.org/10.1145/2168697.2168699
http://dx.doi.org/10.1109/UCC.2012.54
http://dx.doi.org/10.1109/CLOUD.2010.31
http://dx.doi.org/10.1109/CLOUD.2010.31

	paasage_d2.1.1_cover
	paasage_d2.1.1
	Introduction
	PaaSage life-cycle
	SensApp running example
	Provisioning and deployment: CloudML
	Cloud provider-independent and -specific models
	Execution
	Running example

	Cloud providers, requirements, and goals: Saloon
	Variability of cloud providers
	Requirements
	Goals
	Running example

	Service-level agreement: WS-Agreement
	Running example

	Scalability: Rules
	Scope and actions
	Triggers and emitters
	Running example

	Integration: Metadata Database
	Running example

	Related work
	Conclusions and Future Work
	References

