i PAAfAGE)

SEVENTH FRAMEWORK
PROGRAMME

PaaSage

Model Based Cloud Platform Upperware

Deliverable D1.6.1

Initial Architecture Design

Version: 0

D1.6.1 — Initial Architecture Design Page 1 of 83

Di.6.1

Name, title and organisation of the scientific representative of the project's coordinator:
Mr Tom Williamson Tel: +33 4 9238 5072 Fax: +33 4 92385011 E-mail: tom.williamson@ercim.eu

Project website address: http://www.paasage.eu

Project

Grant Agreement number 317715

Project acronym:
Project title:

Funding Scheme:

PaaSage

Model Based Cloud Platform Upperware

Integrated Project

Date of latest version of Annex | against which th29" August 2012
assessment will be made:

Document

Period covered: M1-M12

Deliverable number: D1.6.1

Deliverable title Initial Architecture Design

Contractual Date of Delivery: 30 September 2013ZM1

Actual Date of Delivery: 1% November 2013

Editor (s): Tom Kirkham, Keith Jeffery

Author (s): Tom Kirkham, Keith Jeffery

Reviewer (s): Pierre Guisset, PhilippeMassonet

Participant(s): Keith Jeffery, Geir Horn, Lutz Schubert, Philippaséonet,

Kostas Magoutis, Brian Matthews, Tom Kirkham, Ctigis
Perez, Alessandro Rossini,

Work package no.: 1

Work package title: Technical Foundation
Work package leader: STFC

Distribution: Project team; EC PO
Version/Revision: 1.0

Draft/Final: Final

Total number of pages (including cover): 84

D1.6.1 — Initial Architecture Design Page 2 of 83

DISCLAIMER

This document contains description of the PaaSage project work and findings.

The authors of this document have taken any available measure in order for its content to be accurate, consistent and
lawful. However, neither the project consortium as a whole nor the individual partners that implicitly or explicitly
participated in the creation and publication of this document hold any responsibility for actions that might occur as a
result of using its content.

This publication has been produced with the assistance of the European Union. The content of this publication is the
sole responsibility of the PaaSage consortium and can in no way be taken to reflect the views of the European Union.

The European Union is established in accordance with the
Treaty on European Union (Maastricht). There are currently
28 Member States of the Union. It is based on the European
Communities and the member states cooperation in the
fields of Common Foreign and Security Policy and Justice and
Home Affairs. The five main institutions of the European
Union are the European Parliament, the Council of Ministers,
the European Commission, the Court of Justice and the Court
of Auditors. (http://europa.eu)

PaaSage is a project funded in part by the European Union.

D1.6.1 — Initial Architecture Design Page 3 of 83

CONTENTS

Contents
(©0] o] (=T 0| £ PSP PP PPPPT 4.
TaDIE OF FIQUIES ... et eee e e e e e e e e e e e e e e e e et et b s a e e e e e eeas 7
EXECULIVE SUMIMIATY ...eittitiiieee e e et e e e e e e e e e e e ee e e e e e e ettt s e e e e e e e e e e e e et aeeeeneeeeeeeeessessssnnnaaaeaaeeaaeeaees 8
R 1o £ 0T U Tox 1 o] o U PRPPPPTTTTRPPPRN 10
A. T C=TTo=To I NN (o 1] o o =TT PPUTUPPPPPR 10
B. DOCUMENT SITUCTUIE. ...ttt e et e e e e e et reea e e e e e eernn e e eeeeenes 10
O |V =11 o i (o] £ PP PTPPPPPPP 10
D. PaaSage ArchiteCture OVEIVIEW.uuuuuuuuuuiiiiiiae et 12
E. PaaSage’s model-based methodologycoeeeeeeeeeiiiiiiiiieeeeiiiieeee 14
[Cloud ProbBIEMSCOPE ..o ettt e e e 16
A. = LU[0] 4= 1= PP PP PPPPPPPRPPPPR 16
1. Current State of the Art Capabilitiescoooiiiiiiiiii s 16
2. PaaSage Beyond the State Of the Art.........eeeceiiiiiiiie e 18
B. = To [T (=T 0 1T o] £ PP 19
1. FUuNCtional REQUIFEMENTScevvvveeees o e eeeeeetsaneesssesaseeeaeaeaseeessseeenneeeeensnsnsnns 20
2. Major Non-Functional REQUIrEMENTSccemmmmiiiii e 20
3. SUIMIMIAIY ettt e eerrme ettt e e ettt e e e e et e e et e e e e et e e e et aeee e st e e e eeaeeeeenn s 21
[ll. Paasage Lifecycle & StOryhOard.............commm oo 22
A OVBIVIBWS. ...ttt bttt ettt ettt et e e e e e e e e e e e e e e e e bt ettt e e e e e e e e e e eaeaas 22
1. LIfECYCIE OVEIVIEW ...ttt ettt s e e e e e e e e e e e e e e e e eeeeaneeeeeeeesennnnne 22
S (014 o T T= T (o @ =T VT 22
B 3 PPt 23
IDE DesSign StOryDOArdcooiiiiiiiiiccceee s e e e e e e e e e eeeeeee e e ee e 23
2. 1] U o 1) F= 1 24
O O] oo 18 =11 (0] o TR TRRRPPPP PP 25
PaaSage Configuration Storyboardceeeee e 25
Configuration FUNCHONAIILYccooeiiii e e e e e 25
D TR B T=T o] (0 Y/ 1 41T o | 27
PaaSage Deployment PRase..........ooo i 27
2. Deployment StOrybhoard............ooiviiiiiiieieeeeee e e e e e e e e 27
E. ey q=Tox U110 PR P SRR PPUPUPPRPRP 30
1. EXeCUtion STOryDOardooeviiiiiiiiiie e 31
2. EXECULION FUNCHONAIILYvvveiiieiee e 31

D1.6.1 — Initial Architecture Design Page 4 of 83

IV. COmMPONENT AESCIIPLIONS.ciiiiiieeeeeeesmmmmmmm e e e e eeeeeeeeeeeaaeeeannaaaaeaeaaeeeeaaaaaaaaaaeeeeeeeeenennnes 36
A. 3 PP 36
1. (@4 o T8 o 11 1Y] [To 11 |11 T PSPPSR 36
B. (0] 1= RSP PRURPT 38
1. (O e C T =T = o PP 38
1. RUIE PIrOCESSO ...ttt s ettt s e e e e e e e e e e e e e e e e e s eeeneneeeeeseebbnnnnn s 39
C. ST {0] 1T PP 39
1. Y0 V=] £ PP P UPPTR 40
2. IMIEEA SOIVET ...ttt ettt ettt e e e e e e e e e e e e e e e e s s s nmnnee e e e e e e e e eeeeeeaeenans 40
3. CP SOIVEIS et e e e e e e e e e e e e e e e e e eeaear 40
4, Learning Automata (LA) based alloCator......cccccccveeiiiiiieiiieeeeeeeeeeeeeei e 41
5. Utility FUNCHON GENEIALONottt 42
6. SOIULION EVAIUALOTcooiiiiiiiiiiie it e et e e e e e e e e enebbb bbb ee e e e e 42
7. Y[101 F= U gAY = o] o= P 42
8. Constraint LOQIC Programmingooooeeeeeeeeeeeiesiiiiiassaseeeeseeeseessssssssnensnsessnnne 43
9. Y0V g (o T B T=T o] [0)V =] PRSP PPPPRUPPPPRRPN 44
3 TR o - o) = SR 44
1. [P2 T I =T 1= = (o PP 45
N Ao F- o] r= i o] o |V F= T F= Vo [T PP 45
IC T2 o) o] o= i o] o I @ | (o] | = O 45
E. Metadata Databaseooouiiiiiiiii e 45
1. Metadata database [AYEr...............vvvicemmmmmm e e e e eeeee e e erree e e e e e e e e e e 45
2. ANAIYLICS LAYI et e e e e e e e e e e e e e e eaeaaaaae 50
3. Social Network INfraStIUCTUIE............ et 51
4. Trust and Identity ManagemeNt.............. o eeeeeeeeeeememiriiiiianaea e e e e aeeeeeeeeeaeaseeeees 53
B EXECULIONWAI. .. .eiiiiiiiiiiii ittt eeee ettt e et e e e e e s s e e e e bbbt bbb een e e 54
1. COMPONENT INSTANCE ...t e et e et e e e e e et e e e e e e eeeeesan e e aaaeees 55
2. Component Wrapper/Message INterCeplor.....ccouvveiieeiiviiieeeeeisnee e eeee 55
3. [T 0] [0/ PSRRI 56
4, [T pY (o] fot=Ta T=T o | =1 T[] = 56
5. 1Y/ To] a1 o] £ () I PSP 57
6. a1 (ST o] (=] PP PPPT 58
V. Open ISSUES and FULUINE WOIK.........ccoiii s e oo e ettt e e e e e e eaaaaae e e e e e e aeeeeeeennenes 60
VI CONCIUSION .ot ettt ettt e e e e e e e e e e e e e s smnt ettt e e e e e aaaeeeeaeseseaaanns 61
VII. ANNEX 1 REQUIREMENTS TABLE ... 62
VIII. ANNEX 2 GLOSSARY OF TERMSoooiiiiiiiiiii et eeee e 69

D1.6.1 — Initial Architecture Design Page 5 of 83

)N O (o ¥ o [S L= F= 1 (=T I @0 o o= o £ 69

B. PaaSage CONCEPLS ...ttt e et e e e e e et eeaeaeeeessaa e e eaeennnnns 74
IX. ANNEX3: The CLOUD OFFERINGS SURVEYEDcciiccmmiiiiieiiiiiieee e, 77
X. ANNEXS: The CLOUD OFFERINGS SURVEYEDctcoiiiiiiiiiie e 8.7
D PR =11 o] [T To =] Y/ SEUSPPPRRPR 81

D1.6.1 — Initial Architecture Design Page 6 of 83

TABLE OF FIGURES

Figure 1 PaaSage ACLOr INtEraCtioNcccceeeiiiii et eeeee e e e e e e e e e e e eeeeeenenees 11
Figure 2 Main PaaSage ArchiteCtural Stack ..ooe....oevvviiiiiiiiiiie e 13
Figure 3 Application lifECYCIE OVEIVIEW. ... iiiiiiiiiiiiiiiiicee et 14
Figure 4 Main PaaSage Components and Life CycledDonccccceeiiiiiiiiieeiiisvceeeeeennns 22
Figure 5 Storyboard DeSIgN PRASE....... .o e e e e e e eeeeeneeees 23
Figure 6 Storyboard Configuration PhaSe.....ccccccceeiiiiiiiii e e e 25
Figure 7 Storyboard Deployment PRASE ..o 28
Figure 8 Storyboard during the EXecution PRaSe..........ccoooviiiiiiiiiiiiieeee e 31
Figure 9 The global adaptation l00P ... eeeeeeiiiiiiiieiiiii e e e e e e e e e eeeeeneeees 34
T T 1= 0 I o 0 T | PSS 37
Figure 11 Architecture of the Profiler ... 38
Figure 12: Components that make up the REaSONEN. cac....ooiii i i 40
Figure 13 Architecture oOf the AdaPIOr ..o e eeeeaees 44
Figure 19: Metadata database arChIitECIUINE s ieeeeeeeeeeeiieiieeeiiiiis s reeeeess e e e e e e e e e e e eeeees 46
Figure 20: Metadata database SChemaooooiiiiiiiiiiii e 47
Figure 21: Integration of PaaSage metadata datahase..............ccoevevvvviiiiiiiis v, 50
Figure 22: PaaSage knowledge base and reasonimBeng...........ccoeuvveveiiiiiinniee s ceeeeeinnn 51
Figure 23: The architecture of the Social NetworfkaStructurecccooveeeeeeeeiiies s e 52
Figure 24 Identity Management in PAaSagecoooviiiiiiiiiiiiiiiiiianeee e eeeee e 53
Figure 25 Initial Architecture of the Executionwamned its interfacescccccceeevvvvveeeeeeeeeenn, 55

Figure 26: Multi-Cloud monitoring and adaptationS#rvice-based Applications....................57

D1.6.1 — Initial Architecture Design Page 7 of 83

EXECUTIVE SUMMARY

This document outlines the initial PaaSage arctuteat the end of the first year of the projedte T
deliverable describes the key components that mpakhe PaaSage platform. It also includes ar
overview of the project requirements and use casisg a Storyboard approach to link the use cas
behaviour with the architectural components. Ideatiion of and expected advancement from the
state of the art in the field is also part of tthaecument. Finally we outline steps for year 2.

The architecture will deliver and support the faling novel features in PaaSage:

» Advanced modelling language for Clouds, utilisingduls to characterise users, applications,
data and platforms as the common thread througR&la&age environment;

» Live Cloud model adaptation to ensure applicaticeecation in-line with service level
agreements (SLA) and key performance indicatord)(Kfteria;

* Model-based support for the porting of legacy aggtions into the Cloud;
» Cross Platform application execution utilising emted PaaSage models;
* Optimised Cross-Cloud model based deployment oicgijons.

» Support for the development of complex deploymamis the migration of local systems to
Clouds in a model-based standardised way.

Support for PaaSage features requires the folloarogitectural measures:

» Participation in the design and standardisatioarobpen, powerful, and expressive modelling
language together with the MODACIouds project ftmu@-independent modelling of enterprise
systems;

* Provision of an intelligent Integrated DevelopmEnvironment (IDE) supporting the modelling
language and supporting the developer in the theptamising the application using knowledge
from experts and monitoring;

» Creation of mappers and generators that allow adCipplication modelled with PaaSage to be
deployed in a distributed environment, interactivith multiple Cloud providers as required for
Cross-Cloud deployments;

» Definition and implementation of metadata relevéot Cloud deployment of applications,
alongside mechanisms to acquire the metadata #mwhicperformance indicators from various
classes of users, from running applications an@tge the historical metadata available on the
services in the application design and deployment.

The deliverable represents the first steps in teeSage architecture toward a blueprint of a platfor
that will be developed so that it can be used enfttiowing ways:

1. Within a commercial or non-commercial organisatiommprove the way applications utilise
internal and external Cloud platforms;

2. Within an open systems development community torave knowledge of how various
applications perform on various (combinations dfju@d platforms;

3. As an individual development environment for indival application developers who develop
(for sale or other use) applications that neecktddployable across differing Cloud platforms;

And by the following classes of users:
1. Organisational or government policymakers;
2. Organisational chief executives;
3. Organisational IT directors;

D1.6.1 — Initial Architecture Design Page 8 of 83

4. Systems administrators (including database admaiss);
5. Application developers or modifiers;
6. Business application owners;

This deliverable charts our progress at the ertldeofirst year of the project. The architecturadigas
and component descriptions are the basis on whelnitial software implementation will be built
during year 2 of the project. It is expected dutimg process new requirements and functionalitly wi
emerge that will go into an internal updated varsibthis document at month 24 of the project. The
second contracted deliverable (D1.6.2: Final Aettiire) is due at Month 48.

D1.6.1 — Initial Architecture Design Page 9 of 83

I. INTRODUCTION

A. Intended Audience

The deliverable is a public document designed déaders with some Cloud computing experience
but little knowledge of PaaSage. For the extermadler the document aims to set out the key elemen
of the PaaSage high level architecture design lamanotivations behind it. For the more technical
reader the integration and more detailed descriptiothe platform architectural components are
contained in the document.

Finally for internal project partners, other tharctystallise thinking, the deliverable - to qubtam
the DoW- will also “be used to stimulate discussanong the partners and the advisory board ftc
ensure we have the best design possible withitirtresscale and resources”.

B. Document Structure

This deliverable has the following structure. Firgte introduce the PaaSage problemscope
summarising PaaSage against current state of thveogk within the domain of Cloud computing.
Effort is made in this section to highlight pretstrtechnology which PaaSage will either adopt or
build upon and planned work beyond the state ofathevill be outlined. The requirements section
(drawn largely from D6.1.1 produced at M6) is parthe problemscope and documents a summar
of the main PaaSage business and technical reqemtsnThe requirements are largely gathered fron
the use cases and are split into a functional andfuinctional classification. The requirements feed
directly into the following section which outlinesdetail the PaaSage lifecycle.

The lifecycle section gives a high level view or taaSage platform and how it is applied during
typical Cloud application lifecycle. Specific focissgiven to describing how the PaaSage platforr
is applied in the use cases expressed as storybtmaaid reader understanding.

The final main block of content is a more detadalysis of the PaaSage platform drilling into the
component level of the architecture. This sectixplans each component and how they interact with
each other. At this stage the design is in itsyephlase as the project is following a bottom up
approach. The Future Work / Open Issues sectidowislthe component descriptions highlighting
work in year 2 of the project. Finally the delivielaends with a Conclusion.

C. Main Actors

The main actors in PaaSage (in addition to thenessi application end-user and associate(
organisational management actors) can be splitietween the application designer/developer, ant
Cloud Provider with PaaSage sitting in-between. ifikeraction of parties depends on the PaaSag
platform deployment and application scenario. Itcanceivable that during some application
deployments PaaSage will interact with multiple WeldProviders and vice versa as illustrated in
Figure 1.

D1.6.1 — Initial Architecture Design Page 10 of 83

User/
Application
Designer

User/
Application
Designer

User /
Application
Designer

PaaSage

PaaSage

PaaSage

Cloud
Provider

Cloud
Provider

Cloud

Provider

Figure 1 PaaSage Actor Interaction

In this document when “user” is mentioned the doeninrefers to users of PaaSage which are
application designers working for a toward a peason corporate business goal via deploying to the
Cloud using PaaSage. These users engage dire¢lyPaaSage in an application development /
design role via an interface such as an Integr@tedelopment Environment (IDE). They are
distinguished from business application userseérréspect that they gain from PaaSage’s use in the
business activity. Types of business applicati@rus the PaaSage use cases include the Lufthan
flight scheduler and government business manager.

The platform acts as a broker between the usertladCloud and can be deployed within an
organisation or in an open community. For userpliagtion designer we aim to realise through
development and use of the PaaSage platform ardesie and deploy to all concept. Thus, users
engaged with PaaSage can have confidence thabtifigwration / business goals they model will be
supported when their application is deployed ac@iesid environments. This significant vision will
make the Cloud more transparent, increase confedé@maising Clouds and help business bettet
predict / control resource usage / cost when dépdoy the Cloud.

Deployments within an organisation such as Lufthapesent the PaaSage platform as a share
organisational resource. The main remit of théf@ian is to aid the deployment of applications in
the Cloud around the specific Lufthansa businesdaiorhese deployments are likely to yield
commercially sensitive data especially the intelige on Lufthansa history of use and Lufthanse
expert knowledge in the metadata database anthenefdre subject to organisational policies. Data
which is less commercially sensitive can be sharetdide of the platform with other PaaSage
implementations, the Lufthansa application benéfds shared data too.

D1.6.1 — Initial Architecture Design Page 11 of 83

The other type of deployment is in less commergisdinsitive open community. Application
scenarios here include ones where high levelslE#mration is needed on projects such as presente
by the eScience domain. Here PaaSage is a shamdace, especially the intelligence in the metadat:
database on open history of use and expert knowledg mentioned above instances of
organisational deployments will have access toumgdthe open community deployments.

Another possibility is for PaaSage to be providea Ibhird party supplier which provides both closed
and open facilities. For the PaaSage platform we tai create a new integrator / broker business
model for Clouds. This model will encourage SMEshwdomain specific knowledge to support

model creation and integration with marketplaceb’sf

Cloud Providers would not have to present any stised interfaces to engage with PaaSage
However the platform will support provider speciinterfaces for monitoring recording and sharing
data on executions. It is expected that the Pag@agect will create new business innovation for al
actors identified above. This will be driven by Bage technical and market innovation at the
platform provider level. Through this innovationrdamethodologies to increase trust and confidence
in Cloud adoption, it is expected that PaaSageopiin up new markets to Cloud Providers. In returr
we expect the Cloud Providers to increasingly supand feed into the development of PaaSage
standards to aid integration and release this basin

D. PaaSage Architecture Overview

At this year 1 stage, in order to document theigecture, this deliverable presents a high levelwi
on the integration and design of the emerging diffecomponents / services in the project. Togethe
these elements form the PaaSage Cloud deploymehtm@amagement platform. More detailed
explanation of individual services / components Wwé found in the more specific work package
deliverables D2.1.2, D3.1.1, D4.1.1, D5.1.1 due M18

The overall PaaSage design is summarised into 8 ownponent groupings as described in the
Description of Work, the Integrated Development iEmvment (IDE), Upperware and
Executionware:

The IDE is the main user-visible front end for ghatform. The IDE extends the popular open source
development platform Eclipse and supports the ahd3leud Application Modelling Execution
Language (CAMEL) including CloudML [1] [2]. The ID&s a PaaSage layer has the role of ensurin
that model-based integration of the various fumaliccomponents in the project is possible within a
variety of application scenarios.

The Upperware is integrated with the IDE and preseta the IDE a collection of tools and
components to capture the needs when developing@tidg models at design-time. The Reasonet
and Adapter make up the main components at thes layorder to support the user of the IDE with
PaaSage model-based knowledge and to provide tbeuEanware at run-time with support from
the running application and execution platform.

The Executionware provides platform-specific magpamd technical integration of PaaSage to the
Application Programming Interfaces (APIs) of theeeution infrastructure of the Cloud provider.
This link also provides capabilities for extractiegtended information about the behaviotia
variety of platform providers and possible reconfaion to maintain service level objectives to
support application behaviour. The Deployer and pielawork together to ensure the optimal
deployments from the Upperware are both maintaametimonitored.

Each one of these main PaaSage elements integii#tiethe same service and component metadat
database. This store contains information about gescutions and also performance of different
D1.6.1 — Initial Architecture Design Page 12 of 83

Cloud providers. It is the main knowledge stor@aaSage and provides knowledge from outside th
platform via social networks and other authentidakeérd party actors.

IDE GUI

PaaSage IDE Layer
Cloud Modeller Cloud Profiler Cloud Configuration

PaaSage Upperware
Cloud Reasoner Cloud Adapter Cloud Deployment

3rd Party Actors

Vo | loud . PaaSage Executionware
Cloud Deployer Cloud Execution Cloud Execution

Cloud Metadata Database

APls
CLOUD INFRASTRUCTURES

Figure 2 Main PaaSage Architectural Stack

The main PaaSage stack of components is illustrated

IDE GUI
PaaSage IDE Layer

Cloud Modeller Cloud Profiler Cloud Configuration
PaaSage Upperware
Cloud Reasoner Cloud Adapter Cloud Deployment

3rd Party Actors

Vo | loud . PaaSage Executionware
Cloud Deployer Cloud Execution Cloud Execution

Cloud Metadata Database

APIs

CLOUD INFRASTRUCTURES

Figure 2, the architecture aims to integrate them@ponents in order to deliver the PaaSage
platform’s main functions. However, it could be pitde to adapt individual components to deliver

D1.6.1 — Initial Architecture Design Page 13 of 83

explicit functionality in other specific Cloud emgnments i.e. functions in the Profiler and Reasone
could be adapted for use with other Cloud optinoesa¢nvironments.

E. PaaSage’s model-based methodology

PaaSage’s model-based methodology is based uponkdiieCloud lifecycle phases of
configuration, deployment and execution. These g¢hase based on the Waterfall Model of Software
Develeopment with the following mappings Configioat phase (Requirements, Design)
Deployment phase (Implementation) Execution ph¥seification, Maintenance) [3].

Configuration is concerned with modelling tletbyment of applications, profiling platforms and
infrastructures, and specifying Quality of Ser\i@»S) requirements and data management policies
Deployment is concerned with matching the DeploynModels of applications with the profiles of
platforms and infrastructures based on negotialedlsSand policies, and selecting one or more
suitable Deployment Models. Execution is concemigd the management of the run-time execution
of applications and monitoring / recording of KBEsed on SLAs and policies.

It should be stressed that although a waterfall ehasl used in the phases through which an
application passes in PaaSage, the actual softieaetopment in the PaaSage project to provide th
PaaSage platform is done using a spiral, agilecambr.

In order to facilitate the integration across tlmemponents responsible for each lifecycle phase
PaaSage adopts a series of interlinked models.

Configuration
Configure Application

- SetRequirements
- Select Models

Shared
Deployment
i el | Knowledge
- SelectProviders
- SetKPI
- AgreeSLA

Figure 3 Application lifecycle overview.

Models in PaaSage are initialised as empty termgla@pulated with characterising and
deployment rules that are extracted and replactdddeployment characteristics. Models are
initially formed from user input in the IDE and d¢am platform, data and policy specific
information. We envisage three types of model iaSz@e:

D1.6.1 — Initial Architecture Design Page 14 of 83

Configuration Model: The Profiler populates an empty Configuration Modemplate with
requirements set via the IDE modelling componetiie Thodel template choice ensures that ar
adequate requirement set is gathered for speciéioagios. The initial model could be created using
a standard such as UML, but the requirements imibael are translated by the component into term:
that the Reasoner can understand.

Deployment Model: The Reasoner consumes the requirements packagedthe Configuration
Model passed from the Profiler. Using these reaquéets and data from sources such as the Metada
Database the model is transformed into a mappirdepfoyment characteristics which are a result
of the reasoning.

Execution Model: The Adaptation Engine checks the Deployment Modalrest the current state of
the Cloud Providers. The Execution model is poalatith the suitable infrastructure and endpoints
of services (i.e. monitoring) to support the apgilens execution.

[CAMEL and CloudML

The models used to capture the lifecycle are egprem a set of DSLs (Domain Specific Languages
that together form CAMEL. One of these is CloudMLloudML is being developed within the
MODACIouds [4] project. As part of the work on MO@Aouds we expect CloudML to be linked to
lower level messaging standards that we intendmplement across the PaaSage platform anc
between Cloud providers.

The models and data related to their executionaerloud are stored in the Metadata Database. Thi
allows reuse of the models and the ability for comgnt such as the Reasoner to look at the
performance of previous models when composing nees.oThis knowledge is also shareable
between PaaSage platforms (subject to securitypewmdcy). Reuse of the PaaSage models outsid
of the local PaaSage implementation will be a keolgk foundation that related tools and services
within the open social network domain will be buiion. The open social network will be the source
of the 39 party actors shown in the stack in Figure 1 ardedhe sharing and building of PaaSage
knowledge and models.

1. CAMEL

The MODACIoud development of CloudML is expecteddllow the topological approach of the
standard. Further detail in the description of egaplon requirements and deployment characteristic:
as they relate to the Cloud infrastructure is theu$ of this work. However, a key element of the
PaaSage project is also the specification of raesconstraints to match the topological descniptio
of the Cloud.

In order to support the requirements for a Paa&aged Modelling Language we intend to re-use

existing DSLs and — if necessary — develop thenthéur In addition we shall interface these
languages so they pass the required informatiaugir the phases of PaaSage. At this stage of tf
architectural development these candidate DSLaudeclISALOON (to characterise the offered
CLOUD platforms), WS-Agreement (to manage SLASs), IO characterise components) and a
rule-based language (currently the subject of dnggassessment) to manage constraints.

D1.6.1 — Initial Architecture Design Page 15 of 83

II. CLOUD PROBLEMSCOPE

A. Rationale

Moving to the Cloud is difficult; generally littler no expertise exists in the form of tools and
platforms to help the developer restructure hisédygplication toward the Cloud. Users from the
business community struggle to visualise the ingpians in terms of measurable threats and benefit
from application movement to the Cloud.

Thus, there has been only a slow take-up of Cledkdrology for real business applications, althougt
Clouds have been used for shared email environmamsed storage systems and similar purpose:
Certainly many organisations have experimentedgusifoud platforms (private or public) for
systems development and one-off applications byomirriers exist in terms of the inability for
applications to reconfigure dynamically across at@vand Public Clouds and maintain pre-Cloud
SLA/QoS parameters.

The PaaSage project aims to address these probgngsa model-centric approach. By developing
a model-based Cloud management platform, PaaSaga@ideliver a platform-supported approach
that provides greater flexibility and support foseu / business requirements when managing
applications across the whole Cloud lifecycle aapldyment architectures.

1. Current State of the Art Capabilities

I. Other Research Projects

A systematic survey (using a standard agreed tee)méexisting CLOUD offerings was conducted

in the first six months of the project in paralekth the work in WP6 on requirements leading to
D6.1.1. While some offerings required just a coysmnsideration, others were considered in detail
The list of considered EU offerings is in ANNEX [[Bection 1X) and key aspects illustrating the
state of the art using a selection of these arersansed below.

Research in providing Infrastructure as a Sensca focus of several projects. Particular focus of
work in this domain is in the support of innovatiarninfrastructure provision and monitoring toward
greater resource use in the Cloud. A good exampdeah an approach can be seen in the OPIMIS
project [5]. The OPTIMIS Toolkit comprises a sétt@ols to be used by Service Providers (SPs).
Infrastructure Providers (IPs), Software Develof&i3s), and end users.

In terms of platform effort has been made in depielg PaaS provision using more standardisec
approaches. A good example here can be seen &iftreto merge Service Oriented Architectures
with Clouds. The Cloud4SOA [6]project is focusedimtegrating SOA principles of modularity and
web services with the provision of PAAS. Other imations of provision of platform are in the
development of federated PaaS in projects sucltoagdil [7].

Service development in Clouds as a focus of worklmaseen in the data management community
Projects in this domain have tended to focus onntipgoved presentation and categorisation of datze
in Clouds to aid integration with Cloud servicesg@od example of such work can be seen in the
cloudTM project [8]. Here the project is focusedaveating a data centric middleware in order to aid
better identification of data and its requiremetatsid better efficiency and fault tolerance in the
Cloud.

Linked to the PaaSage project is effort from th®DAClouds project in development of the
CloudML standard. In addition other modelling patgeare focusing on the use of models to suppor
specific challenges such as the migration of legysyems to the Cloud. In the Artist project models
are use to describe and wrap legacy systems toigrdtion [9]. Other projects are looking to exisfi

D1.6.1 — Initial Architecture Design Page 16 of 83

standards to aid the model based management ofi§lsuch as the Mosaic Cloud project that has
embraced ontologies as central to their modelloigteon [10].

Il. Commercial Offerings

Microsoft's Windows Azure [11] offers not only PaaS but also services faSl&e.g. VMs, virtual
network, storage), and SaaS (e.g. media, actieetdiry and web hosting). Each service can be use
separately or combined to create an applicatiorrdJsan manage the instantiation of a service
through a simple configuration in a web portalgdity in a development environment (e.g. Visual
Studio or Eclipse), REST API, and/or a command lio@. In terms of SLA, Windows Azure
provides a guarantee of at least 99.9% availalafithe time on their services [12]. Finally, Wivd®
Azure provides several tools for collecting, monitg and diagnostic information, such as:

Management Portal Displays the status of a hostéedice, including each instance
of the service.

Service Management REST APl Provides an API thabeaused to programmatically retrieye
the same status information displayed in the Mansgd
Portal.

D

Diagnostics Provides the user with the ability tggeegate performanc
counters and logs from the hosted application incts, as well
as any custom log files, tracing, and instrumewptabutput that
the application produces. Also, it provides a meusa for
scheduling periodic copies of diagnostic informatito the
storage account.

Storage Analytics Provides logging and metrics dataNindows Azure Storage.
SQL Database Dynamic Provides information wuseful in diagnosing perforroan
Management Views problems when using SQL Database.

Google App Engine (GAE)[13] is a PaaS for developing and hosting webiegpbns in Google-
managed data centres. Thus, users need only tadipkeir applications without the need for
maintaining any servers. GAE supports applicattbasrun in one of several run-time environments,
such as the Go environment, the Java environméet, RHP environment, and the Python
environment. An application may be running in onenore GAE instances. The GAE instances are
not real VMs but application sandboxes. They amdlar to VMs, where both have a set amount of
RAM allocated to them. However, GAE instances dbate the overhead of running operating
systems and/or other applications. Thus the GAtaimes have more usable memory than the VMs
Moreover, each GAE instance includes a securitgrl&y ensure that instances cannot inadvertentl
affect each other. GAE also guarantees a SLA tdast 99.95% of the time in any calendar month
[14]. With regards to monitoring of instances, tBAE Dashboard in the Admin Console has six
graphs that provide users with a quick visual mfee of system usage. The information displayec
in these graphs gives the user a snapshot of @sconsumption per second over a period of up t
30 days.

CloudBees[15] is a PaaS specialized in Java applicationg dévelopers have the possibility to
implement their applications with any JVM-basedglaage, such as Java, Scala, and JRuby and
use a variety of run-times, such as JBoss, Tonacat,the Play Framework. The PaaS enables th
creation and removal of applications, databasesusets. The applications can also be started
stopped and replicated. CloudBees exposes a RES&rnaBling the execution of these actions. The
D1.6.1 — Initial Architecture Design Page 17 of 83

monitoring of applications is done through the NRelic Monitoring service [New Relic, Inc], a
performance management tool.

Cloud Foundry [16] is an open-source PaaS Cloud software asasedl hosted service offered by
VMware. Many other companies offer PaaS servicegyube Cloud Foundry platform (e.g., AppFog
and ActiveState). The PaaS supports multiple progreng languages such as: Ruby, Python, PHP
NodeJS, Erlang and JVM-based languages like GraadyJava. It also supports multiple run-times
and frameworks (e.g., Spring, Rails and Sinatral) application services (e.g., MySQL, MongoDB
and RabbitMQ). Applications, users and databaseseaadded or removed. Applications can alsc
be started, stopped, updated and replicated. Spetations are supported via a REST API, which
also enables the retrieval of statistics relatagptime, disk use, CPU and memory usage. Additiona
information related to java applications can baeeed by using Spring Insight [Spring], a byte-eod
instrumentation-monitoring tool.

Heroku [17], a Cloud application platform, supports JVMsked languages such as Java, Scale
Clojure and other programming languages as: PytRaby and Node.js. The REST API provided
by the platform enables developers to create, renaon update users, applications and database
Applications can also be started and stopped. Bseserelated to applications can be replicated fo
scaling purposes. The New Relic Monitoring senigaised to monitor resources such as CPU
memory, network and processes.

Jelastic[18] is Cloud PaaS solution, which runs any Jav®ldP application on the Cloud. Users
select a software stack that includes applicateomess (e.g., Tomcat, GlassFish, Jetty) and SQL o
NoSQL databases (e.g., MariaDB, PostgreSQL, MySRbngoDB, CouchDB). The platform
provides an intuitive GUI enabling the creatiorapplications and databases. The GUI also provide
functionality to start and stop applications, cgafe the load balancer and modify the number of
application servers. It is possible to retrievetistias about CPU, memory, disk, and network
utilisation for load balancer, web server and dasebinstances.

2. PaaSage Beyond the State of the Art

PaaS applications today have approached the tasbppication support through the creation of
interfaces capable of supporting multiple programganguages backed up with management GUIs
This approach is clear in the current state ofthand in the approaches from Jelastic, Herokaydl
Foundry, Cloud Bees and even within Google and Azl@scribed above. This approach assume
that the application developer user has a good ledne of his / her application and how it should
work / consume resources in the Cloud. In reahty is not necessarily the case as many end use
particularly business wishing to port applicatis@aghe Cloud have little knowledge of what Cloud
resources they require to support their application

PaaSage intends to take a step back from providipgrely technical interface to the PaaSage
application developer user and encourage the as@iotel his / her requirements before technical
integration takes place. User defined applicatiamdefs expressed in CAMEL will allow a richer
expression of application developer user and basiagplication end-user requirements translating
down to how the Cloud is managed in terms of resmusage. Advancing research in MODACIlouds
and projects such as Mosaic [19] inform work in$age which will look to group domain specific
standards in models and deploy them at all stafjapmication use in the Cloud. The models are
used from configuration through to execution in @eud; they will ensure that the user is presentec
with a consistent model of application activity @don his/her original requirements during design
and deployment.

The management of the model driven applicatioméGloud is novel and unique as it breaks from
existing work in the automated management of Clpplications. Common approaches via the use
of an application developer user focused GUI linke@xecution and policy are improved upon in

D1.6.1 — Initial Architecture Design Page 18 of 83

PaaSage to provide a common link in the GUI todeployed model provided by the user. This
model-driven approach will give a more holisticwief the application deployment. For example, a
model-driven view can express more detail tharaadgtlone policy or set of rules as models car
contain information on the relationship betweeifiedént monitored elements and incorporate rules.

The PaaSage core components are designed to makdekige-based Profiling, Reasoning and
Adaptation decisions on the deployment that wilpiove the performance of the Application
deployed in the Cloud in step with user requirersenhis work will build on techniques developed
in projects such as cloudTM for data classificationl. PaaSage will present knowledge-based live
management of services and data in a holistic Whis holistic view will improve on project work
in this area such as done by OPTIMIS where managedgisions are made in isolation from the
deployment. For example, in OPTIMIS the deploymaptimisation is done in isolation from run-
time optimisation. A common resulting problem irclssystems is in the transfer of resources ant
subsequent time taken to transfer images duringddi@nsformations [20].

In PaaSage we aim to reduce this by linking depkrytrand operation via the model-based approact
This will allow knowledge based decisions aroureldeployment in terms of its potential impact on
operation of the Cloud. Such knowledge can infleetiee deployment to enhance execution via
factors such as reducing the need for the appicatn the Cloud to transform (i.e. Cloud Burst). In
the case where a transformation occurs the platfdams to reduce resource consumption througt
the knowledge-based deployment to nodes closeypical transformation targets. For example,
PaaSage will have knowledge of previous deploymehépplication types and the track record on
their resource consumption and activity. By usimgs tdata and the knowledge of typical

transformation that these applications require Bga8an make optimal deployments to ensure faste
transfer time of images via simple means such agank placement.

In summary, PaaSage provides model-based apphcstijgport to the Cloud. The platform provides
an intuitive way of adapting user requirements wimamaging applications in the Cloud. The model-
driven approach enables a finer grained descriptibthe deployment constraints allowing the
platform greater flexibility to manage automatigathe application during changes in the Cloud
Infrastructure.

B. Requirements

D6.1.1 provides a description of 3 major use casekthe associated user requirements. The cas
studies described the application requirementddertdified high level requirements on the PaaSage
workflow. In addition a generalisation of the majaser requirements was done (internal
documentation) to provide the core requirementevegit to a wide range of user / application
requirements. In D6.1.1 an initial assignment @fureements to PaaSage components was mad
These are classified into functional (related te Husiness of the application) and non-functional
(how the application is run) requirements. Furttegegorization and prioritization of these use sase
(e.g., using the MoSCoW methodill be performed as part of an iterative proctsat includes
further concretization and development of the Pga$éatform.

The table in Annex 1 provides an overview overrtten requirements as identified in the context
of D6.1.1 and considered in the following sectidnsthin the Annex the requirements are
numbered R1, R2 etc.

! http://en.wikipedia.org/wiki/MoSCoW_Method
D1.6.1 — Initial Architecture Design Page 19 of 83

1. Functional Requirements

The main requirements identified in D6.1.1 andelisin ANNEX 1 specify that the

PaaSage platform must help to optimise Cross-Chtegloyments with respect to
deployment objectives and constraints. To achigtanal deployment PaaSage must
support best placement on the available Cloud dirnature of the application to be
deployed (R1-7). Using models related to the appbo in PaaSage and its
requirements, relevant data is gathered using #a&S&ge platforms links to Cloud
Infrastructure in terms of knowledge of previousiwaty and live monitoring. This

functionality is needed to enable the setup wilioud and Cross-Cloud deployments.

In terms of the application it is assumed thatGoafiguration Model provided by the
analyst may not be complete, and that the PaaSedyses will complete it to provide
a Deployment Model. The final Deployment Model wide transformed into an
Execution model that must describe the applicaBgnwell as the target Cloud
infrastructure. Deployment must be defined sufidieto optimise the Cross-Cloud
deployment. This includes defining the deploymentitau (R8-15) and the
communication channels (R-16,17,18,19). It alsolushes defining the required
dependability (R20-23, 25) and scalability (R-26-3% the application. This is
discussed in the next section on non-functionaliregnents.

Data is largely covered by the Deployment Modet thast also provide information
on how data may be optimally deployed in the Cldttds includes describing the data
volume (R-32) involved, the different ways that theta may be partitioned, the data
flows and workflows involved (R-33).

Infrastructure requirements are also containedénGonfiguration Model (R34-41).
This will enable the Reasoner to match suitableu@lproviders automatically. The
required infrastructure should specify the typ&€tdud that is required (laaS, PaaS or
SaaS) as well as the Deployment Model (public,gteyhybrid Cloud) and monitoring
information available.

The PaaSage platform aims to help human analyske mptimised Cross-Cloud
deployments (R 42-55). To this end the platfornt agkist the human analyst in finding
near optimal Cross-Cloud deployments (R43). Fongta, PaaSage will help to find
optimised Cross-Cloud deployments that make trdfte-bbetween cost and
performance goals. This requires having knowledgeut each Cloud provider's
typical performance and cost metrics in differecgrarios (R42), possibly following
their reputation (R45) and understanding their costlels (R55).

The PaaSage platform should support the entireyiife of the deployment (R 56-69).
This means that PaaSage must provide suggestionshéo initial Cross-Cloud

deployment, monitor the execution of the deploygapliaation by suggesting
adaptations (R64) and reconfiguring (R66). Whenajygication deployment finishes
the Cloud lifecycle is finished and a report shdagdproduced (R69).

2. Non-Functional Requirements

The case studies identified various dependabiiguirements in D6.1.1. This mainly
included requirements on availability, securityegrity and privacy.

Avalilability (R-24, 25) is one of the main criteriar comparing and selecting Cloud
providers. Market analysts often refer to uptim@/dobme (time that a running

D1.6.1 — Initial Architecture Design Page 20 of 83

computer is available) to compare high availabifthkoud providers. The PaaSage
platform will consider availability of Cloud prows as a key selection criterion. The
Configuration Model may include requirements on tflebal availability of the
application that is deployed on multiple Cloudde8ton of the right Cloud providers
to meet the application criteria will take into aaat guaranteed availability data from
providers and/or historical availability data gatteby the PaaSage platform. PaaSage
will also consider composition of availability dafar the global Cross-Cloud
deployment.

The case studies have identified end to end sgdiR#1) as an important requirement
for their Cross-Cloud deployments. Furthermore d@adend security must be
maintained throughout the whole lifecycle of theo§3-Cloud deployment. Related
security requirements include ensuring Cross-Chuaiss control (R20) as well as end
to end data integrity (R22-23). Cloud providers wdtdoalso support privacy
requirements and comply particularly with the 9%E® European data protection
directive [21].

Cross-Cloud deployments that need to scale in daléenefit from the on demand
nature of the Cloud should be able to specify apgibbn elasticity rules (R26-29). The
case studies have identified several requiremetdsed to scalability.

Performance is a key requirement that needs takentinto account by the PaaSage
platform when proposing alternative deployment aces (R7, 14, 60, 66, 69). It must
be possible to refer to performance as an optimisagoal for the Cross-Cloud
deployment. Data locality is also important whecalton of processing nodes to data
sources can be optimised to improve performancetret factors such as security and
privacy.

Cost is one of the key drivers for the adoptioRlmfud computing. Several case studies
have identified the need to be able to estimatetist of a deployment. This requires
having knowledge of the cost models from the déferCloud providers that will be
supported by the PaaSage platform. It must be Iplesso refer to cost as an
optimisation goal of the Cross-Cloud deploymentmitst also be possible to find
Cross-Cloud deployments that meet cost/performabjatives.

3. Summary

The PaaSage requirements at this year 1 phasealbtarenined the architecture design.
In the next 12 months they will be adapted to dgesoftware specific characteristics.

The realisation of the requirements can be se¢erims of function in the three main

components described later on in this documenfi{@roReasoner and Adapter). The
Non Functional requirements have also influencegigtiein other components such as
the Metadata Database and its initial securitygresi

D1.6.1 — Initial Architecture Design Page 21 of 83

III. PAASAGE LIFECYCLE & STORYBOARD

A. Overviews

1. Lifecycle Overview

This chapter aims to give a lifecycle summary o #Hrchitectural development in
PaaSage. The approach taken is from the persp&dtatakeholders at phases before
engagement with PaaSage, during PaaSage deployareatition and reconfiguration.
This approach is further reflected with the inotusof relevant storyboards for each

use case. A summary of the main components witferd$o the lifecycle direction can
be seen in Figure 3.

Data Flow

MModel Flow
IDE [Profilar

| Eonrs ot Target
Ra BIOOES _'!Ld-EP[EI.' | Daplayer 1 tEZI:-:;_:n '}
Monitoring
Wietadata
| Madels OB

Configuration Phase Deployment Phase : Execution Phase

Figure 4 Main PaaSage Components and Life Cycle Diction

The lifecycle is broken down into three main phasésese are configuration,
deployment and execution. The configuration phasecancerned largely with
characterising as models the application, user,a dahd available Cloud
infrastructure(s). This configuration is used ire theployment phase to select
(Reasoner) target infrastructure(s) that satisfieca in the Configuration Models.
Finally during the execution phase the DeploymeatiM is executed and can be rolled

back (adapter) in case of redeployments due tougeec errors or changes in
infrastructure.

2. Storyboard Overview

D1.6.1 — Initial Architecture Design Page 22 of 83

The PaaSage work plan defines four main use cébese use cases form the basis for
our storyboards that are presented to help exfh&main lifecycle phases supported
by the PaaSage architecture.

eScience use casks concerned with the support of complex anddacple workflow
based cloud (high performance) computing applicati®aaSage is expected to aid the
application design and deployment process to tbedl

ERP (Enterprise Resource Planning) use cas&éhe ERP use case is concerned with
the delivery of the Cloud on multiple Client de\s@nd the separation of local / remote
processing in order to optimise the applicatiore &pplication is expected to be highly
mobile allow technicians to work when they are catnected to the internet.

eGovernment use caselThe eGovernment use case presents the probldroveofa
hybrid Cloud can be both managed and constructBaasage. The requirements from
the use case include strict data processing ridegyside the ability for the Cloud to
transform to meet demand connecting local sent@socesses running in the Cloud.

Airline Scheduling use caseAt the heart of the airline scheduling use cas¢éhe
problem of to transform a client-server applicatwith a centralised database and fat
client Ul, into a cloud application that also sugpanobile computing and multiple
devices. In this scenario rapid saleability is reebaihile maintaining integrity of both
the application and data. The use case is focuste iairline industry in the case when
an incident occurs and planes / passengers hdeerapidly re-routed.

B. IDE

1. IDE Design Storyboard

In terms of the storyboard the configuration phes@re-dated by a pre-PaaSage
engagement design phase that starts with the thdaviusers in our four use cases of
eScience, ERP, eGovernment and Airline Schedulisdg=igure 4 illustrates our users
have different demands.

eScience ERP eGovt Flight Sched

-]] [= I ? | ————————1—]
b ~~ I 1 MeED A HYBRID CLOUD THAT cAM A;LTJ"

OUR ERP SYSTEM NEEDS A AFTER SALES | | THE DATA PROCESSING ENSITIVITT AND T NEED A CLOUD THAT CAN BE ACCESSED)
L MODULE THAT 1S IN THE CLOUD AND SUPPORT QOVERNMENT ENCRTPTION VIA A WEB BROWSER AND SCALE MY
e MENT W ACCESSIELE BY MOBILE DEVICES MEEDS. APPLICATION TRKING INTO ACCOUNT ITS|
NETWORK LINKS BETWEEN THE WORKFLOW] COMPLEX AND SENSITIVE NATURE.
ENGINE AND SIMULATION TOOL “]_ Ll

[0ooo oo
0o, o o
foo| @ o
g o a
0f &

uuuuu

Figure 5 Storyboard Design Phase

The eScience user during application modelling setpiirements related to the
platform that the application will run on and trevéls of quality of service (QoS)
needed to support successful execution.

D1.6.1 — Initial Architecture Design Page 23 of 83

The ERP use case at this phase could contain gpdejfloyment characteristics that
are reflected in the business process and polidise organisation. For example the
platform is important but also support for mobievites.

The Public Sector Citizen Portal design could dpeaihybrid Cloud model where

services in Private Clouds can communicate witkiices in Public Clouds. Sensitive
data will have to be stored in Private Clouds amth&ntication plus digital signature
services are used to secure the application anchigie® end-to-end security. The
application must also be scalable in both publid Bnivate Clouds and be portable
between data centres

The Airline Scheduling design also includes thednieedistribute data depending on
its sensitivity. Of great importance is the ability the application to scale quickly in
order to react to demand.

2. IDE Functionality

I. Specification using PaaSage IDE
Stakeholder: multiple, broken down below

During this phase, all information needed to seeecution is specified. This involves
aspects such as (1) the business goals, (2) sepuotities, (3) company policies &
contractual constraints, (4) technical constraifteese requirements are used to start
the PaaSage configuration phase in the next se@epending on the type of company
and application, this may also include end useditmms (customisation), though they
may also emerge at run-time, leading to reconfigoma

Il. Configuration Phase Using the IDE

The configuration phase is the process by which riien stakeholders in the
application specify their application executionuggments with associated user and
data characteristics. For example, the constréatding to the choice of the required
service model (laaS, PaaS, SaaS), the requiredoipapht Model (private, hybrid,
public, partner), and also specify a list of clquaviders, e.g. Amazon, Azure and
RackSpace especially if there are organisationdicips on this. In parallel the
characteristics of Cloud platforms / infrastructueee updated as a model. These
requirements are captured either by using suppastaddards and imported into
PaaSage or via the use of PaaSage tools via the IDE

During this phase the user / application designestrdescribe the application to be
deployed. This description must state the optinosagoals and constraints of the
deployment. An example of optimisation is to mirsmi cost and maximise
performance while maintaining the data in a Priv@keud. The units of deployment
and the communication links of the application eodeployed must be described. It
must be possible to describe the elasticity rilas describe for each deployment unit
how that unit scales up and down with respect taitoped variables such as response
time or queue length. It must be possible to sgecdnstraints on availability,
performance, cost, security and privacy of the iappbn. This Configuration Model
is then used to transfer the requirements expressedles to the deployment phase in
the lifecycle.

D1.6.1 — Initial Architecture Design Page 24 of 83

C. Configuration

1. PaaSage Configuration Storyboard

In the formation of the Configuration Model the maomponent used is the Profiler.
The user takes a back seat and is able to mohggplatform’s progress as illustrated
in Figure 5.

ESEience ERF el Flught Sched
ol PROEILED Jidel CHBECID Tl THE PO R ERTIRS WAAT oyl el PEOILE mUNTIFEE DATE
|mﬂﬂm WA RPPLECATIONG CAN B 50 CRPERCERCTEG: NMD HON THE DNTE Cll
w [t L PAETI NOKMID

Figure 6 Storyboard Configuration Phase

During the eScience configuration the dependenni¢lse workflow are checked by

the Profiler to ensure that the application isesiiifor deployment on the Cloud. In

particular focus is given to non-functional chaeaistics such as performance and
security policy which have a strong influence omhbe deployment is configured.

ERP configuration is dictated by which dependenerist between the workflow
components upon deployment. In addition to thientliside applications capable of
processing data off-line will be identified.

The eGovernment use case during configurationveniby data security and the need
to identify and separate potential data for publigrivate Cloud processing. This is
complicated by the data processing rules also t@ftptocation of service deployment
either on Public or Private Clouds.

Airline Scheduling is again concerned with dataetefencies during configuration. As
the key function is to support rapid scalabilite thata and service dependencies have
to be supported in the configuration to enable this

2. Configuration Functionality

lll. Specification of application outside PaaSage IDE
Stakeholder: Developer, mostly

The programmer develops his/her code in a nornsdlida, yet basing on modular /
service-oriented principles. He/She uses a startdatqUML, BPEL etc.) to generate

the software architecture and generate the codedéweloper follows some guidelines
using the PaaSage supporting documentation on dia@&welop applications that can
be deployed on multiple Clouds (cross -Cloud deplemts).

Once thecode specification is complete the software archite following UML

standards can be imported into the PaaSage IDE clgar linkage between UML and
code objects; furthermore there should be a stfadsification of software artefacts
that will define the execution environment theyuieg (Java applications demand for

D1.6.1 — Initial Architecture Design Page 25 of 83

a JVM; servlet applications require a Servlet coia more specific Servlets may
require a dedicated Servlet container; links tabases may be generic (any SQL-
capable database) or very specific (e.g., Oraatg. 12

If the application is a legacy application the m®gis slightly different. In this case the
code for the application may not use common stalsdar be based on common service
orientated / modular principles. In this case thpliaation will be treated as a black
box and UML will be used to describe dependenciesdad for deployment and
execution. Of course CAMEL will be used to desertow the black box may be
optimised for Cloud deployment using PaaSage.

IV. Specification of business goals
Stakeholder: Business owner or CIO

The main commercial stakeholder specifies what kinousiness goals he wants to
pursue with the execution of the application. Tik most likely not be on a
technical level, but instead include consideratieush as “serving 1000 users
without notable delay” and “costing less than 10p8£day”. PaaSage tools will
assist in specifying these constraints via mettsods as rules.

Generic Cloud business knowledge may help in géingréhese rules, along the line
of particular guidelines, such as “response tiregs than 1ms are not feasible”, “you
should specify maximum number of users”, and “respdime means interaction time
with a GUI”. This knowledge could also be supportedthe PaaSage Reasoner’'s
knowledge of previous executions. Such knowleddpside commercial stakeholder
in specifying all information needed and will asdise system in decoding it. This
information can either be specified by the stakédohim/herself or by any other

external expert in the general knowledge basel{skav).

V. Specification of application processing policies
Stakeholder: policy makers in the company

Policies are not necessarily strongly connectdtiecapplication in question, but may

instead generally apply to the company, such asacinal arrangements or wider legal
constraints. Accordingly, similar to the businessalgtransformation rules, these

policies may be defined once and reused multiptesi Since it is to be expected that
these goals are highly company specific they hawe either strongly associated with
the company (and used for none other) or selecyetid policy makers anew every

time. Since these policies will most likely be ddehtial, they also have to be hosted
in highly secure environments.

VI. Specification of Technical Constraints
Stakeholders: IT administrator, developer, similar

Here concrete constraints are put forward to desdnow the application is hosted.
These may derive from the software architecture@lsas other policies and may be
implicit knowledge by the software / infrastructueagineers, but they may also
incorporate concrete technical constraints in thg the application is configured for
this use case. Note that some technical constraratdirectly given by the application
(see step).

D1.6.1 — Initial Architecture Design Page 26 of 83

For example, a technical configuration choice maythmt, since the application is
configured to use a file system instead of a da@ba file system is needed in the
hosting environment, even though the applicatiehndit necessarily declare that.

Vil. Other
Stakeholders: external experts

As described in more detail in the context of tleasbner, a set of “ground rules” must
exist that define the essential expertise. Thisludes decomposition rules,

interpretation rules, Cloud scaling rules etc. &teey will partially be defined by the

Cloud hosts (Cloud providers), but also by genbtainess and technical experts all
over the community (“network”). For example, thecefce application may have

specialised data processing needs requiring celdals (performance, latency) of
network connectivity between processing nodes. rieioto ensure this specific

knowledge of node location and bandwidth is needed.

D. Deployment

1. PaaSage Deployment Phase

Regarding the distribution of application data itish be possible to optimise the
deployment of the application data in the Cloudhwiespect to the specified
optimisation goals and constraints. This impliesc#lying a data partitioning model
that describes what partitioning is permitted by #pplication. Similarly, to specify a
data consistency model that describes how muchsistency the application can
tolerate. It should also specify the data flow amatkflow models for the application.

The deployment specification must also describe tkquired target Cloud
infrastructure. It must be permitted to specifyriame potential Cloud providers, e.g.
by specifying that a given deployment unit may bpldyed on Amazon, Rackspace or
ElasticHosts. Specification of constraints on theation of the Cloud provider - for
example to respect legal constraints on the locatfadata — is required. Similarly the
specification of requirements on the security amiyagy of the Cloud provider
infrastructure is needed. Required resource typesgecified independently from the
specifics of each Cloud provider, such as requg€ioud storage resources in the form
of a file system or a database.

The PaaSage architecture will find potential Clpuolviders by matching deployment
requirements with a list of Cloud provider modéltoud provider data will include its
location, cost models, resource types, securitydpsi model, and other important
attributes such as availability or performanceesiources.

2. Deployment Storyboard

During application deployment the main componerdation is the Reasoner. For the
end user the component maintains a link with thesjuirements passed in as part of
the Configuration Model that was formed in the poeg step.

D1.6.1 — Initial Architecture Design Page 27 of 83

eScience ERP eGovt Flight Sched

THE REASONER TRKES INTO ACCOUNT THE| | g HYBRID CLOUD DEPLOTMENT IS
PROPOSED TAKI

COMMUINCATION REQUIREMENTS OF THE NG INTO ACCOLNT THE REASONER PROPOSES A HTBRID
APPLICATION WHEN SELECTING LN ORGSR GRTR CLOUD BASED OM CLIENT LOCATION
DEPLOTMENT TARGETS PARTITIONING STRATEGY RND DATA PARTITIONING NEEDS.

.

THE METADATA DATABASE IS
PREPARED FOR DEPLOYMENT AND
CHECKS OF SUITABLE CLOUD
PROVIDERS ARE MADE.

- cofo

Figure 7 Storyboard Deployment Phase

In the eScience scenario at the deployment phasmétadata database is prepared to
structure the deployment of the large scale apjphbicaUsing data and knowledge in
the metadata database, checks of Cloud Providetedeo the workflow and access
to data will be made.

For the ERP scenario at deployment the main corisghre communication links and
data processing balance between the Cloud and dbéetlients. The deployment of
nodes could be made to ensure specific effort tamdth the synchronisation of online
/ offline mobile clients.

Central to the eGovernment deployment is manageaféiw data is partitioned along
with services in a Hybrid cloud. The Reasoner wilsure that QoS is respected in
selected cloud infrastructures to the extent thattore essential data to the application
is positioned on infrastructure with greater relighand QoS than non-essential data
/ functionality.

Airline Scheduling at deployment has to ensure tit consistency of data is
maintained as the office based application is tggre-)distributed across nodes in the
Cloud. Deployment Phase Functionality

I. Pre-selection of Constraints and Data Preparation for Reasoner (“Profiling”)
Stakeholder / Component: Profiler

Although the Profiler belongs to the configuratiphase it is worth noting that the
constraints, rules, policies etc. given alreadyst@in the deployment possibilities due
to two reasons: (1) direct conflicts in the speeifion and (2) experience, along the line
of what consequences typically arose / did notyapgpifectively, this means pruning
the search tree for the Reasoner: whilst the Resisold principally perform all these
operations itself, it would take considerably londgene (as there would be an
exponential search tree explosion).

In effect, the Profiler thus generates (and manstasee execution phase) a set of
models describing all execution relevant informatilbat the Reasoner has to optimise
over. The Profiler thereby incorporates expertisenf software & model analysis to
interpret the data obtained and cross-referencagainst the rules and constraints
given.

Concretely, each Deployment Model maintains thelofdhg set of specific
requirements:

» Application requirements

D1.6.1 — Initial Architecture Design Page 28 of 83

Describes all information necessary to execute ppliGtion instance
according to the intentions by the developer argd.Fidhis means that it includes
the following information

o The individual software components of the applaati

0 The software architecture (work- and dataflow);

0 The execution behaviour in the sense of when wbaochponent
created which load on resources;

o0 The basic machine readable scaling rules accotdiegecution
expertise and software architecture (such as tading out helps to
increase performance in module A if number of useedarger than
X);

o0 The application specific constraints related tologment in the case
of PaaS (such as needs SQL database, needs IKetese only run on
Azure);

o0 The general application constraints related torwftg/ selling the
application (including maximum total cost, totaklacy, maximum
number of users.);

= Quality of service / deployment constraints;
= The constraints and conditions of the individugllagation
instance such as typical execution speed, typoeal,I TREC,;
= Module specific behaviour rules, such as under wload to
scale out etc.
* Host requirements

Describes the specific conditions and constraietdyg the Cloud provider. It
also includes, next to the basic set up of theastfucture and hosting
capabilities, monitored information and their Iagicconsequence for the
specific Cloud provider:

0 The types (storage such as file system, deviceslatadhases
computation capabilities such as VMs) and amourrespurces
available as well as the types of the resourcaintsts;

o0 Monitoring Services, what access and data do thaeyige.

o0 The quality requirements, such as the effectivalbadaith and latency
during execution, the typical resource load. Tlais be matched to
application requirements to allow better searching;

0 The general rules and constraints, including ttenise and cost
requirements;

o0 Typical behavioural constraints and rules, suchaas long it takes to
perform a scale out, when scale out should be &jlgiperformed. etc.

» Data requirements

Describes the structure of the data being consumextiuced in the application
in the widest sense. This may well be an inheremt pf the application
requirements.

o Size;
o Consumption / production pattern (data flow);

D1.6.1 — Initial Architecture Design Page 29 of 83

o “Type” (structured, unstructured);
o Security/Privacy/Affinity Policy/Constraints;
» User requirements
All information related to a specific (class of)eu&), such as typical

requirements, preferences and typical usage belvawig. types of devices and
mobility.

The requirements are used by the Profiler to creatt of constraints, rules and
policies in a “Reasoner-readable” format that efety span the minimal
search tree, i.e. with all conflicts eradicatedtdidy, conflict-resolution may
require feedback from the user. These are presdatéide Reasoner in the
Configuration Model.

ll. Optimisation and decomposition
Stakeholder / component: Reasoner

The Reasoner takes all rules / functions from thefiQuration Model as generated by
the preceding steps and tries to find a deploynmamntfiguration fulfilling the
constraints and ideally optimising them. The Reasomill generate a deployment
configuration (graph) building up from the workfldwoftware model, which identifies
all deployment boundaries and low level scalingesuthat can be enacted by the
execution engine.

The Reasoner does thereby NOT generate rules fahedlue”. This means that an
according set of rules and functions must be preegged. This includes next to the
input by user or developer also “common grounds'ul&@he Reasoner will resolve
unknown parameter values for these rules, andtgbkeset of rules appropriate for the
current configuration. Examples: "Scale out if mtbhv@n X users by adding a new VM"
will see a numerical value for X, and all rules laggble for Azure will be removed if
the Amazon offering is chosen for the deployment.

The Reasoner creates the Deployment Model whickao@na collection of possible
deployment configurations (options), possibly rahkend linked to real time
monitored data and historical execution data frommrent and previous related
deployments.

E. Execution

The PaaSage platform aims to optimise Cross-Claelogments with respect to
deployment goals and constraints. The first PaaSaghitecture will focus on
optimising performance and cost of Cross-Cloud agpkents. It will support the
deployments of the four case studies and be geramigh to be widely applicable
supporting the deployment of multi-tier applicasas well as workflows. It must also
allow applications to scale up and down in the @laithin the confines of constraints
set in the PaaSage models using functions of theddbroviders such as Elastic Hosts
[22]. The optimisation of deployments will alsoledrom past deployments. This will
be done by mining execution history in the metadatabase and by running complex
gueries on the history of runs. The aim of therlewy is to find which executions gave
the best results as well as the underlying reakmrthose results.

The PaaSage platform will also provide supportdptimisation of data partitioning
and replication. The aim is to find the optimal alagartitioning and replication

D1.6.1 — Initial Architecture Design Page 30 of 83

deployment that meets the data consistency contdraihe optimisation will use the
data partitioning, data flow, workflow and data swmtency models from the
deployment specification.

The PaaSage platform will — in addition - providested, secure and privacy aware
Cross-Cloud deployments. A Cross-Cloud monitoriystesm will support monitoring
Cross-Cloud deployments. The PaaSage platfornbeidvaluated with a few selected
Cloud providers such as Amazon, Azure or Rackspace.

1. Execution Storyboard

At execution time the PaaSage platform supportshalluse cases by automatically
monitoring of the engaged Cloud Infrastructurebnia with user requirements passed
in from the Deployment Model.

eScience ERP eGovt Flight Sched

P T

DURING EXECUTION THE PERFORMANCE REFLOW

NG M DR O Tl T o e EXECUTION MONITORING OF DATA DBURING EXECLITION PARSAGE
INFRASTRUCTURE ARE CLOSELY TECHNICIANS HAVE GOOD 3 COLLECTION AND DISTRIBUTION IS MONITORS CLOUD SCALABILITY AND
MONITORED CONDUCTED ALONGSIDE ALL RSPECTS THE DATA MAPPING OF DEPLOTED

OF SCALRBILITT. APPLICATIONS

s =" .

Figure 8 Storyboard during the Execution Phase

During the execution phase in the eScience apmitdhe performance and behaviour
of the application and Cloud Infrastructure is ntorgd closely by the PaaSage
platform. If a fault occurs the platform can creagésv instances of the workflow.

The ERP application is also monitored in a simvary and effort is made to ensure
mobile devices are synchronised as they come omfiticie. Possible adaptations in
the case of large volumes of offline devices carthgecreation of more services to
increase availability for online technicians.

Application execution in the eGovernment scenasifocused on scalability to serve
all municipalities and monitoring to ensure datagnity and security. Adaptation takes
place to ensure the balance between public andtpridata processing is balance to
ensure the scalability of the Cloud.

The Airline Scheduling use case during executios &docus on the collection of
distributed data and its processing to create ceitgeiews. Monitoring is of great
importance to maintain the integrity of data anel &pplication as demands are put on
the Cloud scalability. Adaptation to maintain acscesremote datasets and security of
data is integral to the platforms management ofloeid in this scenario.

2. Execution Functionality

I. Adaptation towards the host
Stakeholder: Adapter (Upperware and Executionware)

D1.6.1 — Initial Architecture Design Page 31 of 83

The role of the adapter is to transform the cutyannning configuration into the target
configuration received from the Reasoner. In theeaaf a first time deployment, the
currently running configuration is empty. The adgs then responsible for generating
the proper commands to the Deployer which is resipée to correctly enact this
configuration on the chosen provider offeringsalko provides the Deployer with
instructions about the parameters to monitor, aelsrto adjust the running system
within the boundaries of the target configuratibar instance, if the configuration says
that up to 10 VMs can be used, then the executigine can safely scale up to 10 VMs
using whatever scalability rules that applies Fa& thosen provider.

Continuing the above example, the addition of amo®¥iM can be made by the

execution engine every time another 100 users sirgguhe system (this will be

prompted by monitored data analysis by the execwgitgine). Yet, the adapter does
not need to know about each new user enteringysters; it only needs to know when
the execution engine adds another VM to make swatthe number of VMs stays

within the deployment boundary of fewer than 10 VMsother words, the adapter
does not care about the specific adaptation prdoessgiven Cloud environment (see
below), but cares specifically about all configurat steps needed for the proper
“orchestration” of the execution.

When it is detected that the current configurai®mo longer valid, i.e., outside the
constraints set by the Reasoner as implied by thatored data, the adapter asks the
Reasoner to produce a new target configuration sabdequently adapts the running
system to this target configuration.

The Adapter takes the Deployment Model and addsviadge from sources such as
previous executions from the metadata databas€lmud monitoring framework. The
result is a set of individually deployable artefaand a set of configuration scripts to
start each artefact on the given provider to witittas been allocated.

1. Deployment

Stakeholder: Deployer (Executionware)

The actual deployment according to the specifid bbaracteristics and requirements
and the low-level execution environment (i.e. s@becof the right monitoring engine
and the right interpreter etc.) is performed byEmeployer. The Deployer is provider-
specific and only deals with the components todaled in the respective designated
environment — it has no view on the total system.

The Deployer produces the initial deployment of itiiividual components and their
execution environment. Note that the according camepts / images may still be
inactive until actually triggered

1. Execution

Stakeholder: Execution Engine & Interpreter

Execution is triggered with the first request frim business application end user with
whatever external trigger is required. This triggeexternal to PaaSage, but must be
catered for in the sense that the destination biséachable.

During execution, application requests triggered thg respective module are
converted from the PaaSage API into operationsfgpézthe respective environment

D1.6.1 — Initial Architecture Design Page 32 of 83

the component is hosted on. These operations oge faom storage access to actual
manipulation of instances.

Under best circumstances, the execution will siniplipw the work- / dataflow and
finalise its process. During execution monitoredadabout workflow / application
execution is created.

IV. Monitoring
Stakeholder: Monitor (Executionware)

For getting information about the currently runniviljls, PaaSage makes use of the
monitoring framework offered by the Cloud providef$is enables gathering status
information, such as network load, processor Idadorder to execute rule-based

actions, the PaaSage monitor can principally qaesyfurther data source, including

other monitors and/or the metadata database. Margtanay thus also supervise

invocations performed on the component and actiakesn by the execution engine.

What is actually monitored and where / how the rtavimg data is delivered is defined

by the monitoring rules and their selection by Reasoner.

The monitoring information is captured accordinghte specification (needs) of (a) the
Profiler (stored in the metadata database and gpasssncoded form to the Reasoner),
(b) the execution engine, and (c) the adapterddtor the metadata database)

V. Local Adaptation (reconfiguration)
Stakeholder: Execution Engine / Interpreter

Given certain conditions as registered by the noonguch as that the network is
overloaded, the execution engine can take adaptatitons in order to compensate for
these conditions. The engine thereby follows nelligence, other than the one
explicitly provided by a set of behavioural rulesoygded with the deployment

Configuration Model. These rules include actionshsas when to scale out, when to
scale up etc.

As a consequence of such actions, consistency rnedus maintained depending on
the (lack of) support by the respective infrastioet

The execution engine only takes actions withinréspective environment, i.e. will not
directly contribute to Cloud-bursting or Cross-Gloweployment of a single
component. Such adaptations necessitate a glatzaifrguration of the deployment.

"/R Global Adaptation (reconfiguration)
Stakeholder: Adapter, Reasoner, metadata-database

Not all reconfiguration takes place only within t@doud environment local to the
component. We can identify the following situatigashong others) where more global
adaptation is required by the PaaSage platform:

* The local resources become insufficient, meanitigeethat:
o0 More additional resources are needed (bursting);
o A different host is needed (relocation);

* Multiple connected components need to be adaptéwaame time
(Note that this can potentially be achieved usaggl execution rules);

D1.6.1 — Initial Architecture Design Page 33 of 83

* The information gathered so far indicates thatstystem is seriously
misbehaving (e.g. missing critical constraints) #rellocal adaptation does
not seem to compensate it;

* The Reasoner has found a better deployment

Such conditions should be detected by the Adapteugh complex event processing
on monitoring data available in the monitoring asfiructure (the metadata database
provides summaries and pointers to the raw datle\the Adapter detects that the
running system is outside the current configurabane obtained from the Reasoner,
it invokes the Reasoner to produce a new configuratf this new configuration is
deployable under the application invariants (chddke the simulator in the Reasoner
and Adapter), a set of configuration scripts, omredach used platform, is generated

and passed on to a platform-specific Deployer. dperation of the adapter is shown
in Figure 8.

Reasoner
Target Mew configuration
Configuration needed
Running Update
configuration Adapter ‘
Reconfiguration
scripts _ Manitoring information

‘ Running System ‘

Figure 9 The global adaptation loop

Adaptation cannot just consist of a new deploymamtfiguration without further
details. Instead it must be an adaptation scripht@ning undeploy and redeploy
instructions) in order to specify exactly how tldaptation takes place. This involves
aspects such as:

» Graceful shutdown;

* Smooth transition;

D1.6.1 — Initial Architecture Design Page 34 of 83

* Which configuration change;
* Which new instance is required (for which Cloud);
* Which instances to be destroyed;

The Adapter produces an incremental deployment #tatts with the current
deployment and changes it. Once the new configamrgind the way of achieving it)
is specified, the new deployment configurationeid fo the Deployer.

D1.6.1 — Initial Architecture Design Page 35 of 83

IV. COMPONENT DESCRIPTIONS

The previous section of the document has explaihednain functionalities, in high
level view, of the PaaSage project. We have loatgtie main functionality and how

it relates to our Use Case needs via the StoryBoémdhis next section we shift the
focus onto a more detailed view of the individuainponents that make up the PaaSage
platform.

A. IDE

The IDE component is the start point at which teeru application designer engages
with PaaSage. The IDE will be presented as an &elgug-in and will support a
variety of modelling standards such as UML for timraof applications for the PaaSage
platform. The output from Eclipse will be transkhtey the Plug-in for integration with
the interfaces which will be defined for the coments described in more detail below.

1. Cloud Modelling

PaaSage embraces modelling efforts in the MODAGIquoject [4] and we rely on
that project for CloudML input and development itlie PaaSage project. Initial work
on the architecture indicates that the cloud modglanguage required by PaaSage —
at least for configuration and the earlier phasdegfloyment - is much richer than the
CloudML being developed in MODACIouds.

CloudML allows the creation of novel models and amabdels for enterprise systems,

focusing on architectural styles for platform indedent solutions. At present it

appears that it is useable within PaaSage onlyh®radapter and last phase of the
Reasoner but not for the IDE, Profiler and muchhef Reasoner. This is because
CloudML lacks the ability to capture effectivelyf@anmation outside of the scope of the
application’s Cloud topology.

In order to improve CloudML we aim to develop gezagupport within the standard
for the expression of constraint and rules assediatith the Clouds architecture and
data management actions. This will be achievedass&ge by the development of
CAMEL which will include domain specific languagesich as CloudML from
MODACIouds.

The CAMEL standard will focus on delivering greatepture of constraints set in the
application design process. It will support the reggion of rules and integrate with
other standards for rule based decision. As patiisfintegration we are investigating
how Ontology can help support and develop the CAMEndard in the setting and
verification of rules based on system knowledg&MEL is likely to be formed from

a group of DSLs including SALOON, WS-Agreement, OWfid a rule-based language
for constraint expression and management.

D1.6.1 — Initial Architecture Design Page 36 of 83

Amazon AWS

Figure 10 CloudML

At design-time, the Cloud application developerg @ CAMEL to specify the
provisioning and Deployment Models with additiomgdut from system administrators
and data administrators. These models encompas®pbégy of the nodes of the
Cloud infrastructure, as well as the topology &f software artefacts deployed on these
nodes.

CloudML considers provisioning and Deployment Madat two levels of abstraction,
namely Cloud Provider-Independent Model (CPIM), adldud Provider-Specific
Model (CPSM).

A CPIM represents a generic provisioning and Depleyt Model that is independent

of the Cloud provider. This model consists of twaimkinds of elements, namely the
node types and the artefacts types. A node typesepts a generic virtual machine
(e.g., a virtual machine running GNU/Linux). Thigement can be parameterised by
provisioning requirements (e.g., 2 cores _ computeores, 2 GiB _ memory _ 4 GiB,

storage _ 10 GiB, location = Europe).

An artefact type represents a generic componethteodpplication (e.g., a Java servlet
of an application for document collaboration, atyetontainer, and a MongoDB
database). This element can be annotated with gleelat commands (e.qg., retrieve the
Java servlet from http://www.paasage.eu/, configilyeand run it), deployment
dependencies (e.g., the Jetty container and thegMaB database have to be deployed
before the Java servlet)) and communication chanr{elg., a Java servlet
communicates with another Java servlet through HgpeTransfer Protocol Secure
(HTTPS) on port 443.

The CPIM can be serialised using two formats, ngriied JavaScript Object Notation
(JSON) and the XML Metadata Interchange (XMl).

D1.6.1 — Initial Architecture Design Page 37 of 83

B. Profiler

The main objective of the Profiler is to look irthe list of goals and preferences (which
are set by various users), and come up with afipbtential candidate providers that
satisfy the aforementioned inputs and other addhlioconstraints like SLA and
elasticity rules. An example of goals set by thgaorsation and defined by the business
user is minimizing the response time and total,cekereas a list of preferences could
be running the user application on Amazon in Eunogéead of in Asia / USA and
deploy the database on the Private Cloud.

| IDE |

Application & Resource Model

Provisioning Architecture
Deployment
Specification Model Platform
(cPim) Maodel

5LA, Goals
Elasticity Rules

CP Generator | J—
Model-to-Solver -

ConP Rule | ConP
Description | Processor | Description

| Metadata |
database

Figure 11 Architecture of the Profiler

As shown in Figure 11, the Profiler interacts wiltle IDE in getting a list of models to
be processed by tl@onstraint Programming (CP) Generatdrhen, theCP Generator
is responsible for producing@P Descriptiorthat defines a list of input constraints for
future deployments. Finally, tHeule Processotakes this description along with other
inputs, such as SLA, elasticity rules, goals, aad-time information from the Metadata
Database, to generate a list of possible and fieaddployments (defined in a n&dw
Descriptior) that will be used by thReasoner

1. CP Generator

The CP Generator looks into several applicationr@sdurce models that are defined
in the IDE and produces@P Descriptionthat contains a list of deployment variables,
domains and constraints. It is also the resporsilaf the CP Generatoito prioritize
the constraints and variables, and resolve anylicon§ parameters from the models.

The CP Generator identifies variables, domainscamgtraints by analysing the input
application and resource models, and the deployspatification. The CP Generator

D1.6.1 — Initial Architecture Design Page 38 of 83

produces a CP Description that lists variables thiett domains constraints derived
from the input models and deployment specification.

1. Rule Processor

The Rule Processor is responsible in generatingstaof possible and feasible
deployments (defined in a ne@P Description that satisfy all the given constraints
and inputs. The Rule Processor works by procegsfiaglditional information related

to the application to complete the CP Descriptiblso verifies the CP Description
(e.g. remove redundant constraints, detect vagakbithout domain, etc.)

The Rule Processor receives as an inpuiReDescriptionfrom theCP Generator
that that defines a list of input constraints foe future deployment. These include
Elasticity Rules, preferences, goals, and SLA, @lath initial values of monitored
resources (e.g. response time, memory usage, etc.)

The Rule Processor produces a CP Description tHst af possible and feasible
deployments wrapped into the Deployment Model esged in CloudML. Moreover,
it contains resource parameters to be monitored, (@emory and disk usage).

C. Reasoner

In a nutshell the Reasoner receives applicationcantext models (from the Profiler)
in CAMEL format and outputs Deployment Models in KBBL. This process relies on
the Reasoner extracting requirements from the CAMEd. using the current state of
Cloud Infrastructure and knowledge from the metadiatta base to conduct reasoning.
The component architecture can be seen in Figure 11

| Cloud ‘
Simulator ‘

Utility function Simulator Metadata
Generator Wrapper

| Solution |
Evaluator

LA based | |

CP Solver ‘ ‘ Heuristics
allocator

Meta
Solver

‘ Solver-to-
deployment

D1.6.1 — Initial Architecture Design Page 39 of 83

Figure 12: Components that make up the Reasoner

Central to the Reasoner is the concept of Solvidre.Solvers sit at the centre of the
component and conduct the main functions in thesBeer.

1. Solvers

The role of a solver is to assign a value to aalde from the variable's domain so that
all constraints of the problem are satisfied. Aafetalues assigned to all variables of
a problem is called eonfiguration and a configuration that satisfies all the canats

is called &easible configuration

There will typically be many feasible configuratsgnand the number of feasible
configurations grows exponentially with the numbéwariables of the problem. One
would normally not be satisfied witmy feasible configuration, but rather try to find
the feasible configuration that is “best” accordingsome quality criteria, e.g. system
perceivedutility. It should be noted that the utility could be raed as measured

“goodness” of the deployed system; it could comeaasesult of a simulated

deployment; or from the evaluation of a functioegpression. In other words, the term
utility functionwill be understood indiscriminately of all thebede ways its value can

be obtained as an abstract mapping that takespas anconfiguration and returns a
value that describes the quality of the deploynaenbrding to the given configuration.

2. Meta solver

There are many different algorithms,smiversthat can be used to assign values to the
problem variables depending on the relation ambagériables as being linear or non-
linear, and the domains of the variables as intemeer the real numbers or as integers,
including binary decision variables. Theeta solvemwill select one or more solvers
appropriate for the problem, and dispatch to thileegroblem or part of the problem.

It will also receive feedback from the configuratioonstructed by the set of solvers
chosen, and may use this to change the solverdaoskdilding the next configuration

in the subsequent iteration.

Finding the optimal configuration is normally onpossible for certain restricted
problems, and in general one will have to evaleatry possible feasible configuration
in order to assess posteriorithe best configuration. This is impractical forkait the
smallest problems. In reality one will thereforeeddo run the solvers for as many
iterations as allowed by the time budget availdbtefinding a configuration. It is a
task of the meta solver to control the executiomhefindividual solvers, and stop or
pause them when a solution must be returned.

It is anticipated that the search for an improva@dtson can continue in the background
even after one has decided to go for deploymeiat @drticular configuration. In this
way one could have one or more better configurataaly should there be necessary
to adapt globally the running configuration for soreason.

3. CP Solvers

Constraint programming (CP) simply refers to a gfevariable domains and their

associated variables whose relations are definegtnms of a set of constraints. It does
not specify how and in which order these varialdes assigned values, and what
algorithms to use for finding these values. If doenains are intervals of real numbers,

D1.6.1 — Initial Architecture Design Page 40 of 83

and the constraints and the utility function areliakar, it is alinear programming
problem.Non-linear programmingroblems do not require linearity [23].

There is a plethora of CP solvers available, batmroercial ones and open source.
However, they are generally not able to operaté wibchastic variables, which are
output as a result of the variance platforms /iappbn performance measurements.
They can therefore most likely only be deployedtha sub-problem consisting of real
valued variable domains and deterministic variab{@s the positive side, they are
normally capable of findingoptimal configurations for quite large problems in
polynomial time. For deterministic variables theg discrete, special solvers from the
domain ofcombinatorial optimisatiomust be applied [24].

4, Learning Automata (LA) based allocator

When the variables become stochastic, the problets \gorse. If one had statistical
data with samples of utility function values fotaage number of runs, one could use
statistical interferencéo estimate and test hypotheses about deploymecomes for
each configuration [25], [26], [27]. One will northanot have the luxury of a huge
database of previous deployments, and it is thezefecessary to resort to methods that
are able to learn the better variable values asoteegrvations of the utility function
becomes available. Given that the variance of ttamvalue decreases with 1/sqrt(N)
for N observations, we will get better and betttineates for the mean characteristics
as we get more observations. This leaves us withaptions: We can defer making
any decision until we have a large number of oksens, or we can use methods that
are able to learn better and better as new obsangatome along. If the domains of
the variables are continuous, one could paeameter identificatiortechniques to
assign variable values [28]. However in the casdisuirete variables selecting the right
value for a variable becomes Markovian Decision Problen{29], for which
reinforcement learninglgorithms [30] can be deployed.

A special sub-set of reinforcement learning aldyoni$ called_earning Automata (LA)
[31] will be used in PaaSage. LA are characterisgdaving a firm mathematical
foundation allowing core properties like scalapind convergence to be rigorously
analysed. Furthermore, when many values are asstgrmaany variables of the same
problem, one automation can be given the task sfjamg one value. One would
thereby exploit the concept of antomata gamg32] in order to converge to a feasible
configuration, and a proposal for an LA based sdiwePaaSage can be found in [33].

Heuristics (search algorithms)Given that the sobaa be any algorithm that is able to
assign values to the variables from their domainidewespecting the constraints of the
problem, one can deploy as a solver any methodot&pé doing this assignment in a
stochastic environment, as stated byNloeFree Lunchiheorem [34]: “For all possible
performance measures, no search algorithm is lik#eranother when its performance
is averaged over all possible discrete functions”.

There are many different search algorithms avalablthe literature, and they can
broadly be classified in two groups: Those algonghaiming at finding the globally
best configuration [35], versus the algorithmststgrwith a rough first guess of a
solution and then trying iteratively to refine tkelution [36]. The latter class of
stochastic local search algorithms will be preféirePaaSage because they will at any
time be able to return the best configuration fountl that point.

D1.6.1 — Initial Architecture Design Page 41 of 83

5. Utility Function Generator

The utility function generator will use the infortitan about goals and preferences
distilled by the Profiler into the Constraint Pragrme Description. The role of the

utility function is to provide a quick alternatite simulating the deployment, or to

make the actual deployment, in order to have feddba the “goodness” of a particular

configuration. The different solvers are all, ineoway or the other, iterative and for

each iteration towards a feasible solution feedb@mtkhe usefulness of the current
configuration is needed. A utility function is tiaidnally the way to assess a proposed
deployment in self-adapting software systems [37].

Experiences [38] show that it is very hard for slygstem designer to formulate a good
utility function, and one often has to resort towaighted sum of the different
measurable goals and preferences [39] as it ierefmsia human operator to tune the
preferences and priorities of the different goalsd thereby implicitly adjusting the
weights of the utility function sum.

One will therefore necessarily need to try captyitire imprecise goals and preferences
in the utility function, and the purpose of utilifunction generator sub activity in
PaaSage is to investigate more sophisticated wiagsing this than just a weighted
sum. Given that fuzzy reasoning [40] has proverfulse making decisions under
uncertainty, fuzzy methods will be the point of dgpre for the investigations on a
more representative utility function.

Bearing in mind that the main task of the utilityn€tion is to guide the search for
solution, one has the added benefit in PaaSagetltbasame configuration can be
subjected to an evaluation by the utility functaawell as by the deployment simulator.
In this way it is also possible to obtain feedb&ckn the simulator on the quality of

the utility function itself and adjust the utilifunction accordingly. Hence, PaaSage
may in this way iteratively improve the utility fatlon making it more and more

trustworthy as a quick way to evaluate a candidatdiguration.

6. Solution Evaluator

The Solution Evaluator module aims at offering andardized function evaluation

interface to all solvers. It forwards the functitom evaluate to the Ultility Function

Generator, the Simulation Wrapper, or the Meta@attabase (MDDB) depending of

the function to evaluate. The parameters are afseodifferent depending of the actual
evaluator. For example, the Simulation Wrapper seeldt of metadata to describe the
cloud to be simulated. If fuzzy methods are undbleapture adequately the user’s
goals and preferences, we will look at other methtke statistical regression to

construct the utility function as a weighted conabion of the problem's variables
based on past execution history. An invocationht® MDDB can be triggered for

example to retrieve some historical data; henceadag¢a to describe how to evaluate
the historical data are needed (mean, averagetialumaf data to take into account,

etc.).

7. Simulator Wrapper

Simulator wrapper is a way to hide the mechanisedus obtain a feedback on a
particular configuration. The wrapper can eithartsd simulation, or it can evaluate
the utility function. The feedback provided by theapper to the solver is supposed to
be consistent in the sense that a better configuragceives a better feedback value.

D1.6.1 — Initial Architecture Design Page 42 of 83

Thus the module aims at wrapping a Cloud simulstich as SimGrid [41]. It converts
application and resource descriptions of PaaSatge danCloud simulator specific
format. It will also convert the results of a simtibn into the needed PaaSage model.
The simulator may be able to interact with the 8plto test resource allocation
decisionsj.e. mapping but also What-If questions.

The simulator generates traces that have to bslétad as simulation feedbacks to the
Solver. The traces contain the life-cycle of a# tlesources used and the cost per unit
of time of running the application. The traces magtall the requests arrival. It must
also contain the time to process a request atte&rciind the Round Trip Time for each
request.

The simulator needs a simulation request for argapmplication on the whole (or a part
of the) platform composed of possibly multiple GlsuAccordingly, it must be able to
interact with the meta-data database for retriewifigrmation about the platform such
as the description of the resourcdes, Physical Machines and their inter-connections,
the different billing schemes, monitoring infornoati about different resources,
availability of instance types, virtual storage andtwork resources, etc. This
interconnection will take the form of a translab@mtween the platform model used by
the meta-data database and the one used by thetsmu

Another interconnection will be between the appicmamodel and the simulator. A

translator will transform the application modelth@ simulator one. Furthermore, the
application model may be enriched with informatioantained in the metadata
database. Indeed, the simulator needs to havesatcgese information to run accurate
simulations based on real-world observation ancldger provided models.

8. Constraint Logic Programming

An alternative way of determining suitable Deploym®&lodels given an application
model and several Cloud resource models is tovioldogic-based matchmaking and
optimization process. In this approach, Cloud istinacture descriptions are translated
into logic-based knowledge in the form of predickets. Similarly, the application
model (along with any other deployment requiremems goals) is expressed in the
form of predicate or constraint goals. Then, matchmakingvéxen application
requirements and infrastructure offerings is penied based on a set of constraint
satisfaction rulesand optimization objectives leading to a set okeghdeployment
configurations/solutions.

Rules can either be resource-related (low-level) referring to application
characteristics (high-level). For instance, a lewel rule could provision a virtual
machine with low disk throughput to an applicatieith low storage requirements. A
high-level rule, on the other hand, could satisgpastraint that two tasks be deployed
geographically close to each other by deployingntien VMs offered by the same
Cloud provider. Rules can also be used to transtugh-level requirements to low-
level ones to enable their direct matching withpessive low-level (Cloud resource)
capabilities, leading to more accurate matchmaéimdjoptimization results.

Rules can be expressed by deployment expertsigeddrom learning processes based
on deployment history. The deployment history dan e inspected and processed so
as to produce new facts, e.g., providing some padace insights from previous
practical experience. Thus, an important charastterof the rule base, as well as the
fact base, is that they should both be dynamicclkiyiadapting to any changes

D1.6.1 — Initial Architecture Design Page 43 of 83

implemented by infrastructure providers or new dgpient-related knowledge that
may be acquired.

The above described matchmaking and optimizationgss can be implemented using
a constraint logic programming (CLP) approach,izedl using Prolog and Constraint
Handling Rules (CHR). The approach can simultanigownsider multiple
optimization objectives, even under over-constr@inequirements. It also has the
ability to simultaneously support more complex iegments and preferences provided
in the form of disjunctions of sets of constrairitsthe general case, matchmaking can
yield multiple deployment solutions, which can laaked by exploiting the Analytic
Hierarchy Process (AHP) to prioritize optimizaticmiteria and normalize their values
based on particular utility functions that can wallthe slight violation of particular
optimization objectives to cater for solution fdmlgty.

9. Solver to Deployer

This module translates the output of a solvertnéoDeployment Model representation.
It also participates to lowering the dependencfesolver to the remaining of PaaSage.
This module is strongly linked to the Model-to-Saivnodule.

D. Adapter

The adapter has two main responsibilities. Fitdg responsible for transforming the
currently running application configuration inteettarget configuration in an efficient
and consistent way. Second, it is responsible &fopming high-level application

management, which involves monitoring and adaptogponents deployed on
multiple cloud providers. The adapter is composédhcee components: the plan
generator, the adaptation manager and the applicatintroller.

Reconfiguration

Rules = actions
Adaptation
Manager

Target
Configuration
(CPSM, elasticity
rules) _

Plan

Application
Generator

Controller

Actions Current

Configuration o

Monitoring info

Metadata ‘

‘ ExecutionWare ‘
database B

Figure 13 Architecture of the Adaptor

The Adapter receives information on the target igppbn configuration of the
Deployment model expressed in CAMEL. The Adaptocpsses this model to produce
a CAMEL Execution model that contains deploymersadigtions, including software
artefacts and rules.

D1.6.1 — Initial Architecture Design Page 44 of 83

1. Plan Generator

The plan generator compares the target configurgieeployment Model) which it
receives from the Reasoner with the running configon and generates an efficient
and correct reconfiguration plan, containing aneoed set of reconfiguration
commands. . This is expressed in CAMEL and assmtidomain specific languages
and known as the Execution Model.

The Plan Generator sends the Execution Model té\taptation Manager for further
checking. If any inconsistencies are present ia thodel it is sent back to the Plan
Generator for reconfigurations taking into accotlnat feedback. During its operation
the Plan Generator uses knowledge / policy fromMIDB in the construction of its
models.

2. Adaptation Manager

The adaptation manager is responsible for driviiegreconfiguration process across
one to many Clouds. First, it validates the reagunfation plan by estimating and
comparing reconfiguration costs and benefits. éf pkan is valid, the manager applies
the plan by sending deployment descriptions toDbployer and global rules to the
application controller. The manager also minimisesnsistencies in the presence of
reconfiguration failures. If the plan is not valitie manager asks the Reasoner for a
new target application configuration. After applyithe plan, the manager updates the
running configuration.

3. Application Controller

The application controller implements high-levelmagement policies that need global
knowledge or involve multiple cloud providers, swshpolicies involving cross-cloud
migrations. The controller collects information thre application execution, evaluates
global rules, and triggers reconfiguration commands

E. Metadata Database

The metadata database (MDDB) follows the architeaiepicted irfError! Reference
source not found. The MDDB layer comprises the metadata model amal t
implementation of the distributed physical storehigh includes federation
capabilities); the Analytics layer, providing suppéor a variety of analytics over
historical metadata; and interfaces to the ProffR@asoner, Executionware, and Social
network infrastructure components. The MDDB is nidanlong-term preservation of
information. It is designed to associate mutatiaith a wall-clock timestamp and to
trace the identity of the sources of mutationghits shares principles with archival
systems, temporal databases, and provenance systems

1. Metadata database layer

D1.6.1 — Initial Architecture Design Page 45 of 83

Analytics modules
[\

Vi

» Avg. response Reasoner
Analytlcs Iayer time for software (Wps)
artifact X over
time [t1, t2]
« PaaSage models
Information domains . Bsers. profiles
« Cloud providers . . ser groups
* Applications Social * Discussion forums
« Deployment models network | ¢ Statistics on user needs
_—+ Data * Submitted contributions
! * Requirements and goals * Review activities
MI?B layer % Zohe
/ \ « Execution histories .
/ \ Wl g <):‘\> Execution
~ \ organizations ware
7 (WP5)
- @ L
Physical store
Federation

Physical store

Figure 14: Metadata database architecture

The MDDB model (whose schema in standard E/R rwtats shown inError!
Reference source not found. describes the applications and their deployment
adopting principles from specifications such asudML, PIM4Cloud, and TOSCA
and extending them for the unique needs of PaaBageore detail, the meta-model is
meant to capture

» The description of an application;
» Application requirements and goals;

* Runtime aspects of its execution histories sucmasitoring information at
different levels, invocations of rules and policiesd quality of service
assessments.

* Rules and policies;

» Provisioned resources;

* Cloud provider characteristics;
» Users, roles, and organizations.

Next we provide a detailed presentation of the MDiD®rmation organized along
these thematic areas.

D1.6.1 — Initial Architecture Design Page 46 of 83

event_relation
affinity_goal .
event #id
L name ——————0€ (O first_event
? O src_artifact 7| Jname e ——— < first_event_relation
e i dest_artifact A £ condition”} O second_event A
S —————0¢ O policy A action second_event_relation ¢
role organization |
= 2 name operator
<A name /| Prame |l Qisla A pattern
P rame O itslo
el DIQGI'HZBUCIFV:‘ = e J‘ —
— O rale / : y
Y oRf L O event_instance
<la | slo_assessment it sla elasticity._rule rule_trigger . i
 _ BO—w ot PO———1—3 0 event_name

Did 1 id { Iid v 9 name PO * rule A——— = importance
targeted_cost | O execution_context,”| matric © policy Ao) event_instance 7| source_component
targeted_location | | . Pl A metric_units® | evaluate_frequency © action_instance 7| fired_an
targeted_revenue if A—A——0< assessment threshold | 0 event A fired_on | ended_an

it sl A © platform A © pattem A execution_context

BOt— = it_slo £ action A low_level_actians
| — ———1
o i artifact damipe | cloud_provider
- oL id W 22 id P A name

wid * name) = cpu_class locations

4 name depends_artifact etz obiect platioon.as. sendce memory_class £ organization”
version £ app_id 2 id i i name 4 fo_class public

A Duser /] replication api network_class
partitioning £ cloud_provider A
i = consistency elasticity_ | - ;{
¥ t cd_vm_type

execution_context b i T T B P J,s

@ A / |

Pans . 8 . modeindonce. LSATMS 40 o proider ;

* start_time | O artifactid A ofigtion, - name: | © ci_vm_type 1 shisicalnode
end_time deployed_info Pid k Sadvmid A dlassified_on | Pid]
info 1 config ovf_image " evalusted_on | ip
total_cast 3 ip location | O provider A

Jo———. created_on) hardware | location
- destroyed_on benchmark_rate hardware 1 |
— 1 ot cost_per_hour ¢
1y w =
o) _; resource_monitar)
X R A b N e]
R R hogi: L% depioyment_association | 0N e d
2 e TR R | AR) execution_ context.
B - object_association id] resaurce_coupling_ monitar W odehnce;]
5 2~ name = 2 execution_context 7| = . £ data_object A s =)

Pid 17 execution_context.”’ Pid O artifact_instance 7| ~ name 0 physical_node 7 RS- asEaciaton

© app_id) artifact_instance 7| £ data_object A © configuration | ’ execution_context A |[Qitsio A 2l

Dit_slo | Dt sle A £ producer A £ on_node_instance 7| D sre Py resource_class £ vm

£ execution_context,”| metric £ consumer A © on_artifact_instance /| | dest A metric £ physical_node
metric | value 10 execution_context.”)) on_paas A reported_an value started_on
value | reported_on started_on started_on metric reported_on ended_on
rw_data | raw_dsta ended_an ended_on raw_data raw_dsta

Figure 15: Metadata database schema

Application descriptions

The MDDB stores application descriptions expresgedloudML. It additionally
extends those descriptions to express lifecycle agament concepts such as the
evolution of the application and its deploymentsraume. A version of an application
is rooted at amPPLICATION object and comprises softwas8TIFACT and ARTIFACT
INSTANCE objects, which correspond to generic and spedafitware component
descriptions respectively. ARRTIFACT INSTANCE can be deployed either on another
ARTIFACT INSTANCE Or on aNODE INSTANCE representing a VM resource. The
deployment relationship is gemporal associatiorrepresented by @EPLOYMENT
ASSOCIATION object (with a start and end time). In additiord&scriptions of software
components, the data used by them and their cleaisicis (replication, partitioning,
consistency) are expressed DATA OBJECT classes. Data objects are connected to
software artifacts via temporaBJECT ASSOCIATIONclasses (a data object is typically
connected to its producer and consumer componéditggct associations model data
flow within application descriptions.

Application requirements and goals

Application requirements and goals are expressedrage-level objectives (SLOs) or
other types of constraints on the deployment anbliétravior of applications. In the
MDDB schema, requirements and goals are represebyedLA (service-level
agreement)ir SLO, and AFFINITY GOAL classessLA expresses non-IT (business level)

D1.6.1 — Initial Architecture Design Page 47 of 83

constraints such as targeted overall cost, locabi@ierences/restrictions, etsLA
expresses the fact that a top-level constraint isapan agreement to support the
required constraints in addition to expressing dnedive. IT SLO expresses
requirements on an IT metric, such as throughpdtrasponse time. The sLoO class
describes the metric and its units, as well aslésered threshold. It is connected to the
software artifact on whose operations the objecmalies. AnT SLO may or may not
be translated into a service level agreement dudegloyment (for example, the
expressed objectives may be taken into accounhdutard guarantees provided on
them). AFFINITY GOAL expresses dependencies between artifacts, suckheas
requirement to place two software components phigior logically nearby or far
apart (e.g., place components so that they faibpeddently —i.e., in different
availability zones- and/or so that their communaafath is optimized —i.e., within
the same communication domain).

Runtime aspects and application execution histories

The application requirements are connected to mong information represented by
APPLICATION MONITOR, ARTIFACT MONITOR, RESOURCE MONITOR and RESOURCE
COUPLING MONITOR Each monitor relates to the metric specifiedhim ¢orresponding
service-level objective and to the type of objextbe monitored (i.e., application,
artifact, resource). It is important to note thae MDDB monitoring objects contain
highly aggregated information rather than raw nmannig data; the latter is managed
separately by a time-series database. All monigoifiormation related to a specific
execution of an application is connected t&aBRCUTION CONTEXTObject (featuring a
start and end time of the execution as well asra@bgregated information such as cost
of the run). Th&XECUTION CONTEXTIS also connected to one or mer® ASSESSMENT
objects (evaluations of the degree to which an $ta8 achieved) and deployment
information for the application indicating whichtigact instances were deployed on
which artifact or node instances and what was g@ifiguration. Note that the validity
intervals (i.e., time duration from start to enahet) of an execution and a deployment
association can differ—in other words, a particudaployment may participate in
several executions.

Rules and policies

The MDDB meta-model expresses rules and policiasexample of which is the
ELASTICITY RULE that dictates an adaptation action in responseviolation of ant
SLO to which the rule applies. Rules are associatetth @i specific event, which
comprises a condition (e.g., a metric violatingttbreshold) and an action. Event and
action manifestations during execution are expreSSEVENT INSTANCE and RULE
TRIGGER Objects connected to the corresponding executioregt of an application.
More general rules relating to the occurrence of tgpe of event can cover general
cases of application adaptation. Additionally, M®DB supports the definition of
event relations (represented by th&NT RELATION class) constructed as expressions
connecting events or relations to other eventdtwgraelations via logic operators. An
event pattern is defined as an event relationishasponsible for triggering a rule. The
MDDB is planned to adopt and interoperate with l@ghed standards in this space,
such as the Esper event-condition-action (ECA) anie event processing language.

Provisioned resources

EachNoODE INSTANCE (a CloudML concept referring to a deployment coreg is of a
particularcD vMm TYPE andcl vM TYPE, wherecD stands foCloud dependerdndci for

D1.6.1 — Initial Architecture Design Page 48 of 83

Cloud independenfA cD vMm TYPE describes a real-world VM type offered by a Cloud
provider (such as for example Amazon EC2 ml.smak specifically configured
Flexiant FCO VM).ci vM TYPES are the result of (periodic) classifications dduci-
specific VM types into Cloud agnostic resource st&s performed by the MDDB
runtime Classification is based on a systematiccherark-driven methodology to
produce a vector of performance metrics (CPU, mgmamd I/O) that characterize
each supported VM, followed by statistical clustgr{using for example the k-means
algorithm) to categorize VM into Cloud-agnosticsdasuch asmMALL, MEDIUM, and
LARGE.

Cloud provider characteristics

Cloud providers are described indliD PROVIDERODbjects, including information such
as data center locations and whether the Cloudigeovs of private or public type.
Organizational information about Cloud providersngsdeled separately (as described
below). Their offered higher-level programming fdatins (such as Java 2 Enterprise
Edition, etc.) are described PLATFORM AS SERVICE objects; modelling of such
platforms is expected to draw information from tetaprojects in this space, such as
Cloud4SOA. To model Private Clouds where PaaSageheae visibility in the
underlying physical infrastructure, timeiYSICAL NODE and VM-TO-PM ASSOCIATION
classes describe characteristics of physical mashje.g., CPU architecture, number
of cores, etc.) and temporal mappings between ghlyshachines and the VMs
deployed on them over time.

Users, roles, organizations

The users, roles, and organizations associated thétlrest of the modeled entities
describe information on the users and other stdielsof particular applications, the
roles that they play, the organization to whichytbelong, and the organization Cloud
providers correspond to. This information is expegsin theUSERS ORGANIZATION,
androLEsclasses (designed along the lines of the ideasloleed in the development
of the CERIF data mod!

The physical MDDB store will be designed for scdlgband high availability through
the use of parallel database technologies and ipk&sc such as horizontal data
partitioning across distributed server nodes. Esitenuse of the Eclipse Modelling
Framework (EMF) is an incentive to leverage Eclifsmnected Data Objects (CDO)
technology for its support for disconnected operatand a variety of distribution
mechanisms depending on the connectivity level betnthe distributed CDO stores
(where, e.g., some might be close to the partrgegpr component locations to allow
for fast interconnection and transferring of infation). The size of the MDDB will
depend on how it is deployed into or across ordema and what application domain
it belongs too. For example the MDDB for a colladiore eScience set of active
applications would contain more history and datantla single instance used less
frequently with fewer users in a private organizati

An important concern to address is the integrabbriPaaSage metadata databases
originating from different installations of the Fege system. We expect that cases
where the metadata databases to be integratedt@omorm to exactly the same DB
schema (due to variations in the version of Paa8sge in different installations), will
be common. A solution that we intend to exploisuth cases is the use of Ontology

2 http://eurocris.org/Index.php?page=CERIFrelease$&t=

D1.6.1 — Initial Architecture Design Page 49 of 83

as a common schema to bridge the gap between thdatabases. In particular, we
first define a common Ontology to cover the conseptd relationships involved in the
databases to be integrated. Then, we map eachadatafiodel/schema to that of the
Ontology. In this way, any DB-specific schema dépancies are resolved by the
mapping and hidden to the PaaSage user. The useead to know only the Ontology
schema in order to pose (SPARQL assuming the antatoencoded in RDF) queries
to the system and thus any information that isedgiftly represented in the databases
will be presented to the user in a unique, unifaray. The mechanisms supporting this
mapping guarantee that the relational data of #taldhse can not only be transformed
to semantic data but also updates on the relatdtatalare propagated to the respective
semantic knowledge base. The architecture of thesiened model (with all the
components involved, including the Analytics Mamages visualized inError!
Reference source not found.

In terms of technology support, we propose the afsthe standardized RDB2RDF
language proposed by W3C, called R2RMhttg://www.w3.0rg/TR/r2rml), a
powerful and expressive language already supptyeskveral Semantic Knowledge
Bases / Triple Stores (along with the required Bymization functionality), such as
Virtuoso, D2RQ and Oracle’s Spatial and Graph RR&ntic Graph. The above
process additionally covers the case where database heterogeneous with
completely different schemas (such as for examphenvan external contributor
collects data that is modeled differently). This teppen for instance, when a user of
the Social Network desires to offer his/her datathe PaaSage community.

Analytics Manager

Linked Data Engine

Knowledge SPARQL /
ﬁ {quenes/“pdates

R2RML Synchronization R2RML i
Mapping Mechanism Mapping

PaaSage User
.

I I DB Updates
Physical Physical
Store Store

Figure 16: Integration of PaaSage metadata database

2. Analytics Layer

The analytics layer will be responsible for perfargwarious types of analytics (e.qg.,
computing statistical measures over existing m&trawer historical metadata for the
whole application or its components through expigitthe Analytics Manager
component. Apart from exploiting the monitored dettared in the MDDB (in the form
of the values obtained for some metrics), this coment will also interface with the

D1.6.1 — Initial Architecture Design Page 50 of 83

Monitoring Engine of the Executionware in ordeotwain additional information, such
as raw measurement data as well as aggregatedhetion.

The analytics layer will also comprise a Reasoritngine that will be able to derive
new knowledge by exploiting the content of MDDB th& execution of rules. The new
knowledge will be stored in a structured way (coymg with an Ontology schema)
within a knowledge base (KB) and be continuousfgrimed through the execution of
the rules over the MDDB and the KB itself. Througk derivation of new knowledge,
the PaaSage system will be able to: (a) performpleiqueries over the KB, answerable
in a shorter time compared to direct complex queywf the MDDB; and (b) exploit
the knowledge derived in order to provide exten@ed., always suggest trustful cloud
providers) or added-value functionality (e.g., usdes to enable the automated
matching of application components/artifacts to udiservices)Error! Reference
source not found.depicts the architecture of the MDDB with the K8&campanying
one or more MDDB physical stores. A difference kenError! Reference source
not found. andError! Reference source not found.is that whereas in the former the
Analytics Manager is shown to draw its input frdme KB (in other words, the KB has
already performed significant mining of the MDDH®),the latter it is shown to have
the ability to explore directly the two MDDB phyaicstores. In general, both options
should be provided for flexibility. Knowledge, whet generated by the Reasoning
Engine or by the Analytics Manager, is stored m kKmowledge Base.

Reasoning Engine

Knowledge
_ Base

1 1
1 1

Analytics Manager

Figure 17: PaaSage knowledge base and reasoning ey

3. Social network infrastructure

The PaaSage social network aims to engage the stpene community (both users
and developers) into the PaaSage model-basedmtfaifiolependent code development
model. The open source community will benefit byelaging previously-captured
historical knowledge (such as, which module / carabon of modules achieves the
desired results on which platform(s)), via costnéfit feedback at development time,
deployment suggestions, best practices, etc. Ttialswetworking platform will also

D1.6.1 — Initial Architecture Design Page 51 of 83

motive the open-source community to contribute kiedge from independent
experience, complementing the information discadéngthe PaaSage Upperware.

The social network will offer various features te users, such asfarum through
which users can communicate and exchange informatid agraphical user interface
through which various user tasks can be perfornkedclonnecting with other similar
users, posing questions to the MDDB, and contnifgukinowledge and metadata from
personal experience. To this end, the infrastrecsupporting this social network and
its goals should be able to store information, sacPaaSage models, user information
in models, statistics on user needs and submitiattibutions as well as support the
proper functioning of the forum and the graphicsginterface.

The architecture of the Social Network infrastruetis depicted ifError! Reference
source not found. A standard user can: (a) contribute to the socetivork by
describing his/her expertise and areas of intefagplications, Clouds, etc.) and
providing his/her own metadata database content,(la) participate and learn by
joining groups of like-minded users, participatingliscussions and posing questions.
A user should be allowed to specify a number ofwamgs of interest (e.g.,
“applications involving a JEE application servedanSQL database”, “anything over
the Flexiant Cloud”, “anything using the Amazon $ia Java Beans platform*) and
receive notification when a contribution comeshattrelates to any of them.

Other users can engage in discussions with a sthodar. An expert user is enlisted
to translate a standard user’s questions to dagaeeyies (possibly after a number of
direct queries) or to validate his/her contribuido the knowledge base. An expert
user will also be able to guide standard userautiirahe content contribution process
(there should be an auditing phase involved torerthe validity of the data). A special
type of user, the GitHub/devops user, is partitulargeted due to bringing together
the well-established GitHub developer communityhwtihe Cloud deployment and
service engineering communities. With increasirgglitr a standard user can be elected
an expert user and be allowed to join the ranksupgr users.

Standard user

e, & Expert user
% g
% &
% % & .
=) < IS
3 X
+ PaaSage models
contr\bute « Users, profiles
Devops » Usergroups
cycle + Discussion forums
+ Statistics on user needs
Iearn « Submitted contributions
GitHub (standard) user Metadata database Social network o Review activities
database
@ AEF&IIO’H\ @
Metadata database Metadata database

Figure 18: The architecture of the Social Networknfrastructure

D1.6.1 — Initial Architecture Design Page 52 of 83

4, Trust and Identity Management

Central to the integration of the PaaSage metaadiathird party data is the need to
authenticate and authorise contributors. PaaSaggodu of an Identification,
Authentication and Authorisation mechanism for cbotors is linked to the
establishment of an Identity Management mechanBynusing identity information
we plan to associate data with specific contritait@nich will enable the establishment
of identity rooted reputation and trust models acbaontributed data in PaaSage.

m

PaaSage Portal
L3 L 4
PaaSage IDP
L
‘ PEP >

‘ Bt ‘ === Data flow

— |D flow

Figure 19 Identity Management in PaaSage

Figure 15 illustrates and initial design for themtity management in PaaSage. It is
expected that users both platform users and ttartlgs will authenticate through a

PaaSage portal. This could be a web service imteffar automated calls or a specific
web front end for users.

Here the participants can login via a federateds@.example users could use SAML?2
tokens from other federated PaaSage platforms @sept OpenlD credentials for
checking by the portal. Once authenticated by tmeapthe user is issued a PaaSage
identity token for the session that they are autbated for. This token will specify the
user’s privileges in PaaSage.

As data is sent for storage or retrieval from theDB checks on the identity token of
the user is performed at the Policy EnforcemenhtPGEP). The PEP checks policy
associated with the data in the MDDB against peys in the user token. The checking
is performed by the Policy Decision Point (PDP) etthihen issues an accept or deny
response to the PEP. Based on the response tbe antthe MDDB is either permitted
or rejected.

D1.6.1 — Initial Architecture Design Page 53 of 83

The security policies in the framework are to bndel and could directly relate to the

reputation / trust model of identities in the pbath. Policy would be applied to restrict

access to specific data for certain groups of ueerensure that specific users are
prevented from adding types of data to the MDDB.

F. Executionware

The main purpose of the modules and artefacts gedvby the Executionware are to
enable the execution of the individual componesgs\ices) of the PaaSage application
in a fashion that the overarching goals and comssraare met. The Executionware
thereby forms the lowest level of support in tha®age system, meaning that it has no
understanding of the whole application — both rmte of the application description,
and the constraints / requirements. Instead, theelitionware concentrates primarily
on the individual components and how they neecetadapted in order to meéeir
part of the requirements and boundary conditions.

The Executionware directly builds on functionalityfered by the various Cloud
platforms and by intermediate software layers sashmiddleware frameworks. In
particular, the first prototype of the Executioneawill base on the Cloudifyand
jCloud¢ frameworks.

The Executionware gets low level deployment rutesnfthe Upperware. These rules
enable the Executionware to (a) (re)deploy theousriapplication components across
diverse cloud platforms and (b) to perform low-lexgaptation operations depending
on the current execution conditions. In order tdgren such adaptation operations the
Executionware relies on monitoring information gatd from the run-time system of

the application components. It further may make afesvents issued by other

components when they perform their individual adaphs.

Summarising, the Executionware only gathers theipé information from (local)
monitoring and assesses it against a set of giwdes rto perform an according
operation. It is thereby the task of the Upperwareensure that the application
components (services) are chosen to be deployad environment that supports the
necessary actions in terms of (1) communicatiohaffaptation operations, and (3)
monitoring. The operations that the Executionwaiagpally has to support and to
realise relate to the primary concepts of Cloudiés heans that the Executionware has
to enact operations as listed in the following. ©perations are triggered by sequences
of events matching rules. Again, the respectivesuhust come from a higher-level
instance, in particular, the Upperware:

* Moving (relocating) the VM;

» Creating new instances of a service (scale out);
* Replicating status / data;

» Destroying instances (scale in);

» Scaling an instance up and down (e.g. increasagdfithe database);

3 http://www.cloudifysource.org
4 http://jclouds.incubator.apache.org/

D1.6.1 — Initial Architecture Design Page 54 of 83

The Executionware has to reside close to the coemgdhat it supervises in order to
ensure that the necessary information is availabtethat the necessary actions can be
performed. “Close” thereby meaning that it shoultkast reside within the same host
environment (same Cloud infrastructure) and posdigteven on the same resource.
For instance, monitoring has to be co-located whh Executionware, as only the
Executionware is aware of the actual mechanismgged by the platform running a
particular component instance.

Adaptation ‘ . Userfother
Mar module

=}

Target Configuration
CPsM, elasticity rules)
{ Y ! access

‘ Adapter ‘

Interceptor/
Wrapper

Component
Instance

N ‘ { per:luudfmadulej

configuration
— | calls

Deployer ' instantiate
rm— " ‘ Execution

Engine

stafus
information cloud

specific
calls

additional
rules

4 S

Metadata
database

‘ Reasoner

pull
data

Application
Controller

' ' | status

| information

cloud

‘ Monitor
system

Figure 20 Initial Architecture of the Executionware and its interfaces

The overall architecture of the components of tkeddtionware is shown in Figure
20. We discuss them in the succeeding sections.

1. Component Instance

The component instance is the code part (applicaibonponent/artefact/instance) that
is treated as a single (black) box by the PaaSggjera. This is an individual part of
an entire workflow application. Even though it mag/split up or a composition itself,
once deployed, it is considered a single instance.

As the component instance is treated as a blackthexnterfaces it provides to users
or other parts of the application can vary and gemerally unknown to the
Executionware.

2. Component Wrapper/Message Interceptor

When the interface of the Component Instance isvkndhe Component Wrapper
exposes a virtual interface to the Component It&taso that the invocations and
messages calls reach the Component Wrapper bedorg kelayed to the Component
Instance. This way, the Executionware can getfulitrol over the Component Instance

D1.6.1 — Initial Architecture Design Page 55 of 83

even when the environment does not allow such dnaed control. Wrapping
Component Instances also allows retrieving more-fjrained monitoring information.
The Component Wrapper may perform any actions an rtlfessage (including
measuring, routing, extending etc.) prior to rehgyit. Even though the Component
Wrapper will generally be deployed together with omponent Wrapper this is not
absolutely necessary. In case only information abmessages is required, the
Component Wrapper may be realised as a messagg prox

The interface of the Wrapper is identical to thieiface provided by the Component
Instance. In addition, the Wrapper may contain aagament interface to retrieve
monitoring data and to configure its functionaldynamically. The Component
Wrapper is by far the most sophisticated comporienthe Executionware. Its

specification will be further detailed at latergea of the project.

3. Deployer

The Deployer executes the necessary steps to ddmayomponent instance(s) along
with its/their execution environment and configuttee rules according to the
specification of the Deployment Model. The Deploigespecific for a dedicated cloud
environment, i.e. there will be different implematmn of a Deployer for each cloud
environment as long as the differences cannot beaatted by some cloud middleware
such as cloudify/jgroups. The Deployer ensurestti@torrect number of component
instances is deployed and further enables the oramitof system parameters for these
instances as requested by the deployment configardh addition to the component
instances the Deployer further configures and depén Enforcement Engine that is
responsible for micro-managing the set componestantes it has deployed.

The Deployer receives from the Adapter deploymefdrmation for one specific
application component targeting on specific clouatfprm. Beside the component
code, the deployment information further specities number of instances to start,
security configurations, as well as routing confagion, if required. It also contains
information about which data to monitor for all ¢teeed component instances.

4. Enforcement Engine

The Enforcement Engine is the management entith@fExecutionware. It captures
the monitoring stream from all instances and mat¢hagainst the specification of the
local scalability rules. When a rule matches, tmfoEEement Engine delegates the
action further to the Interpreter. The rules engised in the Enforcement Engine is
similar to a policy engine and effectively only wates a set of event-condition-action
triples. The engine has no intelligence beyondrtites provided with deployment of
the module instance/artefact and the execution coemts. It may contain a set of
hard-coded rules that “always” apply, though — sastfgeneral knowledge”. In this
case, these rules should principally be capabl®ewig over-written. Apart from
processing the log stream itself, the Executionif@gnay relay the monitoring
information to the meta-data database and to trepted, if necessary. In that case, it
will ensure a normalisation of the monitored datatisat data from different cloud
systems has the same format and scale when stodpr@cessed outside the
Executionware. If further evolution of PaaSage nexgucompression or pre-processing
of monitoring data, the Execution Engine is thétiglace to add it.

D1.6.1 — Initial Architecture Design Page 56 of 83

The Enforcement Engine receives a set of scalghbilites from the Deployer that
contain a set of event-condition-action triplesbtoevaluated against the monitoring
stream.

5. Monitor(s)

Monitors gather the relevant data directly at thenponent instances and relay the data
further to the Enforcement Engine (and from therdhe meta-data database). The
monitoring data serves for taking decisions ondherall application deployment as
required by Adapter and Reasoner. In general, tiauhe will be a slim wrapper around
the monitoring capabilities provided by the cloddtfprm and cloud infrastructure.
Accordingly, every infrastructure may have its omrplementation(s) of the monitor.
In the remainder of this section we describe aibigied monitoring architecture for
multi-tier applications deployed on multi-clouds.

The monitor does not receive any input. It outpotsitored data in a platform-specific
format.

Figure 21depicts a framework for multi-cloud monitoring aadaptation of service-
based applications (see [5] for a more detaileasitipn). The framework focuses on
monitoring infrastructures that operate in a cleggr manner.

Cloud Provider 1 Cloud Provider 2
f services platforms v Ms\ f services platforms vV M;"x\
e ' Y
A N i 4 LN
@ = R]& =
Monitoring Monitoring
Components Components
/4ents vents
@ ync sync
get| Analytics Analytlcs
TSDB TSDB Manager
ey
{ {HDFs pub @F@E@! { HDFs /-

l Monitor Manager Monitor Manager

Execution

Execution
Adapt
K apter / Adapter /
Multi-Cloud

Adaptation Manager

Figure 21: Multi-Cloud monitoring and adaptation of Service-based Applications

In a multi-cloud setting, service-based applicati@mne deployed on various Clouds
based on the capabilities of the respective Cldatiqums. By considering that various
layers are involved in the deployment and executbra cloud-based application,
monitoring should be performed at all layers, itlee SaaS, PaaS, and laaS. The main
monitoring functionality is encapsulated by the Monng which retrieves monitoring

5 “Towards Cross-layer monitoring and adaptation of Multi-Cloud Service-based
Applications”, ESOCC 2013, Malaga, Spain

D1.6.1 — Initial Architecture Design Page 57 of 83

information, stores it a time-series database (TS B reports events of interest (such
as detected service-level violations) via a puldishscribe mechanism to Adaptation
Engine instances.

Per-Cloud, federated TSDBs are used to provideigtens event storage of time-
stamped events. They additionally perform rollupg(aggregated metrics such as
average, max, min) for user-specified intervalsvakiety of commercial and open
source TSDBs can be used to handle time stampeotsevie terms of possible
technological realisations of the framework, a TS&3Ppecially designed for distributed
systems with high scalability requirements would desuitable candidate among
possible choices (the open source OpenTSARrominent candidate).

A publish/subscribe mechanism handles transferamgmonitored events and TSDB
rollups to an Adaptation Engine. Different adamtatengine instances may be
deployed to distribute adaptation load across egfitins/Clouds, where each engine is
interested only in relevant events and rollups. Qussibility for communicating events
and rollups between TSDB and an Adaptation Engmeoiuse a pub/sub event
notification service. In terms of promising techogiks in that front, Sierfds one
choice that is expressive enough to capture altagpijate event information via an
extensible data model without sacrificing scalépiknd performance during event
delivery.

Monitored events from within each Cloud are dirddtea local TSDB instance, which
can use distributed non-relational key-value stecenology (such as Apache HB3se
to organize the event time-series. HI3F8 distributed file system replicating data
across all Cloud providers, handles time seriesagéo To achieve high performance
during event collection, each Cloud's local replgapdated eagerly; remote replicas
are updated in a relaxed (asynchronous) mannedsRea performed from local copies
when available. The monitor manager includes theclapnization and publishing
mechanisms on top of TSDB.

6. Interpreter

The Interpreter is the interface to operations badaviour modification on a per-
component-per-cloud platform basis. Its task i$grering the actions triggered by the
small-scale scalability rules. Since the rule lagrimay differ from the API of the
infrastructure, this means that the respectiveoaaieeds to be interpreted (translated)
into a set of host-specific invocations. Generatlye Interpreter will be tightly
integrated with the Enforcement Engine, but mudtiekecution Engines may share a
single Interpreter. The interpreter is triggeredtbg Enforcement Engine with the
action that is to be executed and it in turn tramss it into a sequence of operations
that can actually be executed by the hosting enment. Accordingly, like the Monitor
and the Execution Engine, every platform/infrasice may have to have its own
implementation of the interpreter.

6 http://opentsdb.net/

7 http://www.inf.usi.ch/carzaniga/siena
8 http://hbase.apache.org

9 http://hadoop.apache.org

D1.6.1 — Initial Architecture Design Page 58 of 83

The Interpreter receives an action to execute aschcale up component X’ together
with all data and configuration information require execute the action. This may
include the component code, required monitoringrimiation and wiring data.

D1.6.1 — Initial Architecture Design Page 59 of 83

V. OPEN ISSUES AND FUTURE WORK

This document is the first description of the PagSachitecture developed during year
1 of the project. Little implementation and useecadegration has taken place by this
stage and is scheduled to properly start in yeardirthe project. This work will lead
to more requirements and potential changes in coemtodescriptions and numbers.
The current document describes our direction eklrand records our initial work and
collaboration.

Central to the architecture is the use of modeigic@lly, our models are reliant on

innovation provided by the MODACIouds project iretform of CloudML. PaaSage
is focused on both guiding and channelling thisoiration into our application

demands. In support of these models we are alstifgiag domain specific languages
to be used alongside CloudML within the CAMEL. A fproject progresses and it is
expected that CloudML will be extended to suppacteasing functionality (especially
in the early configuration and deployment lifecypleases) as the project progresses.

As PaaSage is implemented effort will be made ernritegration of the platform with
sources of third party data. These will includeigooetworks and other online
communities. Part of this process will be the depeient of a PaaSage community to
support the exchange of knowledge between PaaSagkementations. Such a
community and data integration plan also dependb®development of a Trust fabric
in the project based on factors such as reputa@her work in this domain will
involve engagement with existing work to share mldata particularly in the Open
Data community and research projects such as Erigage

Infrastructure monitoring particularly cross lewgtween SaaS, PaaS, laaS is a focus
of work for the next year. This development is needrder for PaaSage to develop
Executionware and knowledge based services. Thevimir of services and platforms
has to be both monitored and captured and crosserefed. Thus, the creation of
services in the platform to gather and classifg thata is a significant piece of future
work.

Finally the changes in components and models Ha@adtential to change how we
view the Cloud lifecycle with respect to PaaSagd & main components and
architectural layers. The current architecturatistapresents the direction of travel we
currently have in terms of planning development englementation. However, it is

possible that the architecture could evolve toudel extra functionality or reflect

changes in focus on how PaaSage relates to thel @othe project develops.

D1.6.1 — Initial Architecture Design Page 60 of 83

VI. CONCLUSION

The architecture presented in this document igehbelt of the first year collaboration
between the industrial and scientific / academuchmécal experts in the PaaSage
project. The document provides the core base oohathie platform will be extended
and for those innovations we intend to deliver ethithe Cloud Community and our
industrial partners. It is expected that new fesguwill arise through this joint work
and experimentation with our use cases.

Within the next year we will expand our requirenseint respect to the application of
the PaaSage platform in our use cases. This wdrlalso feed into the MODACIouds
project and the development of CloudML to suit filmections required in the project.

Building on the current component design and irgtegn in this document will be the
major focus of the next year in the PaaSage projeoextra requirements emerge from
use cases, and improved functionality in CloudMpriesented, our PaaSage platform
will evolve and interaction between the functioasset to increase in terms of detail
and functionality.

The major effort in year 2 will be in the developrhef the PaaSage platform using
spiral and agile development methods. A first redeia expected in month 18 leading
to an early prototype in month 21 of the projeavBlopment of the PaaSage platform
will continue throughout the project.

D1.6.1 — Initial Architecture Design Page 61 of 83

VII. ANNEX 1 REQUIREMENTS TABLE

Table 1: overview over the requirements identifiedn D1.6.1

Requirement Number and Short Description

R-1 NonFunctionalCriteriaAnalysed

The non-functional criteria must be analysed farheapplication component that
to be deployed in the cloud. Key non-functionaluiegments include availability
performance, scalability and security.

R-2 ParallelisationCodeAnalysis

The platform could provide code parallelisationdzh®n an analysis of the cod
Parallelised code could then be deployed on mu#icmachines or HPC clouds.

R-3 ApplicationDependenciesldentified

The platform must analyse the application compbdependencies using t
software-architecture information. Knowledge of eegencies is required fg
reasoning about deployments.

is

e.

R-4 ColocationOfVMDefined

The components that need to be co-located or loliséd to different VMs should b
known.

e

R-5 LegacyApplicationsDeployed

A framework for analysing and modelling legaemd cloud applications

required in order to understand their delivenyodels and find integration

solutions

S

R-6 RequiredCloudTypeKnown

The required Deployment Model, i.e. public, privatenybrid cloud platform coul
be specified.

j -

R-7 ProbabilityOfGoodFuturePerformanceKnown

PaaSage should provide alternative execution gdlased on the probability of goc
future performance.

nad

R-8 DeploymentLocationPreferencesSpecified

The preferences for location of deployment unitsuth be specified

R-9 PreferredDataPlacementLocationDefined

The preferences for placement of data based orasddocation can be defined
the customer.

D1.6.1 — Initial Architecture Design Page 62 of 83

R-10 ApropriateVMInstanceSizeTypeKnown

The appropriate VM instance size and type mustrizsvk.

R-11 PhysicalEnvironmentsMappedToPlatform

Logical environments, e.g. test or developmentremment, should be mapped py

the platform to physical Cloud Environments.

R-12 RequiredComponentLatenciesKnown

The different latencies required by the applicattomponents should be know
Latencies are used to make decisions on deploynamtsplacements of VM o
physical machines.

R-13 TransientWorflowsSupported

‘Transient workflow' should be supported. This nsetimat everything a usdoes
is persistent and available on whatever cliefdheeworks on. When a user moy
e.g. from the desktop browser to a mobile clieatshe expects to see the same
after login to the same application.

R-14 MinCostForMaxPerformanceOfWorkflow

Workflow deployments should be optimised: Minimidee leasing cost whil
maximizing the contribution to reducing the overatirkflow execution.

n.

=]

es
Hata

D

R-15 AccessFromMultipleDevicesSupported

Users must be able to access the cloud based afpplidrom different devices.

Users have different roles (that can changer time), different knowledge abo
scheduling insights (e.g. expert schedulerssupporting staff) and also differe
environments where they work. A scheduler canweagk in his office using a full
fledged power client or he/she can be in a meetmgneeds just read-only acces
the data over a mobile device

R-15 InteroperabilityBetweenApplicationDefined

It should be possible to improve interoperabiligtieen applications, at least for

applications of the same application suite

R-17 CrossCloudCommunicationSupported

Cloud deployments (Services) must be ablecaexmunicate seamlessly acrd
different cloud-based applications

SS

R-18 SeamlessMultipleCloudIntegrationSupported

Integration of cross cloud applications should iygp®rted. It should be possible
support a process where a workflow and User Interfa run in a private cloud, b
it reuses public data/Open Data-databases,isaimdegrated with locally installe
archiving and accounting systems for a municipality

Ut

R-19 CloudServicelntegratedWithCustomerApplicatons

D1.6.1 — Initial Architecture Design Page 63 of 83

It should be possible for existing applicationshndt large local installed base |to

integrate these with a cloud offering deliveringrgtardized processes where t
process is run in the cloud, but closely integraigith the business applicatiof
installed at each individual customer.

—

R-20 CrossCloudAccessControlintegrated

The platform must provide methods to ensure aco@sisol across datasources

R-21 EndToEndSecurityGuaranteed

Security concerns must be covered at alletirmoving from a private cloyd

e.g. into a public cloud (even for parts of theteyy must be possible in a sec
and reliable way.

R-22 CrossCloudDatalntegrityAndAuthenticity

The integrity and authenticity of data should bargnteed across clouds.

R-23 EndToEndDatalntegrityGuaranteed

Data integrity must be guaranteed end to end.

R-24 ServicesAvailableGlobally

Deployed services should be available globally hign same level of QoS

R-25 HighAvailabilityOfServices

he
S

Access to external interfaces is a vital part fochs deployments. Data can pe

exported and imported using a standard file forarat data can be sent to oth
departments or to partners. High availability iportant.

R-26 OperationallntegrityGuaranteed

Data must be constantly updated from multiple sesitwut operational integrity of

the data must be maintained.

R-27 ComponentScalabilityDefined

The components that need to scale must be spedfedell as by how much an
when to ensure the e.g. availability and respoinse tequirements

R-28 OtherScalabilityDefined

Scalability other than elasticity must also be wkedi, e.g. defining how mugh

memory could be allocated to an application.

R-29 ElasticityDefined

It should be possible to specify the elasticity aodlability of applications acros
datacenters, and across business processes oyeathe

R-30 ApplicationLoadDefined

The expected application load for an applicatiorstine defined

D1.6.1 — Initial Architecture Design Page 64 of 83

d

S

R-31 SmallAndLargeCustomersServed

Deployed systems should be available every tda customers around the globe,
ranging from small to large organisations and usiiffigrent business models.

R-32 DataVolumeSpecified

Expected data volumes must be specified

R-33 CrossCloudDataFlowModelled

It should be possible to model processes and dataficross cloud and local
solutions

R-34 TestEnvironmentStrictlySeparatedFromOperaional Application

Test environments should be as close as possiltleetoeal application, but stil
strictly separated; just another instance in tbedt!

R-35 TestEnvironmentsEasilySetUp

It should be possible to easily setup different tasvironments for different test
scenarios (e.g. RfC tests, exploration of new lssirscenarios, integration tests etc.)

R-36 HybridCloudDeploymentSupported

D

Hybrid cloud models should be supported with somises running in privat
clouds and other services running in public/partheuds

R-37 GradualMigrationToCloudSupported

It should be possible to gradualy migrate an appba to the cloud: moving to the
cloud will contain trial and error experiences wapplications are gradually shifted
from locally installed software to gradually moteud based models

R-38 MigrationFromTestEnvironmentSupported

Configuring and migrating an application to a newisonment is a long and error
prone process. These migration steps needs to dmutexi in a test environment
beforehand.

R-39 RequiredCloudForEachComponentkKnown

The appropriate public, private or hybrid fdan should be identified for each
component.

R-40 ServerDeployedinCustomerPrivateCloud

It should be possible to deploy database and apticapon server(s) in a private
cloud or or in customer data centers.

R-41 ServerDeployedinPrivateCloud

It should be possible to deploy servers in in &gig cloud, and not only on external
public/partner clouds.

D1.6.1 — Initial Architecture Design Page 65 of 83

R-42 CloudProvidersknown

A list of available cloud providers should be masgThe type of eactloud
providers should be captured, e.g. Enter@Baftware Bus as a service

R-43 NearOptimalDeploymentCalculated

The deployments that are calculated do not hav®etoptimal, but should be ne
optimal.

ar

R-44 TargetDeploymentEnvMappedToCloudProviders

The required target environment should be mappetigaarget cloud provider
This mapping needs to be managed acrosdetiieyment lifecycle.

R-45 ReputationOfCloudProvidersTakenIntoAccount

The reputation of available cloud providers shdadananaged and it should be ba
on past performance.

ed

U

R-46 ImprovedDistributionOfLoad

The application load should be distributed acrbssctoud resources.

R-47 CostTimeTradeoffsTakenIntoAccount

Different types of trade-offs should be taken imimcount. They should incluc
Cost/time trade-offs and use of private/publicuds (private may be preferred
available — e.g. security may demand that hagdlertain data cannot be remov
from the Private cloud).

e
if
ed

R-48 PriorityOfRequestTakenIntoAccount

The urgency and priority of cloud deployment regsisbould be taken into accou

R-49 CloudEnabledDataManagement

It should be possible to deploy on database clolioks . database technology used i

a cloud environment needs to be a different onpickdike the CAP theorem, ACII
vs. BEST, the shared-nothing approach etc. nemdde¢ addressed in su
application architecture, designed for the cloud.

R-50 ExternalDataAccessible

It should be possible to easily access other ITesys within a company and outside

of the company from the cloud based applicatiomel zones should be taken if
account when deploying an application in mudtiplouds, especially when tl
application must be accessible globally from anywhe the world.

ne

R-51 CloudServicelntegratedWithCustomerApplicaions

It should & possible for existing applications with a latgeal installed base t
integrate these with a cloud offering deliverstgndardized processes where
process is run in the cloud, but closely integratgith the business applicatiof
installed at each individual customer

the
S

—

D1.6.1 — Initial Architecture Design Page 66 of 83

R-52 ElasticityDefined

Elasticity and scalability across datacenters, asrdss business processes ovel the
year should be specified

R-53 HighAvailabilityOfServices

It should be possible to other high availabilitpuwdl based services. Access|to
external interfaces is a vital part for such depients. Data can be exported and
imported using a standard file format and data bansent to other departme
or to partners.

R-54 PayPerUseAccountingModel

A cross cloud pay-per-use model should be usedver8emodels should he
investigated such as pay per use, pay as you pay&ne time access fee, or a mix
of other models. The issue of aggregation of paymeodel mustbe addresse
when several providers are involved.

R-55 CostFunctionKnown

The aggregate cost function of a cross cloud depéoy should be known to the
customers so that they can estimate costs basedferent load scenario.

R-56 DeploymentSelected

The human analyst must be able to select a depluyfrem several deployment
scenarios and to easily understand the tradeofigclea the different deployments.

R-57 FullPortabilityMaintained

Full portability of the cross cloud deployments s guaranteed

R-58 MinCloudAdministrativeOverhead

Access to resources should be easy and mininaidministrative overhead

R-59 AvailabilityOfComponentsMonitored

Availability of deployed components must be morethr

R-60 CloudNetworkOptimisationsSupported

Communication performance depends on the netwarkexdtion into the cloud. The
new architecture should use cloud specific netvemtkmizations

R-61 ResponseTimesMonitored

The response time of deployed components must Inéaoned

R-62 RelocationBasedOnUserExperience

It should be possible to relocate deployed sesvérel data based on user experignce

D1.6.1 — Initial Architecture Design Page 67 of 83

R-63 RelocationbasedonNetworkExperience

Relocation of services and data based on netwqkrence

R-64 AdaptationGuidedByPolicies

Adaptation, which is an automatic process, showddghided by policies; fg
instance should we halt and migrate some Mblsnother cloud provider, (
just continue running sub-optimally?

DI

R-65 CloudBurstingSupported

Cloud bursting should be possible from a privateidishould be supported.

R-66 DeploymentsReconfigured

During execution, there is real-time checkingetiner the performance is asy
expect (via updates to the MD-DB). Several optiwhen SLA is violated, prioritisg
alternative resources. If performance drops beloseptable levels in the SLA — H3
maybe check point and reconfigure

ou

It

R-67 InstancesRestarted

VM instances should be restarted when faults occur

R-68 IntegratedCrossCloudDeploymentManagement

Framework for «<SOA/Cloud» management should keegralbbon Dependencies

R-69 DeploymentReportFinalised

After execution has been completed a scenario clm#e report on overa
performance will need to be lodged with the MD-DB

D1.6.1 — Initial Architecture Design Page 68 of 83

VIII. ANNEX 2 GLOSSARY OF TERMS

A. Cloud Related Concepts

Advertising-based pricing model —-A pricing model whereby services are offered ta@uers at low or no cost,
with the service provider being compensated by didezs whose ads are delivered to the consumagalith the
service.

Amazon EC2 —Amazon’s Elastic Compute Cloud Web service, whiclvioles resizable computing capacity in the
cloud so developers can enjoy great scalabilitypfolding applications.

Amazon S3 -Amazon Simple Storage Services — Amazon'’s clouthg®service.

Billing and service usage metering -You can be billed for resources as you use therns Jdy-as-you-go model
means usage is metered and you pay only for whatgosume.

CDN —Content delivery network — A system consisting ofitiple computers that contain copies of data, which
are located in different places on the networklEmts can access the copy closest to them.

Cloud — A metaphor for a global network, first used in refece to the telephone network and now commonlg use
to represent the Internet.

Cloud Application — a software application that is never installed docal machine — it's always accessed over
the Internet. The “top” layer of the Cloud Pyramitiere “applications” are run and interacted with &iaveb-
browser. Cloud Applications are tightly controllégaving little room for modification. Examples inde: Gmail

or SalesForce.com.

Cloud Arcs — short for cloud architectures. Designs for safevapplications that can be accessed and usethever
Internet. (Cloud-chitecture is just too hard torpmonce.)

Cloud as a service (CaaS) a cloud computing service that has been opepéato a platform that others can build
upon.

Cloud Bridge — running an application in such a way that itmponents are integrated within multiple cloud
environments (which could be any combination oéiinal/private and external/public clouds).

Cloud Broker — An entity that creates and maintains relationshijls multiple cloud service providers. It acts as
a liaison between cloud services customers andldetvice providers, selecting the best providee&zh customer
and monitoring the services.

Cloudburst - what happens when your cloud has an outage origeboeach and your data is unavailable. The
term cloudburst is being use in two meanings, megat and positive:
Cloudburst (negative} The failure of a cloud computing environment daghe inability to handle a spike in
demand.

Cloudburst (positive): The dynamic deployment of a software applicatioat runs on internal organizational
compute resources to a public cloud to address a ikesp in demand.
Cloudcenter— A datacenter in the “cloud” utilizing standatossed virtualized components as a datacenter-like
infrastructure; example: a large company, suchraaon, that rents its infrastructure.

Cloud client — computing device for cloud computing. Updatetsiom of thin client.

Cloud Computing — A computing capability that provides an abstoacbetween the computing resource and its
underlying technical architecture (e.g., servermagie, networks), enabling convenient, on-demataark access

to a shared pool of configurable computing resautbat can be rapidly provisioned and released wmithimal

D1.6.1 — Initial Architecture Design Page 69 of 83

management effort or service provider interactioftiis definition states that clouds have five etaén
characteristics: on-demand self-service, broad ostvaccess, resource pooling, rapid elasticity, emehsured
service. Narrowly speaking, cloud computing is rdliserver computing that abstract the details ef shrver
away;one requests a service (resource), not afigpssmiver (machine)Cloud computing enables Infrastructure as
a Service (laaS), Platform as a Service (PaaS)Safidvare as a Service (SaaS). Cloud computing meseats
infrastructure, applications, and business prosesar be delivered to y@s a serviceover the Internet (or your
own network).
Cloud Enabler — A general term that refers to organizationsi¢siy vendors) who are not cloud providers per se,
but make available technology, such as cloudwheg,gnables cloud computing. Vendor that providebriology

or service that enables a client or other vendtake advantage of cloud computing.

Cloud envy— used to describe a vendor who jumps on the cbmmdputing bandwagon by rebranding existing
services.

Cloud governance and compliance Governance defines who's responsible for what drel golicies and
procedures that your people or groups need toviol@loud governance requires governing your owrastfucture
as well as infrastructure that you don't totallyntol. Cloud governance has two key components: nstateding
compliance and risk and business performance goals.

Cloud Hosting — A type of internet hosting where the client Esasirtualized, dynamically scalable infrastructure
on an as-needed basis. Users frequently have tlieechf operating system and other infrastructuramonents.
Typically cloud hosting is self-service, billed ltyuor monthly, and controlled via a web interface API.
Cloud Infrastructure — The “bottom” layer—or foundation—of the Cloud &wid is the delivery of computer
infrastructure through paravirtualization. Thislimtes servers, networks and other hardware appi&adelivered
as either Infrastructure Web Services or “cloudersit Full control of the infrastructure is provitat this level.
Examples include GoGrid or Amazon Web Services.

Cloud Manageability - You need a consistent view across both on-prenaisdscloud-based environments. This
includes managing the assets provisioning as wel@quality of service (QOS) you're receivingifrgour service
provider.

Cloud OS- also known as platform-as-a-service (PaaS). T@iaokgle Chrome.

Cloud Operating System -A computer operating system that is specially desigo run in a provider’'s datacenter
and be delivered to the user over the Internehotteer network. Windows Azure is an example ofoaidloperating
system or “cloud layer” that runs on Windows Se2@08. The term is also sometimes used to refelotal-based
client operating systems such as Google’'s Chrome OS.

Cloud-Oriented Architecture (COA) — A term coined by Jeff Barr at Amazon Web Servicesléscribe an
architecture where applications act as servicekarcloud and serve other applications in the clendronment.
An architecture for IT infrastructure and softwapplications that is optimized for use in cloud pering
environments. The term is not yet in wide use, ands the case for the term “cloud computing” fistblere is no
common or generally accepted definition or specifiescription of a cloud-oriented architecture.
Cloud Platform — The “middle” layer of the Cloud Pyramid which pides a computing platform or framework
(e.g., .NET, Ruby on Rails, or Python) as a servicgtack. Control is limited to that of the platfoonframework,

but not at a lower level (server infrastructuredafples include: Google AppEngine or Microsoft Aezur

D1.6.1 — Initial Architecture Design Page 70 of 83

Cloud Portability — The ability to move applications (and often thessociated data) across cloud computing
environments from different cloud providers, aslveed across private or internal cloud and publicerternal
clouds.

Cloud provider — A company that provides cloud-based platform, stftecture, application, or storage services to
other organizations and/or individuals, usuallyddee.

Cloud Providers — Computing service providers whose product/platfés based on virtualization of computing
resources and a utiliy-based payment model.

Cloud Pyramid — A visual representation of Cloud Computing layenere differing segments are broken out by
functionality. Simplified version includes: Infragtture, Platform and Application layers.

Cloud Security - The same security principles that apply to on-@i@puting apply to cloud computing security.
Cloud Servers— Virtualized servers running Windows or Linux ogting systems that are instantiated via a web
interface or API. Cloud Servers behave in the saar@er as physical ones and can be controlledadramistrator

or root level, depending on the server type and €ldasting provider.

Cloud Service Architecture (CSA) -A term coined by Jeff Barr, chief evangelist at A&m@a Web Services. The
term describes an architecture in which applicatiamd application components act as services orldhd, which
serve other applications within the same cloud remvinent.
Cloud Sourcing— outsourcing storage or taking advantage of sotfmer type of cloud service.

Cloud Standards -A standard is an agreed-upon approach for doingetiing. Cloud standards ensure
interoperability, so you can take tools, applicasiovirtual images, and more, and use them in @nattoud
environment without having to do any rework. Poiltgblets you take one application or instancemning on one
vendor’s implementation and deploy it on anotherdee’s implementation.

Cloud Storage —A service that allows customers to save data msfearing it over the Internet or another network
to an offsite storage system maintained by a thandy.

Cloud Storm — connecting multiple cloud computing environme®tso called cloud network.

Cloudstorming — The act of connecting multiple cloud computingieonments.

Cloudware — A general term referring to a variety of softejatypically at the infrastructure level, that eiesb
building, deploying, running or managing applicaian a cloud computing environment.

Cloudwashing— slapping the word “cloud” on products and sesigou already have.

Cluster — A group of linked computers that work togetherfahéy were a single computer, for high availabilit
and/or load balancinGonsumption-based pricing model -A pricing model whereby the service provider charge
its customers based on the amount of the serviceubtomer consumes, rather than a time-baseBdeexample,

a cloud storage provider might charge per gigabfieformation stored. See alSubscription-based pricing model.
Customer self-service -A feature that allows customers to provision, manamd terminate services themselves,
without involving the service provider, via a Wettdrface or programmatic calls to service APIs.

Data in the cloud -Managing data in the cloud requires data secanty privacy, including controls for moving
data from point A to point B. It also includes maimagiata storage and the resources for large-datdeprocessing.
Detection and forensics Separating legitimate from illegitimate activity.

Disruptive technology —A term used in the business world to describe iations that improve products or services

in unexpected ways and change both the way thirgd@ne and the market. Cloud computing is ofteerred to

D1.6.1 — Initial Architecture Design Page 71 of 83

as a disruptive technology because it has the patdn completely change the way IT services amcpred,
deployed, and maintained.

Elasticity and scalability —The cloud is elastic, meaning that resource aliomatan get bigger or smaller
depending on demand. Elasticity enables scalapilitfjch means that the cloud can scale upwarddak plemand
and downward for lighter demand. Scalability alseams that an application can scale when adding aserwhen
application requirements change.

Elastic computing —The ability to dynamically provision and de-prowisi processing, memory, and storage
resources to meet demands of peak usage withowyingmabout capacity planning and engineering fakpusage.
Encryption - Coding to protect your information assEtgernal cloud —Public or private cloud services that are
provided by a third party outside the organizatidrloud computing environment that is externahte boundaries
of the organization.

Funnel cloud— discussion about cloud computing that goes raamdl round but never turns into action (never
“touches the ground”)

Google App Engine -A service that enables developers to create andWeb applications on Google’s
infrastructure and share their applications viaag-@s-you-go, consumption-based plan with no setgts or
recurring fees.

Google Apps -Google’s SaaS offering that includes an office piivity suite, email, and document sharing, as
well as Gmail, Google Talk for instant messagingyo@e Calendar and Google Docs, spreadsheets, and
presentations.

HaaS — Hardware as a servigeseelaas.

Hosted application —An Internet-based or Web-based application softyeaogram that runs on a remote server
and can be accessed via an Internet-connected P alient. See als8aaS.

Hybrid cloud — A networking environment that includes multipledgtated internal and/or external providers.
Hybrid clouds combine aspects of both public andape clouds.

IBM Smart Business —IBM’s cloud solutions, which include IBM Smart Busise$est Cloud, IBM Smart
Analytics Cloud, IBM Smart Business Storage Cloud, IBMormation Archive, IBM Lotus Live, and IBM
LotusLive iNotes.

Identity management -Managing personal identity information so thatesscto computer resources, applications,
data, and services is controlled properly.

Infrastructure as a Service (laaS)- Cloud infrastructure services or “Infrastructasea Service (laaS)” delivers
computer infrastructure, typically a platform vatization environment, as a service. Rather thaohasing servers,
software, data center space or network equipméents instead buy those resources as a fully outsal service.
The service is typically billed on a utility comjng basis and amount of resources consumed (amefdhe the
cost) will typically reflect the level of activityt is an evolution of web hosting and virtual @ie server offerings.
Internal cloud — A type of private cloud whose services are provibgdan IT department to those in its own
organization.

Mashup —A Web-based application that combines data andfwtionality from multiple sources.

Microsoft Azure — Microsoft cloud services that provide the platfaama service (see PaaS), allowing developers

to create cloud applications and services.

D1.6.1 — Initial Architecture Design Page 72 of 83

Middleware — Software that sits between applications and opegatystems, consisting of a set of services that
enable interoperability in support of distributedhatectures by passing data between applicat®ostor example,
the data in one database can be accessed throotireadatabas@n-demand service -A model by which a
customer can purchase cloud services as needadsfance, if customers need to utilize additiswalers for the
duration of a project, they can do so and then 8exk to the previous level after the project impteted.

Pay as you go -A cost model for cloud services that encompass#sdudscription-based and consumption-based
models, in contrast to traditional IT cost modeitttequires up-front capital expenditures for hamdwand software.
Personal cloud— synonymous with something called MiFi, a per$avieeless router. It takes a mobile wireless
data signal and translates it to wi-fi. It's promeed ME-fi, as in “the personal cloud belongs - but if you're
nice I'll let you connect.”

Platform as a Service (PaaS) Platform as a service — Cloud platform services,rabe the computing platform
(operating system and associated services) isailetivas a service over the Internet by the provitter Paas layer
offers black-box services with which developers baiid applications on top of the compute infrastane. This
might include developer tools that are offered asraice to build services, or data access andadsgeservices, or
billing services.

Private clouds— Private clousvirtualized cloud data centergi@siour company’s firewall. It may also be a prévat
space dedicated to your company within a cloudigess data center. An internal cloud behind thgamization’s
firewall. The company’s IT department provides waftes and hardware as a service to its customeis—people
who work for the company. Vendors love the wordsvate cloud.”

Public cloud —Services offered over the public Internet and aldd@ to anyone who wants to purchase the service.
Roaming workloads- the backend product of cloudcenters.

SaaS Software as a Service Cloud application services, whereby applicationsdmiesered over the Internet by
the provider, so that the applications don't havée purchased, installed, and run on the custsnoermputers.
SaasS providers were previously referred to as Agiplication service providers). In the SaaS lajles, service
provider hosts the software so you don’t need $taihit, manage it, or buy hardware for it. Allydave to do is
connect and use it. SaaS Examples include custataionship management as a service.

Salesforce.com -An online SaaS company that is best known for deildg customer relationship management
(CRM) software to organisations over the Internet.

Self-service provisioning -Cloud customers can provision cloud services witlgoiig through a lengthy process.
You request an amount of computing, storage, soffwarocess, or more from the service providere’fou use
these resources, they can be automatically depooed.

Service migration —The act of moving from one cloud service or vendaanother.

Service provider —The company or organization that provides a pulbliprivate cloud service.

Service level agreemenSLA - A contractual agreement by which a service praviidines the level of service,
responsibilities, priorities, and guarantees reiggrdvailability, performance, and other aspecthefservice.
Standardized interfaces -Cloud services should have standardized APIs, whiokiide instructions on how two
application or data sources can communicate with ether. A standardized interface lets the custonuee easily
link cloud services together.

Subscription-based pricing model -A pricing model that lets customers pay a fee tothe service for a particular

time period, often used for SaaS services. SeeGissumption-based pricing model.

D1.6.1 — Initial Architecture Design Page 73 of 83

Use Case -1 software and systems engineering, a use casés|[a.]ist of steps, typically defining interact®on
between a role (known in UML as an "actor") andystesm, to achieve a goal. The actor can be a huonam

external system. In systems engineering, use easassed at a higher level than within softwardrexeying, often
representing missions or stakeholder goals. Theilddtrequirements may then be captured in SysMlasor

contractual statementgttp://en.wikipedia.org/wiki/Usecase

Utility computing — Online computing or storage sold as a metered coniatlservice in a way similar to a public
utility

Vendor lock-in —Dependency on the particular cloud vendor andaiffy moving from one cloud vendor to
another due to lack of standardized protocols, AfPdta structures (schema), and service models.

Vertical cloud — A cloud computing environment that is optimized @se in a particular industry, such as health
care or financial services.

Virtual Private Cloud (VPC) — A term coined by Reuven Cohen, CEO and founder of Ehorihe term describes
a concept that is similar to, and derived from,fdmailiar concept of a Virtual Private Network (VPNut applied
to cloud computing. It is the notion of turning ahfic cloud into a virtual private cloud, partictliain terms of
security and the ability to create a VPC acrosspmmrents that are both within the cloud and extexndl e.g., the
Amazon VPC that allows Amazon EC2 to connect to Igganfrastructure on an IPsec VPN.
Virtual private data center — Resources grouped according to specific businescigs.

Windows Live Services -Microsoft's cloud-based consumer applications, Wwhieclude Windows Live Malil,
Windows Live Photo Gallery, Windows Live Calendarindbws Live Events, Windows Live Skydrive, Windows

Live Spaces, Windows Live Messenger, Windows Livét&¥, and Windows Live for Mobile.

Note: Most terms taken frofttp://cloudtimes.org/glossary/

B. PaaSage Concepts

Adapter - The Adapter deploys the candidate to one or mlatéorms. If it is predicted
that the SLA will not be met and there are suffitieesources, it deploys the next
candidate. If possible within available resourdéshould trigger the Reasoner to
generate new candidates within parameter consiraint

Application Controller - The application controller implements high-level
management policies that need global knowledgevaive multiple cloud providers,
such as policies involving cross-cloud migrations

Application Designer / Developer User The Application designer / developer is a
user who engages with the IDE to deploy an apjtioab the Cloud.

Business Application User -The business application user is the domain expeot
engages with the Cloud to fulfil business goalxhsan example is a Flight Scheduler
who uses PaaSage to better route flights.

Component Instance - The component instance is the code part (apphicati
component/artefact/instance) that is treated amgles(black) box by the PaaSage
system.

Component Wrapper - Invocations and messages calls reach the Comp@rapiper
before being relayed to the Component Instances Why, the Executionware can get

D1.6.1 — Initial Architecture Design Page 74 of 83

full control over the Component Instance even wtienenvironment does not allow
such fine-grained control.

Cloud Modelling Language (Cloud ML) — A domain specific language used to
describe Cloud topologies.

Execution Engine - The Enforcement Engine is the management entityhef
Executionware. It captures the monitoring streaomfrall instances and matches it
against the specification of the local scalabilities

Executionware - The Executionware manages the execution of depaynto
platforms within encoded a) local platform ruleged b) constraints from the Reasoner.
The Executionware also monitors the execution aiggdrs the adapter (and hence
Reasoner) if necessary.

Integrated Development Environment (IDE) -The IDE is the user point of contact
in PaaSage presenting the main Cloud Modelling stdotked to the Profiler
components.

Metadata Database(MDDB)- The MDDB comprises the metadata model and the
implementation of the distributed physical storehigh includes federation
capabilities); the Analytics layer, providing supipéor a variety of analytics over
historical metadata; and interfaces to the ProfiR@asoner, Executionware, and Social
network infrastructure components. The MDDB is ntédanlong-term preservation of
information. It is designed to associate mutatiaith a wall-clock timestamp and to
trace the identity of the sources of mutations.

Monitors - Monitors gather the relevant data directly at¢bhmponent instances and
relay the data further to the Enforcement Engirmed (kom there to the meta-data
database).

Organisational User —Sets policies such as data protection that thenbssiuser and
application designer/developer must abide by wisnguPaaSage.

Cloud Application Modelling Execution Language (CAMEL) - A language used to
group domain specific languages in PaaSage intoeMagsed to link lifecycle phases
and express requirements during Cloud Configuraib@ployment and Execution.

Profiler - The Profiler characterises the application, uialgsis of source code if
available and with some input from developer/sysadm

-It will need a module to characterise the platferimcl. querying platforms to update
PaaSage database and further input from develgpadsin.

-Also requires a module to characterise data cheniatics/dependencies.

-As well as some module to characterise user mefers, permissions and
responsibilities.

Reasoner -The Reasoner provides ranked deployment candidfiates=1 platform.
This is based on:

- Application profile

-SLA parameters from this instantiation of the &gilon supplied by the end user
-Platform characterisation

-User profile

D1.6.1 — Initial Architecture Design Page 75 of 83

-Data profile

Upperware - Upperware is a collection of tools and componéntassist the porting
of models at design-time.

D1.6.1 — Initial Architecture Design Page 76 of 83

IX. ANNEX3: THE CLOUD OFFERINGS
SURVEYED

D1.6.1 — Initial Architecture Design Page 77 of 83

X. ANNEX3: THE CLOUD OFFERINGS SURVEYED

USA-based laaS providers

Amazon AWS:http://aws.amazon.com

AT&T Cloud Architect:http://cloudarchitect.att.com

Bit Refinery:http://bitrefinery.com

GoGrid: http://www.gogrid.com/

Google Compute Enginéttps://cloud.google.com/products/compute-engine

Hosting.comhttp://www.hosting.com

HP Cloud:https://www.hpcloud.com

IBM SmartCloud Enterprisénttp://www.ibm.com/services/us/en/cloud-enterprise/index.html

Microsoft Windows Azurehttp://www.windowsazure.com/en-us

Nephoscalehttp://www.nephoscale.com

OpSourcehttp://www.opsource.net

RackSpacehttp://www.rackspace.com

ReliaCloud:http://www.reliacloud.com/

Softlayer:http://www.softlayer.com/

Terramark:http://www.terremark.com/

Europe-based laaS providers
Aruba Cloud:http://www.cloud.it

CloudSigmahttp://www.cloudsigma.com

Gandi:https://lwww.gandi.net/

GreenQloudhttp://greengloud.com/

Lunacloud:http://www.lunacloud.com/

Memset:http://www.memset.com/

laaS benchmarks

CloudHarmonyhttp://cloudharmony.com/

CloudSleuthhttps://cloudsleuth.net/

laaS stacks

CloudStackhttp://incubator.apache.org/cloudstack/

Eucalyptushttp://www.eucalyptus.com/

OpenNebulahttp://opennebula.org/

OpenStackhttp://www.openstack.org/

VMWare vCloud:http://www.vmware.com/products/datacenter-virtualization/vcloud-

suite/overview.html

PaaS stacks

Apprendahttp://apprenda.com/

Cloud Foundryhttp://www.cloudfoundry.org/

Cloudify: http://www.cloudifysource.org/

Iron Foundry:http://www.ironfoundry.org/

OpenShift:https://openshift.redhat.com/

Stackatohttp://www.activestate.com/stackato/

D1.6.1 — Initial Architecture Design

Page 78 of 83

laaS/Paas libraries

Deltacloud:http://deltacloud.apache.org/

fog: http://fog.io/
jclouds:http://www.jclouds.org/

Libcloud: http://libcloud.apache.org/

Simple Cloudhttp://simplecloud.org/

PaaS frameworks

Aeolus:http://www.aeolusproject.org/

Chef: http://www.opscode.com/chef/

Cloud Foundryhttp://www.cloudfoundry.org/

Cloudify: http://www.cloudifysource.org/

Cloudyn:http://www.cloudyn.com/

CopperEgghttp://copperegg.com/

enStratushttp://www.enstratus.com/

Flexiant:http://www.flexiant.com/

Juju: https://juju.ubuntu.com/

RightScalehttps://www.rightscale.com/
Scalr:http://scalr.com/
Cloud standards

DMTF Cloud Management Standardidtp://dmtf.org/standards/cloud

OASIS Cloud Application Management for Platforms (@R): https://www.oasis-
open.org/committees/camp/

OASIS Topology and Orchestration Specification fBloud Applications (TOSCA)https://www.oasis-
open.org/committees/tosca/

Open Cloud Computing Interface (OCChXtp://occi-wg.org/

SNIA Cloud Data Management Interface (CDMi}tp://www.snia.org/cdmi

Cloud EU projects
4CaaSThttp://4caast.morfeo-project.org/

ARTIST: http://www.artist-project.eu/

Broker@Cloudhttp://www.broker-cloud.eu/

CELAR: http://www.celarcloud.eu/

Cloud-TM: http://www.cloudtm.eu/
Cloud4SOA:http://lwww.cloud4soa.eu/

CloudScalehttp://www.cloudscale-project.eu/

Contrail:http://contrail-project.eu/

CumuloNimbo:http://www.cumulonimbo.eu/

MODACIouds:http://www.modaclouds.eu/

mOSAIC: http://www.mosaic-cloud.eu/

Optimis: http://www.optimis-project.eu/

REMICS: http://remics.eu/
Reservoirhttp://www.reservoir-fp7.eu/

VISION Cloud: http://www.visioncloud.eu/

D1.6.1 — Initial Architecture Design Page 79 of 83

D1.6.1 — Initial Architecture Design Page 80 of 83

XI. BIBLIOGRAPHY

[1] N.Ferry and et al, “Towards modefiven provisioning, deployment, monitorii
and adaptation of multi-cloud systems.,dhOUD 2013: IEEE 6tlinternationa
Conference on Cloud Computiriz013.

[2] N. Ferry, F. Chauvel, A. Rossini, B. Morin and Aoligerg, “Managing multi-
cloud systems with CloudMF,” i2nd Symposium on Cloud Computing
Internet Technologie®slo, 2013.

[3] W. W. Rocye, “Managing the development of largdwafe systems,” ihEEE
WESCON1970.

[4] MODACIouds, “Project homepage,” [Online]. Availablettp://modaclouds.e
[Accessed August 2013].

[5] A.e. A. Ferrer, “OPTIMIS: A holistic approach ttouad service praisioning,”
Future Generation Computer Systemgs, 66-77, 2012.

[6] “Cloud4SOA project homepage,” [Online]. Availablevww.cloud4soa.el
[Accessed 01 09 2013].

[7] “Contrail Homepage,” [Online]. Available: contrakoject.eu. [Accessed 1
2013].

[8] “cloudTM project homepage,” [Online]. Available: wwmcloudtm.eu. [Accesst
01 09 2013].

[9] “Artist Project Homepage,” [Online]. Available: wwartistproject.eu
[Accessed 13 09 2013].

[10] “Mosaic Cloud Project homepage,” [Online]. Availabivww.mosaiazloud.eu
[Accessed 01 09 2013].

[11] Microsoft, “Windows Azure,” [Online]. Available
http://www.windowsazure.com. [Accessed August 2013]

[12] Microsoft, “Windows Azure Service Level Agreementf)nline]. Available:
http://www.windowsazure.com/ams/support/legal/sla/. [Accessed Auc
2013].

[13] Google, “Google App Engine,” [Online]. Availab
https://developers.google.com/appengine/. [Accessmplist 2013].

[14] Google, “Google App Engine SLA, [Online]. Availah
https://developers.google.com/appengine/sla. [Asméugust 2013].

[15] CloudBees., “CloudBees Api. Developer ResourcefQhline]. Available
http://wiki.cloudbees.com/bin/view/RUN/API. [Access August 2013].

D1.6.1 — Initial Architecture Design Page 81 of 83

[16] GoPivotal, “Cloud Foundry Website,” [Online]. Available
http://cloudfoundry.com. [Accessed August 2013].

[17] Heroku, “Heroku Dev Centre Platform API,” [Online].Available:
https://devcentre.heroku.com/categories/platform{&gcessed August 2013].

[18] Jelastic, “Welcome tothe Jelastic Documentation,” [Online]. Availak
http://jelastic.com/docs. [Accessed August 2013].

[19] “Mosaic Project Homepage,” [Online]. Available: prfiwww.mosaiceloud.eu/
[Accessed 01 09 2013].

[20] Armstrong D and K. Djemame, “Armst Penfoance issues in clouds:
evaluation of virtual image propagation and /O gvatualization,” The
Computer Journalyol. 54 , no. 6, pp. 836-849., 2011.

[21] E. Council, “DIRECTIVE 95/46/EC OF THE EUROPEAN PRRMENT
AND OF THE COUNCIL,” 24-05-95. [Online]. Available:http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX3®5L0046:EN:HTML
. [Accessed 11 09 2012].

[22] “ElasticHosts,” [Online]. Available: www.elastichtsscom. [Accessed 13
2013].

[23] D. Luenberger and Y. Yinyu, Linear and Nonlineawdg?amming, Springer 20C

[24] B. Korte and J. Vygen, Combinatorial Optimizatidrheory and Algorithm:
Springer 2008.

[25] F. Graybill, Theory and application of the lineaoael, Duxbury Press , 1976.
[26] W. J. Conver, Practical nonparametric statistioapndWiley and Sons, 1999.

[27] T. W. Anderson, An introduction to multivariate t$tcal analysis, Wiley-
Interscience, 2003.

[28] L. Ljung, System identification: theory for the usBrentics-Hall, 1998.

[29] R. E. Bellman, “A {Markovian} decision process]; Math. Mechyol. 6, no. 5
1957.

[30] R. Sutton and A. Barto, Reinforcement Learning, N¥Ess, 1998.
[31] K. S. Narendra and M. A. Thathachar, Learning AwtanPrentice Hall 1989.

[32] M. A. Thathachar and P. S. Sastry, Networks of hie@y Automata: Techniqu
for Online Stochastic Optimization, Kluwer Acaden2004.

[33] G. Horn, “A vision for stochastic reasoner for andmic cloud deployment,”
Proc Second Nordic Symposium on Cloud Computindrgedhet Technologies
NY, NY, 2013.

D1.6.1 — Initial Architecture Design Page 82 of 83

[34] D. Wolpert and W. Macready, “No free lunch theordorsoptimization,”|EEE
Trans on Evol Computpol. 1, no. 1, 1997.

[35] E. K. Burke and G. Kendall, Search Methodologidstroductory Tutorials i
Optimization and Decision Support Techniques, S@in 2005.

[36] H. H. Hoos and T. Stutzle, Stochastic local se&mandations and applicatiot
San Francisco: Morgan Kaufmann, 2005.

[37] K. Geihs, P. Barone, F. Eliassen and e. al, “A cahensive solution f
application-level adaptationgftw. Pr. Exp., vol. 39, no. 4, pp. 385-422, 2009..

[38] J. Floch and et al, “Using architecture modelsrfortime adaptability, 1TEEE
Softw., vol. 23, no. 2, pp. 62-70, 2006..

[39] F. Fleurey and A. Solberg, “A Domain Specific MddglLanguage Supportii
Specification, 8nulation and Execution of Dynamic Adaptive Systénis
Model Driven Engineering Languages and Systemsicéddings of the !
International conference (MODELS 2009),

[40] C. Pappis and C. Siettos, “Fuzzy Reasoning’, inr@edlethodologies,” nt
Sprniger 2005.

[41] INRIA, “SimGrid,” [Online]. Available: http://simgd.gforge.inria.fr/. [Accesse
11 09 2013].

[42] “Engage Project Homepage,” [Online]. Available:phtwww.engagedata.e!
[Accessed 01 09 2013].

[43] OPTIMIS, “OPTIMIS Homepage,” [Online]. Available:tth://www.optimis-
project.eu/. [Accessed August 2013].

D1.6.1 — Initial Architecture Design Page 83 of 83

