
D9.3.2 – Final Training Material and Workshop Product Launch  Page 1 of 94 

 
 

 

 

 
 
 

 
 

PaaSage 
 
 

 

Model Based Cloud Platform Upperware 

 

 

 

 

 

Deliverable D9.3.2 

 

Final Training Material and Workshop Product Launch 

 

 

 

 

Version: 1 
 



D9.3.2 – Final Training Material and Workshop Product Launch  Page 2 of 94 

D9.3.2 

Name, title and organisation of the scientific repr esentative of the project's coordinator 1:  
Mr Philippe Rohou Tel:  +33 (0)4 97 15 53 06  Fax: +33 (0)4 92 38 78 22  
E-mail: phillipe.rohou@ercim.eu 

Project website 2 address:  http:/paasage.eu/ 
 

Project  

  

Grant Agreement number 317715 

Project acronym: PaaSage 

Project title: Model Based Cloud Platform Upperware 

Funding Scheme: Integrated Project 

Date of latest version of Annex I against which the 
assessment will be made: 

20 April 2016 

Document  

Period covered: M36-M42 

Deliverable number: D9.3.2 

Deliverable title Final Training Material and Workshop Product Launch 

Contractual Date of Delivery: 30-09-2016 

Actual Date of Delivery: 30-09-2016 

Editor (s):  Manos Papoutsakis (FORTH) 

Author (s):  Manos Papoutsakis, Kyriakos Kritikos, Kostas Magoutis, 
Pierre Guisset, Daniel Baur, Etienne Charlier 

Reviewer (s):  Ping Wang, Tom Kirkham 

Participant(s): All 

Work package no.: 9 

Work package title: Training and Dissemination 

Work package leader: Pierre Guisset 

Distribution: PU 

Version/Revision: 1.0 

Draft/Final: Final 

Total number of pages (including cover): 94 

                                                 
1 Usually the contact person of the coordinator as specified in Art. 8.1. of the grant agreement 
 
2  The home page of the website should contain the generic European flag and the FP7 logo which are available 
in electronic format at the Europa website (logo of the European flag: 
http://europa.eu/abc/symbols/emblem/index_en.htm ; logo of the 7th 
FP: http://ec.europa.eu/research/fp7/index_en.cfm?pg=logos). The area of activity of the project should also 
be mentioned. 

 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 3 of 94 

DISCLAIMER  

 

This document contains description of the PaaSage project work and findings. 

The authors of this document have taken any available measure in order for its content to be 
accurate, consistent and lawful. However, neither the project consortium as a whole nor the 
individual partners that implicitly or explicitly participated in the creation and publication of this 
document hold any responsibility for actions that might occur as a result of using its content. 

This publication has been produced with the assistance of the European Union. The content 
of this publication is the sole responsibility of the PaaSage consortium and can in no way be 
taken to reflect the views of the European Union. 

 

The European Union is established in accordance with 
the Treaty on European Union (Maastricht). There are 
currently 27 Member States of the Union. It is based 
on the European Communities and the member states 
cooperation in the fields of Common Foreign and 
Security Policy and Justice and Home Affairs. The five 
main institutions of the European Union are the 
European Parliament, the Council of Ministers, the 
European Commission, the Court of Justice and the 
Court of Auditors. (http://europa.eu)  

 
PaaSage is a project funded in part by the European  Union.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 4 of 94 

Executive Summary 
Success of any platform, either commercial or research-based, is critically dependent 
on the availability of sufficient documentation and training materials. These materials 
guide prospective users and maintainers through to an understanding of the platform, 
and demonstrate how the platform’s main functionality can be exploited to achieve 
user goals and requirements. The purpose of this deliverable is to complement and 
extend previous deliverables, providing insight into the planning and interim 
implementations of training materials (D9.3.1 Initial Training Materials, M24) as well 
as deliverables describing design and implementation of workshops (D9.4.2 Industrial 
Workshop Planning, M36; D9.4.1 Workshops Prototype Design, M18). 

This deliverable describes training material that is made available by PaaSage and that 
are presented online at http://www.paasage.eu/training-materials. The training 
materials include: instructions on how to deploy and configure the PaaSage platform 
or its modules and instructions on the management of the PaaSage Executionware. 
Detailed processes on how users can specify their requirements in CAMEL is also 
covered to  along with ways in which the PaaSage's Social Network (SN) can be 
utilized in order to achieve best utilise the platform.  Such utilisation includes the 
discovery and sharing of critical knowledge which can be exploited in the 
management of multi-cloud applications. The deliverable additionally focuses on the 
finalized design of how to conduct a training workshop about the PaaSage project, 
which draws from experience from several such events and capitalizing on the 
training material made available by the project. This design can be used as guidance 
for training workshops ranging from one-hour sessions to half- or full-day events. 
Finally, this deliverable complements D9.4.2 (M36), reporting on industrial 
workshops that were organized by the project in the period beyond M36 through M42. 

 

 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 5 of 94 

Intended Audience 
This is a public document intended for different types of users, including business 
users, application designers, IT architects, system administrators and software 
engineers, depending on their intended usage of the PaaSage platform. In particular: 

• Business users can exploit the presented material in order to be guided in 
expressing their business requirements as well as their organization's 
information via the CAMEL meta-model 

• System administrators can be assisted in deploying and configuring the 
PaaSage platform as well as learn how to consider technical requirements and 
regulations. 

• Software engineers can utilize the presented information in order to: (a) 
express application component and quality requirements in CAMEL, (b) 
extend the PaaSage platform components, and (c) produce new components 
with added-value functionality.  

• Application developers / IT architects can be assisted in expressing application 
requirements in CAMEL as well as exploiting previous application design 
knowledge. 

• Any user type: any user can utilize the presented material in order to learn how 
to use the PaaSage's Social Network (SN) for sharing application design and 
technical knowledge, browsing existing applications, deploying them, and 
exploiting previous application execution history and SN recommendations to 
establish better application deployments.       

 

For each type of user, different knowledge and skills are required for a better 
comprehension of this document or its parts and the material it presents. Each 
presented material may also interest and cater for different types of users. For even 
better comprehension of the document, the prospective reader is also referred to the 
description of the overall PaaSage architecture presented in Deliverable D1.6.1 
[D1.6.1]. D1.6.1 provides background on the overall PaaSage architecture and the 
way different modules fit in it, as well as the internal architecture of particular 
PaaSage components. The reader can also refer to the separate deliverables for each 
PaaSage module, i.e., D3.1.1 [D3.1.1], D4.1.1 [D4.1.1] and D5.1.1 [D5.1.1] in order 
to have a complete view about the exposed functionality of each module and its 
internal components. Finally, the reader can refer to the deliverable D2.1.2 [D2.1.2] 
for a complete documentation of the CAMEL meta-model and how it can be used to 
express different types of models, including those pertaining to end-user 
requirements.  



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 6 of 94 

Contents

Executive Summary ....................................................................................................... 4 

Intended Audience ......................................................................................................... 5 

Contents ......................................................................................................................... 6 

1 Introduction ............................................................................................................ 9 

2 PaaSage Platform Configuration & Deployment ................................................. 13 

2.1 Supported platforms & Resource Requirements ........................................... 13 

2.2 Deployment of the PaaSage platform ............................................................ 13 

2.2.1 STEP #1: VM CREATION .................................................................. 13 

2.2.2 STEP #2: Bootstrap code download ..................................................... 14 

2.2.3 STEP #3 Bootstrap code configuration ................................................ 14 

2.2.4 STEP #4 Bootstrap code execution ...................................................... 14 

2.2.5 STEP #5: Connect Social Network to the new PaaSage Platform ....... 15 

2.2.6 STEP #6 Clean up ................................................................................ 15 

3 Executionware Deployment & Usage .................................................................. 16 

3.1 Installation ..................................................................................................... 16 

3.2 Configuration ................................................................................................. 16 

3.3 Example: Deploying an application ............................................................... 16 

3.3.1 Application Model ................................................................................ 17 

3.3.1.1 Writing the application scripts ................................................. 17 

i. An utility script for common operations ........................................... 18 

ii.  A script installing the haproxy server ............................................... 18 

iii.  A script installing apache2 and mediawiki. ...................................... 20 

iv. A script installing MariaDB. ............................................................ 22 

3.3.1.2 Selecting the desired cloud resources ....................................... 23 

3.3.1.3 Defining the LifecycleComponents, the 
ApplicationComponent and the Application .............................................. 23 

i. LifecycleComponents: ...................................................................... 23 

ii.  Application: ...................................................................................... 23 

iii.  ApplicationComponents ................................................................... 23 

3.3.1.4 Defining the Communication .................................................... 24 

3.3.1.5 Linking the scripts to Cloudiator ............................................. 24 

i. HaProxy Bridge Script ...................................................................... 24 

ii.  Mediawiki Bridge Script .................................................................. 25 

iii.  MariaDB Bridge Script ..................................................................... 26 

3.3.1.6 API Interaction........................................................................... 26 

i. Creating the Application ................................................................... 26 

ii.  Creating the LifecycleComponents .................................................. 27 

iii.  Creating the VirtualMachineTemplate ............................................. 29 

iv. Creating the ApplicationComponents .............................................. 29 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 7 of 94 

v. Creating the RequiredPorts, and ProvidedPorts ............................... 30 

vi. Creating the Communication ............................................................ 32 

3.3.2 Cloud Model ......................................................................................... 32 

3.3.2.1 Openstack Example ................................................................... 33 

3.3.2.2 API Interaction........................................................................... 33 

i. Create API ........................................................................................ 33 

ii.  Create Cloud ..................................................................................... 34 

iii.  Create CloudCredential .................................................................... 35 

3.3.2.3 Discovery ..................................................................................... 36 

3.3.3 Starting the application ......................................................................... 36 

3.3.3.1 Starting virtual machines .......................................................... 36 

3.3.3.2 Starting instances ....................................................................... 36 

3.3.3.3 Waiting until the deployment is finished ................................. 36 

3.3.3.4 API Interaction........................................................................... 37 

i. Starting virtual machines .................................................................. 37 

ii.  Creating the application instance ...................................................... 39 

iii.  Creating the application component instances ................................. 40 

3.3.4 Java Example ........................................................................................ 42 

3.3.4.1 Introduction ................................................................................ 42 

3.3.4.2 Installation .................................................................................. 42 

3.3.4.3 Configuration ............................................................................. 42 

3.3.4.4 Running the example ................................................................. 43 

4 Camel Model Creation ......................................................................................... 45 

4.1 Overview ........................................................................................................ 45 

4.2 CAMEL creation ........................................................................................... 46 

4.2.1 Deployment Aspect – DeploymentModel ............................................ 47 

4.2.1.1 Components ................................................................................ 47 

4.2.1.2 Communications ........................................................................ 49 

4.2.1.3 Hostings ....................................................................................... 49 

4.2.2 Requirement Aspect – RequirementModel .......................................... 50 

4.2.2.1 Hard requirements..................................................................... 50 

4.2.2.2 Soft requirements ....................................................................... 52 

4.2.3 Location Aspect – Location Model ...................................................... 54 

4.2.4 Measurement/Metric Aspect – MetricModel ....................................... 55 

4.2.4.1 Metrics ........................................................................................ 55 

4.2.4.2 Metric Formulas......................................................................... 55 

4.2.4.3 Properties .................................................................................... 55 

4.2.4.4 Metric Conditions ...................................................................... 56 

4.2.4.5 Property Conditions................................................................... 56 

4.2.4.6 Condition Contexts .................................................................... 56 

4.2.4.7 Metric Context ........................................................................... 56 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 8 of 94 

4.2.5 Scalability Aspect – ScalabilityModel ................................................. 57 

4.2.5.1 Scalability Rules ......................................................................... 57 

4.2.5.2 Actions ......................................................................................... 57 

4.2.5.3 Events .......................................................................................... 57 

4.2.6 Security Aspect – SecurityModel ......................................................... 62 

4.2.7 Type Aspect - TypeModel .................................................................... 64 

4.2.8 Unit Aspect – UnitModel ..................................................................... 66 

4.3 Summary ........................................................................................................ 66 

5 Social Network User Guide ................................................................................. 68 

5.1 Site Sections ................................................................................................... 68 

5.2 User Login / Register ..................................................................................... 69 

5.3 User Profile .................................................................................................... 70 

5.4 Social Network Community .......................................................................... 72 

5.5 Models ........................................................................................................... 73 

5.6 Deployment of an application ........................................................................ 75 

5.7 Summary ........................................................................................................ 77 

6 Training Workshops............................................................................................. 78 

6.1 Design and implementation ........................................................................... 78 

6.1.1 General overview of the PaaSage project............................................. 78 

6.1.2 Success stories ...................................................................................... 78 

6.1.3 Introduction to CAMEL ....................................................................... 79 

6.1.4 Application deployment using the ruby client of PaaSage platform .... 79 

6.1.5 Introduction of PaaSage social network and integration with PaaSage 
platform 80 

6.1.6 Questionnaire ....................................................................................... 82 

6.1.7 Additional sections ............................................................................... 82 

7 Industrial workshops ............................................................................................ 83 

7.1 Product launch strategy .................................................................................. 83 

7.2 Structure of the industrial workshops ............................................................ 83 

7.2.1 ASC(S Industrial Workshop (Stuttgart, Germany) .............................. 84 

7.2.2 EVRY Industrial Workshop (Oslo, Norway) ....................................... 86 

7.2.3 LSY Industrial Workshop (Budapest, Hungary) .................................. 88 

7.3 New PaaSage leaflet ...................................................................................... 90 

7.4 PaaSage roll-up .............................................................................................. 92 

8 Conclusion ........................................................................................................... 93 

9 Bibliography ........................................................................................................ 94 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 9 of 94 

1 Introduction 
The PaaSage platform may be exploited by different organisations with various goals 
to achieve. Some organisations might just desire to exploit the main functionality of 
the platform. While others might need to adopt and possibly extend it in order to 
develop a cloud-based platform in the form of a business product, which can make a 
differentiation in the market and thus increase its market share. However, before 
exploiting the platform, sufficient documentation and training material should be in 
place which will indicate the various uses of the platform and detail of all necessary 
steps and required knowledge that is needed to perform the appropriate steps towards 
its utilisation. This is exactly the main purpose of this deliverable: to provide training 
material which can be used for the proper exploitation of the PaaSage platform.  

 

The set of material presented in this deliverable is separated into the following 
different sections: 

• Section 2 presents material which indicates how to configure, build and 
deploy the PaaSage platform. This material will certainly interest 
organisations who would like to create and configure their own platform, 
through which their applications can be deployed across different clouds. This 
material is mainly intended for system admins involved in such organisations 
as it contains low-level technical details which might not be understandable 
e.g. by business users. However, this does not mean that other types of users 
cannot exploit it to fulfil the respective task as the description of the platform 
configuration and deployment process is quite straightforward. 

• Section 3 focuses on a particular module of the PaaSage platform, namely the 
Executionware, with the intention to illustrate how this module can be 
deployed and utilized to enable an organisation to deploy its applications in 
the cloud. The deployment process described unveils various steps that need 
to be performed manually in contrast to the respective automated execution-
ware deployment process described in Section 2. The material is directly 
suited for system admins, similarly to the case of Section 2, as it involves 
technical details that are more understandable and manageable by this type of 
users. The content is also suited for application developers who wish to to 
gather a deeper understanding of the interplay of software components in the 
PaaSage Executionware. Finally, the example subsection contained in this 
section can be used by any user of the platform (e.g., an application owner or 
a user desiring to deploy an application belonging to a specific organization) 
who wish to  perform application deployments in the cloud, as it shows how 
to register existing cloud accounts in the PaaSage platform.   

• Sections 4 and 5 play complementary roles towards to enabling organisations 
to provide appropriate information as input to the platform in order to fulfil 
particular organisation-required tasks, such as the deployment of applications. 
In particular, Section 4 analyses how the high-level business requirements of 
an organisation can be transformed into model-based information described 
via the Camel meta-model (see Deliverables D2.1.3). These requirements can 
then be used as input to the platform for appropriately deploying applications 
in the clouds as well as adapting them according to particular scalability rules. 
On the other hand, Section 5 analyses the social network perspective of the 
PaaSage platform by indicating how users can specify user profiles, manage 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 10 of 94 

and search for application models, and exploit knowledge which has been 
produced from the execution history of the same or similar applications. This 
use of history encourages users to continually refine and pose in a better and 
more precise ways to express requirements as models. To this end, by 
combining the information from these two sections, a user will be able to 
perform various tasks which will enable him/her to appropriately manage 
his/her applications that are deployed in the cloud without really getting into 
low-level technical details at the platform and infrastructure level. The 
material in Section 4 is intended toward a variety of users as the combination 
of their skills and knowledge can lead to the transformation of high-level 
business requirements to requirements at the application and infrastructure 
level. The material in Section 5 does not impose particular requirements on 
the type of users, especially as we consider that the social network (SN) can 
cater for many types of users, apart from some basic knowledge in social 
networking which is not mandatory as the SN has been designed with a user-
intuitive and simple to use UI.    

• Section 6 is a step by step tutorial of how to conduct a training workshop 
about the PaaSage platform. Experience acquired from similar events lead to 
the composition of this tutorial, which can be used as guidance for training 
workshops which could last from half to a whole day. Such events may play 
important role in lowering the level of difficulty of using the PaaSage 
platform as a whole (model editors, platform and social network). Moreover, 
the conduct of a training session may be an important source of feedback for 
the training process itself and the PaaSage platform. Although the description 
of how a training workshop should be conducted is quite straightforward, the 
presenter of some parts of this tutorial must have a deep understanding of 
specific parts of the PaaSage platform. Such a part is the creation of a 
CAMEL model for an application, which requires the presenter to be at least 
familiar with the CAMEL modelling language.   

• Section 7 describes the structure of industrial workshops that took place 
during the PaaSage project as part of the PaaSage product launch strategy. 
Those workshops were organized in several countries by the PaaSage 
industrial partners and aimed potential business partners who could embrace 
innovation provided by PaaSage.  

 

The types of user that can benefit from the material presented in this document are the 
following:   

• system admins: They can inspect the configuration and building guidelines 
provided in order to build and deploy the PaaSage platform or its 
parts/modules, like the Executionware. Their specialized knowledge enables 
them not only to comprehend such guidelines but also to implement them by 
also respecting their organisation's technical requirements, peculiarities and 
regulations and bypass any technical obstacles. 

• business users: Such users, which might not have a technical background in 
IT, can benefit from the material provided in order to obtain and share 
knowledge as well as publish their application models. Supporting expression 
of business requirements for their applications which, in collaboration with 
other types of users from the same organisation, can be materialized into 
concrete Camel models specifying deployment, scalability, quality and 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 11 of 94 

security requirements. These models can then be issued into the PaaSage 
platform for the proper management of respective applications in the cloud. 

• application developers / IT Architects: Can exploit the guidelines to obtain and 
share application design knowledge as well as publish publication models for 
their organisations. They are also guided in the provision of requirements for 
their applications in terms of concrete Camel models.  

• software engineers: They can exploit the presented material in order to: (a) 
extend particular PaaSage platform components, (b) produce new components 
that can be fitted into the platform providing added-value functionality, (c) 
develop the missing components for particular applications when the available 
library of components stored in the platform cannot be used for realizing 
completely the desired functionality, and (d) express application component 
and quality requirements in terms of Camel models.   

• simple users:  This user type can include the user types mentioned above, thus 
actually catering for any type of user (thus could be renamed as just user).    
They can exploit the material specifically realted to the SN in order to find out 
applications that interest them and deploy them into the cloud by just 
specifying some quality requirements, if needed, and to let the system derive 
additional requirements and information needed for the proper deployment 
and management of the respective application (e.g., from the previous 
execution history of the application or of application similar to the desired 
one). Apart from just having a basic knowledge of how a SN functions, no 
other requirement is imposed on this type of user.  

     

Table 1: Mapping of presented material to targeted user types 

Material System 
Admins 

Business 
users 

Application 
developers 

Software 
Engineers 

Simple 
Users 

PaaSage 
platform  

configuration 
& deployment 

√   ~  

Execution-
ware 

deployment & 
usage 

√  √ ~  

Camel model  
creation 

√ √ √ ~  

Social 
Network User 

Guide 

√ √ √ √ √ 

 

For each type of user indicated above, we demonstrate in the following Table 1 the 
respective material that may be of interest to him/her. The rows of the table 
correspond to the presented material while the columns to the respective user types. 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 12 of 94 

The symbols used in the table's cell content have the following meaning: "√" means 
that the material is especially targeted at the particular user type while "~" means that 
the presented material could interest the respective user type. 

 

It should also be highlighted that apart from the documentation and user guides 
provided in this deliverable, there also exists video material from which some of the 
screenshots shown in the various guides/material in this document have been 
extracted. This material provides a significant and complementary role with respect to 
support training of potential users in the exploitation of the PaaSage platform and is 
available at http://www.paasage.eu/training-materials.           



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 13 of 94 

2 PaaSage Platform Configuration & Deployment  
A lot of effort has been put into the automation of configuration and deployment of 
the PaaSage platform in order to make it as easy as possible for a newcomer to get it 
running.  

 

2.1 Supported platforms & Resource Requirements 

PaaSage is only supported on the Linux platform. Although any modern Linux 
distribution can be exploited, the PaaSage platform deployment has only been tested 
on Ubuntu 14.04 64bits.  

 

PaaSage needs to be deployed on a virtual machine with at least: 

• 2 CPU cores 

• 8 GB ram 

• 20 GB Hard disk 

 
During application deployment by PaaSage, the destinations virtual machines need to 
communicate on specific ports specifically to contact the PaaSage platform (EG: to 
report deployment progress or for metrics collection).  

 

The PaaSage platform thus needs to be reachable on the following ports: 

• 22/TCP:  SSH  

• 80/TCP: execution ware UI 

• 4001/TCP: colosseum etcd daemon 

• 8080/TCP:  time series database 

• 9000/TCP:  colosseum UI 

• 9999/TCP:  REST API 

• 33034/TCP:  RMI registry 

 

2.2 Deployment of the PaaSage platform 

As already stated, a lot of effort has been put to hide the complexity of the PaaSage 
platform deployment.  

 

A few simple steps to execute on a fresh virtual machine gets a user started. In the 
following procedures, we assume the PaaSage platform is deployed on a Remote 
Cloud and not on a local workstation. 

2.2.1 STEP #1: VM CREATION 

• Actual actions depend on the Cloud provider (EC2, AZURE, OPENSTACK 
instance) 

• Please make sure the requirements are fulfilled 

• VM size 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 14 of 94 

• PUBLIC_IP MAPPING 

• PORTS accessible 

• SSH access 

2.2.2 STEP #2: Bootstrap code download 

• Log into the PaaSage VM 

• Run the following commands 
$ sudo apt-get update 

$ sudo apt-get install git 

$ git clone https://tuleap.ow2.org/plugins/git/paasage/ 

paasage_one_click_install.git  

• Bootstrap code is now downloaded on the to-be PaaSage VM. 

2.2.3 STEP #3 Bootstrap code configuration 

The bootstrap code is tailored by a few shell script variables. These variables need to 
be adapted for each deployment of the PaaSage platform. 

 

The configuration file must be named $HOME/override_vars.sh. An example is 
provided together with the bootstrap script 
(paasage_one_click_install/bootstrap/bootstrap.sh).  

 

Please follow these steps to configure the bootstrap script. 

• Log into PaaSage VM 

• Run the following commands 

 $ cp paasage_one_click_install/override_vars.sh_SAMPLE
 ./override_vars.sh 

  $ vi override_vars.sh 

• Adapt the file with your values  

o NODE_GROUP: identify the vm’s created by this PaaSage platform 
(use only lowercase letters and limit to 10 characters) 

o ELASTIC_IP:  public IP address assigned to this PaaSage Platform 
(by default, detected using checkip.amazonaws.com) 

o SEED: some random string (lower case letters) used as seed for 
password generation 

o Destination clouds credentials  

2.2.4 STEP #4 Bootstrap code execution 

Once the override_vars.sh is adapted, you can run the PaaSage platform deployment. 

• Log into the PaaSage platform, then execute 
$ paasage_one_click_install/bootstrap/bootstrap.sh 

• Watch the deployment taking place. It can take from 10 to 20 min 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 15 of 94 

2.2.5 STEP #5: Connect Social Network to the new PaaSage Platform 

Connecting the PaaSage platform with the social network (SN) allows the latter to be 
used for CAMEL model deployment. 

• Connect to the Social Network web site  

• Navigate to My Area � Credentials  

• Fill in the endpoint, email, password and tenant 

• Click on the Save changes button 

2.2.6 STEP #6 Clean up 

If you want to reuse this PaaSage platform to deploy another application, you need to 
clean the databases up 

• Log into the PaaSage Platform 

• Execute the following command 

• $ /etc/paasage/reset-platform.sh (the platform will reboot 
automatically) 

 

 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 16 of 94 

3 Executionware Deployment & Usage 
As described in Deliverable D5.1.2, the Executionware has the primary purpose to 
deploy applications into the target cloud infrastructure and to monitor the current 
runtime context of the deployed applications.  

 

Besides being integrated into the PaaSage workflow, the Executionware is also 
available as a stand-alone project named Cloudiator (https://cloudiator.github.io). To 
increase the visibility and sustainability of the documentation, most content is 
featured on the webpage dedicated to Cloudiator. This document thus only provides 
pointers to the webpage, where Cloudiator’s usage is depicted in more detail. 

3.1 Installation 

To ease the installation, Cloudiator features an easy to use installation script that can 
be retrieved under https://cloudiator.github.io/docs/installation.html. The script will 
install all dependencies of Cloudiator and start the required services. Afterwards, it’s 
UI can be access by calling http://{ip-of-server}/executionware_ui and its REST API 
is available under http://{ip-of-server}:9000. 

 

In addition, the installation of Cloudiator is also included into the scripts installing 
PaaSage. 

3.2 Configuration 

The installation scripts configure Cloudiator with a sufficient default configuration, so 
that most use cases can be run without changing any configuration options. Especially 
in the PaaSage environment, the configuration of Cloudiator does not need be 
changed. For more advanced use cases, all configuration options are available under 
https://cloudiator.github.io/docs/configuration.html. 

3.3 Example: Deploying an application 

In this section we provide a tutorial that contains a detailed step-by-step guide, 
helping the user to deploy their first application using the Cloudiator toolset, which 
must be installed as it is described in the Installation section above.  

This tutorial will cover the following steps: 

i. A short introduction on the sample application (Mediawiki). 
ii.  We will describe an Openstack Cloud so that it can be used with Cloudiator. 
iii.  We will describe Mediawiki using bash scripts so it can be deployed with 

Cloudiator. 
iv. We will deploy Mediawiki using Cloudiator. 

Each step will be two-fold. First it will describe and explain the steps needed in detail 
by providing knowledge and background information. At the end, each section will 
describe the actions required to execute the steps with the Cloudiator toolset, using a) 
the REST-API, b) our java client and c) our user interface. 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 17 of 94 

3.3.1 Application Model 

For this first step of modeling the application the following information is needed. 

1. For each component, i.e. a LifecycleComponent, of the application you need: 
• a script used for installing and starting the component on the virtual 

machine. 
• the Image used for booting the virtual machine. 
• the Hardware used for booting the virtual machine. 
• the Location used for booting the virtual machine. 

2. The Communication dependencies. 

A more detailed description for the application model is given in the corresponding 
Documentation Section. 

3.3.1.1 Writing the application scripts 

The first part of the scripts can be written independently from Cloudiator. In general 
we need three scripts: 

• one installing the database (MariaDB) 
• one installing the application server (apache2) and the wiki 
• one installing the load balancer (HaProxy) 

For each script we define two start actions: 

• one blocking the start as required by Lance’s Docker deployment 
• one non-blocking start action as required by Lance’s plain deployment. 

In addition we define the following arguments for the scripts: 

• the application server installation scripts takes the database IP address as 
argument. 

• the load balancer scripts takes multiple application server IP addresses as 
argument. 

This leads to the scripts presented below, also available at Github. These scripts rely 
on apt-get to install packages, and were only tested on Ubuntu 14.04 LTS. 

Each of these scripts provides the following functions when used with the depicted 
arguments: 

Argument Description 

install Installs the application on the server. 

Start Starts the application (non-blocking). 

startBlocking Starts the application (blocking). 

configure Configures the application, e.g. by downloading or 
writing configuration files. 

Stop Stops the application. 

 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 18 of 94 

i. An utility script for common operations 

This script simply provides the logic to run apt-get update and dist-upgrade while 
trying its best to avoid any interaction with the user. 

#!/bin/bash 
 
apt_update() { 
  unset UCF_FORCE_CONFFOLD 
  export UCF_FORCE_CONFFNEW=YES 
  ucf --purge /boot/grub/menu.lst 
  export DEBIAN_FRONTEND=noninteractive 
  sudo -E apt-get update 
  sudo -E apt-get -o Dpkg::Options::="--force-confold" --force-yes -fuy dist-upgrade 
} 

ii. A script installing the haproxy server 

This script installs and configures the haproxy server. 

#!/bin/bash 
 
MY_DIR="$(dirname "$0")" 
source "$MY_DIR/util.sh" 
TMP_DIR="/tmp" 
HA_PROXY_CONFIG_URL="https://raw.githubusercontent.com/dbaur/mediawiki-
tutorial/master/config/haproxy.cfg" 
RSYSLOG_CONFIG_URL="https://raw.githubusercontent.com/dbaur/mediawiki-
tutorial/master/config/haProxyRsyslog.cfg" 
 
IPS=${@:2} 
 
install() { 
    apt_update 
 
    #install haproxy 
    sudo apt-get -y install haproxy wget 
 
    #enable haproxy 
    sudo sed -i "s/ENABLED=0/ENABLED=1/g" /etc/default/haproxy 
 
    #configure rsyslog 
    wget ${RSYSLOG_CONFIG_URL} -O ${TMP_DIR}/haProxyRsyslog.tmp 
    sudo cp ${TMP_DIR}/haProxyRsyslog.tmp /etc/rsyslog.d/haproxy.conf 
 
    sudo /etc/init.d/rsyslog restart 
    IPS="127.0.0.1" 
    configure 
 
    sudo /etc/init.d/haproxy stop 
 
} 
 
configure() { 
 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 19 of 94 

  #validate ips 
  if ! [[ -n "$IPS" ]]; then 
      echo "Expected list of ips as parameter but got none." 
      exit 1 
  fi 
 
  # remove existing tmp file 
  rm -rf ${TMP_DIR}/haproxy.tmp 
  # download config template 
  wget ${HA_PROXY_CONFIG_URL} -O ${TMP_DIR}/haproxy.tmp 
 
  # write servers into template 
  i=1 
  SERVERS="" 
  for var in ${IPS} 
  do 
      SERVERS+="server wiki$i $var:80 check\\n" 
      ((i++)) 
  done 
  sudo sed -i -e "s/\${servers}/${SERVERS}/" ${TMP_DIR}/haproxy.tmp 
 
  # mv temp file to real location 
  sudo mv /etc/haproxy/haproxy.cfg /etc/haproxy/haproxy.cfg.bak 
  sudo mv ${TMP_DIR}/haproxy.tmp /etc/haproxy/haproxy.cfg 
 
  # reload haproxy 
  sudo /etc/init.d/haproxy reload 
 
} 
 
start() { 
    # start haproxy 
    sudo /etc/init.d/haproxy start 
} 
 
startBlocking() { 
    # start haproxy and sleep for infinity 
    sudo /etc/init.d/haproxy start && sleep infinity 
} 
 
stop() { 
    # stop haproxy 
    sudo /etc/init.d/haproxy stop 
} 
 
### main logic ### 
case "$1" in 
  install) 
        install 
        ;; 
  start) 
        start 
        ;; 
  startBlocking) 
        startBlocking 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 20 of 94 

        ;; 
  configure) 
        configure 
        ;; 
  stop) 
        stop 
        ;; 
  *) 
        echo $"Usage: $0 {install|start|startBlocking|configure|stop}" 
        exit 1 
esac 

iii. A script installing apache2 and mediawiki. 

#!/bin/bash 
 
MY_DIR="$(dirname "$0")" 
source "$MY_DIR/util.sh" 
 
TMP_DIR="/tmp" 
 
# Download URL for mediawiki 
MW_DOWNLOAD_URL="https://releases.wikimedia.org/mediawiki/1.26/mediawiki-
1.26.2.tar.gz" 
 
# Database 
DB="wiki" 
DB_USER="wiki" 
DB_PASS="password" 
DB_HOST=$2 
 
# Wiki 
NAME="dbaur" 
PASS="admin1345" 
 
install() { 
    apt_update 
    # Install dependencies (apache2, php5, php5-mysql) 
    sudo apt-get --yes install apache2 php5 php5-mysql wget 
    # remove existing mediawiki archive 
    rm -f ${TMP_DIR}/mediawiki.tar.gz 
    # download mediawiki tarball 
    wget ${MW_DOWNLOAD_URL} -O ${TMP_DIR}/mediawiki.tar.gz 
    # remove existing mediawiki folder 
    sudo rm -rf /opt/mediawiki 
    sudo mkdir -p /opt/mediawiki 
    # extract mediawiki tarball 
    sudo tar -xvzf ${TMP_DIR}/mediawiki.tar.gz -C /opt/mediawiki --strip-
components=1 
    # remove existing mediawiki symbolic link 
    sudo rm -rf /var/www/html/wiki 
    # create symbolic link 
    sudo ln -s /opt/mediawiki /var/www/html/wiki 
    # enable mod status 
    sudo a2enmod status 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 21 of 94 

    # allow server status from everywhere 
    sudo sed -i "s/Require local/#Require local/g" /etc/apache2/mods-enabled/status.conf 
    # stop apache 
    sudo service apache2 stop 
} 
 
configure() { 
    if ! [[ -n "$DB_HOST" ]]; then 
        echo "you need to supply a db host" 
        exit 1 
    fi 
    sudo service apache2 start 
    # run mediawiki installation skript 
    sudo php /opt/mediawiki/maintenance/install.php --dbuser ${DB_USER} --dbpass 
${DB_PASS} --dbname ${DB} --dbserver ${DB_HOST} --pass ${PASS} $NAME 
"admin" 
    sudo service apache2 stop 
} 
 
start() { 
    sudo service apache2 start 
} 
 
startBlocking() { 
    sudo service apache2 start && sleep infinity 
} 
 
stop() { 
    sudo service apache stop 
} 
 
### main logic ### 
case "$1" in 
  install) 
        install 
        ;; 
  start) 
        start 
        ;; 
  startBlocking) 
        startBlocking 
        ;; 
  configure) 
        configure 
        ;; 
  stop) 
        stop 
        ;; 
  *) 
        echo $"Usage: $0 {install|start|startBlocking|configure|stop}" 
        exit 1 
esac 

 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 22 of 94 

iv. A script installing MariaDB. 

#!/bin/bash 
 
MY_DIR="$(dirname "$0")" 
source "$MY_DIR/util.sh" 
 
ROOT_PW="topsecret" 
DB="wiki" 
DB_USER="wiki" 
DB_PASS="password" 
 
install() { 
    apt_update 
    #set default root password for automated installation 
    sudo debconf-set-selections <<< 'mariadb-server mysql-server/root_password 
password '${ROOT_PW} 
    sudo debconf-set-selections <<< 'mariadb-server mysql-server/root_password_again 
password '${ROOT_PW} 
    sudo apt-get --yes install mariadb-server 
    sudo service mysql stop 
} 
 
start() { 
    sudo service mysql start 
} 
 
startBlocking() { 
    sudo service mysql start && sleep infinity 
} 
 
 
configure() { 
    sudo service mysql start 
 
    #create database 
    mysql -u root -p${ROOT_PW} -e "CREATE DATABASE $DB;" 
 
    #create user and grant privileges 
    mysql -u root -p${ROOT_PW} -e "GRANT ALL PRIVILEGES ON $DB.* TO 
'$DB_USER'@'%' IDENTIFIED BY '$DB_PASS';"; 
    mysql -u root -p${ROOT_PW} -e "FLUSH PRIVILEGES;" 
 
    #configure bind address 
    sudo sed -i "s/.*bind-address.*/bind-address = 0.0.0.0/" /etc/mysql/my.cnf 
 
    sudo service mysql stop 
} 
 
stop() { 
    sudo service mysql stop 
} 
 
### main logic ### 
case "$1" in 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 23 of 94 

  install) 
        install 
        ;; 
  start) 
        start 
        ;; 
  startBlocking) 
        startBlocking 
        ;; 
  configure) 
        configure 
        ;; 
  stop) 
        stop 
        ;; 
  *) 
        echo $"Usage: $0 {install|start|startBlocking|configure|stop}" 
        exit 1 
esac 

3.3.1.2 Selecting the desired cloud resources 

As the next step we have to select the desired cloud offerings that we want to use for 
the virtual machines which will host the different application components. 

For simplicity, we will use the same combination of Image, Hardware and Location 
for all ApplicationComponents. 

All cloud resources can be retrieved by using the respective list actions of 
Colosseum’s API. 

Once we have selected the desired cloud resources, creating a 
VirtualMachineTemplate is straightforward. As all components are going to use the 
same template, we will create only one using the foreign keys of the respective 
resources. 

3.3.1.3 Defining the LifecycleComponents, the ApplicationComponent and the 

Application 

When creating the Application with Cloudiator the user has to define the following 
entities: 

i. LifecycleComponents: 

– A component for the HaProxy Loadbalancer 
– A component for the Apache Webserver including MediaWiki 
– A component for the MariaDB database server. 

ii. Application: 

– One application: MediaWiki 

iii. ApplicationComponents 

– three application components, each linking the created components 
to the application. 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 24 of 94 

3.3.1.4 Defining the Communication 

 

Figure 1: Communication within the Mediawiki Application 

The picture above depicts the Communication within the Mediawiki Application. 

ProvidedPorts: - MariaDB provides the database on port 3306. - Wiki (and Apache) 
provide the web server on port 80. - The HaProxy provides the load-balanced website 
on port 80. RequiredPorts: - HaProxy requires the webserver. - The wiki requires the 
database. Communication: - LOADBALANCERREQWIKI: link between the 
HaProxy and the webserver. - WIKIREQMARIADB: link between the web-server 
and the database. 

It is important to remember the name of the communication entities, as the 
environment variables used in the script rely on them. 

3.3.1.5 Linking the scripts to Cloudiator 

As explained in the communication section of the application model documentation 
Cloudiator uses environment variables to provide IP addresses of downstream 
components. To account for this fact, we have to write a simple bridge script parsing 
this information and calling the corresponding scripts with the correct arguments. 
These scripts can also be found on Github. 

The corresponding bridge scripts just forward the main argument (see table above) to 
the original script, but in addition parses the environment variables if necessary and 
sends them as arguments to the above scripts. 

i. HaProxy Bridge Script 

#!/bin/bash 
 
MY_DIR="$(dirname "$0")" 
 
### main logic ### 
case "$1" in 
  configure) 
        if [ -z ${PUBLIC_LOADBALANCERREQWIKI+123} ] ; then 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 25 of 94 

                MESSAGE="Environment variable PUBLIC_LOADBALANCERREQWIKI 
required, but not set." 
                echo $MESSAGE 
                exit 3 
        elif [ -z ${PUBLIC_LOADBALANCERREQWIKI} ] ; then 
                echo "Environment variable PUBLIC_LOADBALANCERREQWIKI 
required, but not set to reasonable value." 
                exit 3 
        else 
                arr=$(echo $PUBLIC_LOADBALANCERREQWIKI | tr "," "\n") 
                for x in $arr 
                ## take the last one (because there are only one) 
                do 
                        echo "PUBLIC_LOADBALANCERREQWIKI > [$x]" 
                        WIKI_HOSTS+=$(echo "$x" | sed -e "s/:.*$//") 
                        WIKI_HOSTS+=" " 
                done 
        fi 
        ./${MY_DIR}/../shell/haproxy.sh configure $WIKI_HOSTS 
        ;; 
  *) 
        ./${MY_DIR}/../shell/haproxy.sh $@ 
esac 

ii. Mediawiki Bridge Script 

#!/bin/bash 
 
MY_DIR="$(dirname "$0")" 
 
 
### main logic ### 
case "$1" in 
  configure) 
        DB_HOST="0.0.0.0" 
        if [ -z ${PUBLIC_WIKIREQMARIADB+123} ] ; then 
                MESSAGE="Environment variable PUBLIC_WIKIREQMARIADB 
required, but not set." 
                echo $MESSAGE 
                exit 3 
        elif [ -z ${PUBLIC_WIKIREQMARIADB} ] ; then 
                echo "Environment variable PUBLIC_WIKIREQMARIADB required, but 
not set to reasonable value." 
                exit 3 
        else 
                arr=$(echo $PUBLIC_WIKIREQMARIADB | tr "," "\n") 
                for x in $arr 
                ## take the last one (because there are only one) 
                do 
                        echo "PUBLIC_WIKIREQMARIADB > [$x]" 
                        DB_HOST=$(echo "$x" | sed -e "s/:.*$//") 
                done 
        fi 
        ./${MY_DIR}/../shell/mediawiki.sh configure $DB_HOST 
        ;; 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 26 of 94 

  *) 
        ./${MY_DIR}/../shell/mediawiki.sh $@ 
esac 

iii. MariaDB Bridge Script 

MY_DIR="$(dirname "$0")" 
 
#!/bin/bash 
 
MY_DIR="$(dirname "$0")" 
./${MY_DIR}/../shell/mariaDB.sh $@ 

 

3.3.1.6 API Interaction 

Finally, we can start creating the entities using the API of Cloudiator. 

i. Creating the Application 

REST 
    { 
        "name":"MediawikiApplication" 
    } 

colosseum-client 
Application application = client.controller(Application.class).updateOrCreate(new 
ApplicationBuilder().name("MediawikiApplication").build()); 
 

UI 

 

Figure 2: Creating application - Mediawiki 

 

 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 27 of 94 

 

ii. Creating the LifecycleComponents 

REST 
    { 
        "name":"LoadBalancer", 
         "preInstall": "sudo apt-get -y update && sudo apt-get -y install git && git clone 
https://github.com/dbaur/mediawiki-tutorial.git", 
        "install": "./mediawiki-tutorial/scripts/lance/haproxy.sh install", 
        "start": "./mediawiki-tutorial/scripts/lance/haproxy.sh startBlocking" 
    } 
    { 
        "name": "MediaWiki", 
        "preInstall": "sudo apt-get -y update && sudo apt-get -y install git && git clone 
https://github.com/dbaur/mediawiki-tutorial.git", 
        "install": "./mediawiki-tutorial/scripts/lance/mediawiki.sh install", 
        "postInstall": "./mediawiki-tutorial/scripts/lance/mediawiki.sh configure", 
        "start": "./mediawiki-tutorial/scripts/lance/mediawiki.sh startBlocking" 
    } 
    { 
        "name": "MariaDB", 
        "preInstall": "sudo apt-get -y update && sudo apt-get -y install git && git clone 
https://github.com/dbaur/mediawiki-tutorial.git", 
        "install": "./mediawiki-tutorial/scripts/lance/mariaDB.sh install", 
        "postInstall": "./mediawiki-tutorial/scripts/lance/mariaDB.sh configure", 
        "start": "./mediawiki-tutorial/scripts/lance/mariaDB.sh startBlocking" 
    } 

colosseum-client 
    String downloadCommand = "sudo apt-get -y update && sudo apt-get -y install git 
&& git clone https://github.com/dbaur/mediawiki-tutorial.git"; 
 
    LifecycleComponent loadBalancer = 
client.controller(LifecycleComponent.class).updateOrCreate( new 
LifecycleComponentBuilder().name("LoadBalancer").preInstall(downloadCommand) 
        .install("./mediawiki-tutorial/scripts/lance/haproxy.sh install") 
        .start("./mediawiki-tutorial/scripts/lance/haproxy.sh startBlocking") 
        .build());  
 
    LifecycleComponent wiki = 
client.controller(LifecycleComponent.class).updateOrCreate( new 
LifecycleComponentBuilder().name("MediaWiki").preInstall(downloadCommand) 
            .install("./mediawiki-tutorial/scripts/lance/mediawiki.sh install") 
            .postInstall("./mediawiki-tutorial/scripts/lance/mediawiki.sh configure") 
            .start("./mediawiki-tutorial/scripts/lance/mediawiki.sh startBlocking").build()); 
 
    LifecycleComponent mariaDB = 
client.controller(LifecycleComponent.class).updateOrCreate(new 
LifecycleComponentBuilder().name("MariaDB").preInstall(downloadCommand) 
            .install("./mediawiki-tutorial/scripts/lance/mariaDB.sh install") 
            .postInstall("./mediawiki-tutorial/scripts/lance/mariaDB.sh configure") 
            .start("./mediawiki-tutorial/scripts/lance/mariaDB.sh startBlocking").build()); 

 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 28 of 94 

 

UI 

 

Figure 3: Creating internalComponent - LoadBalancer 

 

Figure 4: Creating internalComponent - Mediawiki 

 

Figure 5: Creating internalComponent - MariaDB 

 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 29 of 94 

iii. Creating the VirtualMachineTemplate 

REST 
  { 
    "cloud":1, 
    "image":1, 
    "location":1, 
    "hardware":1 
  } 

colosseum-client 
    VirtualMachineTemplate virtualMachineTemplate =  
client.controller(VirtualMachineTemplate.class).create( new 
VirtualMachineTemplateBuilder().cloud(cloud.getId()).location(location.getId()) 
                .image(image).hardware(hardware.getId()).build()); 

UI 

 

Figure 6: Creating virtualMachineTemplate 

 

iv. Creating the ApplicationComponents 

REST 
  {   
     "application":1, 
     "component":1, 
     "virtualMachineTemplate":1 
  } 
 
  {   
     "application":1, 
     "component":2, 
     "virtualMachineTemplate":1 
  } 
 
  {   



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 30 of 94 

     "application":1, 
     "component":3, 
     "virtualMachineTemplate":1 
  } 

colosseum-client 
    ApplicationComponent loadBalancerApplicationComponent = 
        client.controller(ApplicationComponent.class).create( 
            new ApplicationComponentBuilder().application(application.getId()) 
                .component(loadBalancer.getId()) 
                .virtualMachineTemplate(virtualMachineTemplate.getId()).build()); 
 
    ApplicationComponent wikiApplicationComponent = 
        client.controller(ApplicationComponent.class).create( 
            new ApplicationComponentBuilder().application(application.getId()) 
                .component(wiki.getId()) 
                .virtualMachineTemplate(virtualMachineTemplate.getId()).build()); 
 
    ApplicationComponent mariaDBApplicationComponent = 
        client.controller(ApplicationComponent.class).create( 
            new ApplicationComponentBuilder().application(application.getId()) 
                .component(mariaDB.getId()) 
                .virtualMachineTemplate(virtualMachineTemplate.getId()).build()); 

UI 

 

Figure 7: Adding components to the application 

 

v. Creating the RequiredPorts, and ProvidedPorts 

UI 

See communication. 

REST 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 31 of 94 

{   
   "name":"MARIADBPROV", 
   "applicationComponent":1, 
   "port":3306 
} 
 
 
{   
   "name":"WIKIPROV", 
   "applicationComponent":2, 
   "port":80 
} 
{   
   "name":"WIKIREQMARIADB", 
   "isMandatory":"true", 
   "applicationComponent":2 
} 
 
 
{   
   "name":"LBPROV", 
   "applicationComponent":3, 
   "port":80 
} 
{   
   "name":"LOADBALANCERREQWIKI", 
   "updateAction":"./mediawiki-tutorial/scripts/lance/haproxy.sh configure", 
   "isMandatory":"true", 
   "applicationComponent":3 
} 

colosseum-client 
    //database 
    final PortProvided mariadbprov = client.controller(PortProvided.class).create( 
        new PortProvidedBuilder().name("MARIADBPROV") 
            
.applicationComponent(mariaDBApplicationComponent.getId()).port(3306).build()); 
    // wiki 
    final PortProvided wikiprov = client.controller(PortProvided.class).create( 
        new PortProvidedBuilder().name("WIKIPROV") 
            .applicationComponent(wikiApplicationComponent.getId()).port(80).build()); 
    final PortRequired wikireqmariadb = client.controller(PortRequired.class).create( 
        new PortRequiredBuilder().name("WIKIREQMARIADB") 
            
.applicationComponent(wikiApplicationComponent.getId()).isMandatory(true).build())
; 
    // lb 
        final PortProvided lbprov = client.controller(PortProvided.class).create( 
            new PortProvidedBuilder().name("LBPROV") 
                
.applicationComponent(loadBalancerApplicationComponent.getId()).port(80).build()); 
        final PortRequired loadbalancerreqwiki = 
client.controller(PortRequired.class).create( 
            new PortRequiredBuilder().name("LOADBALANCERREQWIKI") 
                .applicationComponent(loadBalancerApplicationComponent.getId()) 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 32 of 94 

                .isMandatory(false) 
                .updateAction("./mediawiki-tutorial/scripts/lance/haproxy.sh configure") 
                .build()); 
                 

vi. Creating the Communication 

UI 

 

Figure 8: Creating communications 

 

colosseum-client 
    // wiki communicates with database 
    final Communication wikiWithDB = 
client.controller(Communication.class).create( 
        new CommunicationBuilder().providedPort(mariadbprov.getId()) 
            .requiredPort(wikireqmariadb.getId()).build()); 
    //lb communicates with wiki 
    final Communication lbWithWiki = client.controller(Communication.class).create( 
        new CommunicationBuilder().providedPort(wikiprov.getId()) 
            .requiredPort(loadbalancerreqwiki.getId()).build()); 

 

3.3.2 Cloud Model 

Before deploying an application with the Cloudiator framework the first step is to 
define the cloud target. 

In order to define a cloud target three entities have to be created: 

1. An Api, depicting the programming interface the cloud uses, e.g. Nova in 
case of Openstack. 

2. A Cloud, depicting the endpoint where the API of the cloud is reachable. 
3. A CloudCredential, depicting the user credentials for the given cloud 

endpoint. 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 33 of 94 

3.3.2.1 Openstack Example 

In this example we will create the required entities using an Openstack Cloud. 

For this purpose, we will need the following information of your Openstack Cloud. 

1. The endpoint of the Openstack Cloud. 
2. Your tenant name. 
3. Your username. 
4. Your API password. 

For other cloud providers, you can have a look at the examples section of Sword. The 
code examples list the information required for those providers. 

You can easily retrieve this information from the Openstack dashboard: 

5. Login 
6. Select the correct tenant from the tenant dropdown menu near the 

Openstack logo in the top-left edge. (If it does not exist, you only have one 
tenant and you can skip this step) 

7. Go to the “Compute” tab on the left navigation bar. 
8. Click Access & Security. 
9. Click the button “Download Openstack RC File”. 
10. Open the file in the editor: endpoint maps to OS_AUTH_URL, tenant maps 

to OS_TENANT_NAME, username maps to OS_USERNAME and 
password is most likely the password you also used for dashboard 
authentication or OS_PASSWORD. 

3.3.2.2 API Interaction 

Finally, you can start creating the entities in Cloudiator. Throughout the example, we 
will list three possibilities: Using the colosseum-client , direct REST (e.g. by using a 
client like Insomnia) or the user interface. 

Following the links above the guides for the components which present the APIs can 
be found including information about API authentication. 

i. Create API 

colosseum-client 
    String apiName = "openstack-nova"; 
    String internalProviderName = "openstack-nova"; 
 
    client.controller(Api.class).updateOrCreate( 
        new ApiBuilder().name(apiName) 
            .internalProviderName(internalProviderName).build()); 

REST 
{ 
    "internalProviderName": "openstack-nova", 
    "name": "openstack-nova" 
} 

 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 34 of 94 

UI 

 

Figure 9: Creating cloud 

 

ii. Create Cloud 

colosseum-client 
  Long apiId = 1; 
  String endpoint = "https://my-cloud-endpoint.com/example"; 
  String cloudName = "My Openstack"; 
 
  client.controller(Cloud.class).updateOrCreate( 
    new CloudBuilder().api(apiId).endpoint(endpoint) 
        .name(cloudName).build()); 
         

UI 

 

Figure 10: Creating API 

 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 35 of 94 

REST 
  { 
    "name": "My Openstack",  
    "endpoint": "https://my-cloud-endpoint.com/example",  
    "api": 1  
  } 

 

iii. Create CloudCredential 

colosseum-client 
  Long cloudId = 1; 
  String username = "MyCloudUsername"; 
  String secret = "MySecretCloudPassword"; 
 
  client.controller(CloudCredential.class).updateOrCreate( 
    new CloudCredentialBuilder() 
        .cloud(cloudId) 
        .secret(secret) 
        .user(username) 
        .tenant(1) 
        .build()); 

 

UI 

 

Figure 11: Creating cloudCredential 

 

REST 
  { 
    "user": "MyCloudUsername", 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 36 of 94 

    "secret": "MySecretCloudPassword", 
    "cloud": 1, 
    "tenant": 1 
  } 

 

3.3.2.3 Discovery 

After having created the above entities, the discovery of colosseum will start, 
importing the various offers (Images, Hardware and Locations) of the cloud provider. 
You can see the discovered entities, when accessing the corresponding API endpoints. 

3.3.3 Starting the application 

The next step is to start the instantiation of the application by starting the required 
virtual machines and installing the components by creating instances. 

3.3.3.1 Starting virtual machines 

Starting virtual machines is now easy. Simply select the correct offers with respect to 
Hardware, Image and Location and pass them to Colosseum. 

3.3.3.2 Starting instances 

Before a VMinstance is started, we have to create a new application instance. An 
application instance is a logical group for instances, that belong together. 

Afterwards, we can start the instances, by binding the already created application 
components to their virtual machines. 

3.3.3.3 Waiting until the deployment is finished 

Finally, we have to wait until the instances report a remote state of OK. Using the user 
interface we can see the IP Address where the load balancer is located, and access our 
wiki installation. 

 

Figure 12: IP address of load balancer 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 37 of 94 

 

Figure 13: Wiki page 

 

3.3.3.4 API Interaction 

i. Starting virtual machines 

UI 

 

Figure 14: Starting VM - lbVM 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 38 of 94 

 

Figure 15: Starting VM - mariaDBVM 

 

Figure 16: Starting VM – wikiVM 

 

REST 
  {   
     "name": "mariaDBVM", 
     "cloud": 1, 
     "image": 19, 
     "hardware": 10, 
     "location": 2 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 39 of 94 

  } 
 
  {   
     "name": "wikiVM", 
     "cloud": 1, 
     "image": 19, 
     "hardware": 10, 
     "location": 2 
  } 
 
  {   
     "name": "lbVM", 
     "cloud": 1, 
     "image": 19, 
     "hardware": 10, 
     "location": 2 
  } 

colosseum-client 
    final VirtualMachine mariaDBVM =client.controller(VirtualMachine.class).create( 
        VirtualMachineBuilder.of(mariaDBVirtualMachineTemplate) 
            .name("mariaDBVM")) 
            .build()); 
 
    final VirtualMachine wikiVM = client.controller(VirtualMachine.class).create( 
        VirtualMachineBuilder.of(wikiVirtualMachineTemplate) 
            .name("wikiVM").build()); 
 
    final VirtualMachine lbVM = client.controller(VirtualMachine.class).create( 
        VirtualMachineBuilder.of(loadBalancerVirtualMachineTemplate) 
            .name("lbVM").build()); 
             

ii. Creating the application instance 

 

REST 
{   
   "application": 1 
} 

colosseum-client 
    final ApplicationInstance appInstance = client.controller(ApplicationInstance.class) 
.create(new ApplicationInstanceBuilder().application(application.getId()).build()); 

 

 

 

 

 

 

 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 40 of 94 

UI 

 

Figure 17: Creating applicationInstance 

 

iii. Creating the application component instances 

 

UI 

 

Figure 18: Creating instance - lbVM 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 41 of 94 

 

Figure 19: Creating instance - wikiVM 

 

Figure 20: Creating instance – mariaDBVM 

 

REST 
{   
   "applicationInstance": 1, 
   "applicationComponent": 1, 
   "virtualMachine": 34 
} 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 42 of 94 

 
{   
   "applicationInstance": 1, 
   "applicationComponent": 2, 
   "virtualMachine": 33 
} 
 
{   
   "applicationInstance": 1, 
   "applicationComponent": 3, 
   "virtualMachine": 31 
} 

colosseum-client 
    final Instance lbInstance = client.controller(Instance.class).create( new 
InstanceBuilder().applicationComponent(loadBalancerApplicationComponent.getId
()) 
            
.applicationInstance(appInstance.getId()).virtualMachine(lbVM.getId()).build()); 
     
    final Instance wikiInstance = client.controller(Instance.class).create( new 
InstanceBuilder().applicationComponent(wikiApplicationComponent.getId()) 
            
.applicationInstance(appInstance.getId()).virtualMachine(wikiVM.getId()).build()); 
     
    final Instance dbInstance = client.controller(Instance.class).create( new 
InstanceBuilder().applicationComponent(mariaDBApplicationComponent.getId()) 
            
.applicationInstance(appInstance.getId()).virtualMachine(mariaDBVM.getId()) 
            .build()); 

 

3.3.4 Java Example 

3.3.4.1 Introduction 

To make it easy to test cloudiator we have created a java code sample that will 

automatically execute the steps mentioned by this tutorial. 

3.3.4.2 Installation 

Simply download the latest build from our Jenkins. You will need to have a Java JRE 8 

installed to run it. 

3.3.4.3 Configuration 

You will need to create a configuration file. A template for the configuration file can 

be downloaded at Github or copied from below. 

  

# Colosseum Configuration 
colosseum.url = http://{ip-of-colosseum}:9000/api 
colosseum.user = john.doe@example.com 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 43 of 94 

colosseum.password = admin 
colosseum.tenant = admin 

 
# Cloud configuration 
 

# Comma seperated list of all clouds 
clouds = myCloud 
 

## all configuration options should be present by using cloudName + 
PropertyName ## 
 

### myCloud 
 
## The name for the cloud 

myCloud.cloud.name = myCloud 
 
## The endpoint of the cloud 

myCloud.cloud.endpoint = http://endpoint.com 
 
## The username for this cloud 

myCloud.cloud.credential.username = myUser 
 
## The credential for this cloud 

myCloud.cloud.credential.password = topSecret 
 
## The name for the api 

myCloud.api.name = MyApi 
 
## The driver for this cloud 

myCloud.api.internalProviderName = openstack-nova 
 
## ID of the image 

myCloud.image.providerId = 9c154d9a-fab9-4507-a3d7-21b72d31de97 
 
## ID of the location 

myCloud.location.providerId = RegionOne 
 
## ID of the hardware 

myCloud.hardware.providerId = 3 
 
## The login for the image 

myCloud.image.loginName = 
 
## A comma seperated list of properties for this cloud 

myCloud.properties = 

3.3.4.4 Running the example 

To run the example simply execute: 

java -Dconfig.file=path-to-your-config-file -jar colosseum-example-
jar-with-dependencies.jar  

The program will automatically exit as soon as the mediawiki installation is running. 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 44 of 94 

  



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 45 of 94 

4 Camel Model Creation 

4.1  Overview 

The Cloud Application Modeling and Execution Language (CAMEL) [D2.1.3] super-
DSL has been formed by aggregating pre-existing domain-specific languages (DSLs) 
(e.g., CloudML [CloudML] and Saloon feature model [SALOON]) as well as new 
ones developed in the context of the PaaSage project (e.g., Scalability Rule Language 
(SRL) [SRL]). This super-DSL provides significant support to the model-driven 
engineering approach adopted by the PaaSage project in order to facilitate the whole 
multi-cloud application management lifecycle. To this end, CAMEL is able to capture 
various aspects in the latter lifecycle, including deployment and non-functional 
requirements as well as scalability rules. 

This document focuses mainly on the latter three aspects as they reflect the needs of 
application developers/owners, which guide the deployment plan derivation process, 
as well as the way the way this deployment plan can be evolved during application 
runtime. Apart from the aforementioned three main aspects, additional ones are also 
outlined by relying solely on the explication of the way respective aspect-specific 
modelling constructs can be specified such that are re-used to support the modelling 
of these three aspects.  

 

While there are different ways via which CAMEL models can be specified, the 
CAMEL Textual Editor is used here. This relies on the textual syntax of CAMEL. 
This is in accordance to the latest documentation in CAMEL (see [D2.1.3]) as well as 
to the fact that, as the main target users for this language are devops users, such type 
of users will benefit the most from textual rather than graphical-based editors. 
Instructions about how to install and use the CAMEL Textual Editor can be found in 
the CAMEL documentation at http://camel-dsl.org/documentation/.  

 

In the following, we adopt the Scalarm use case as a running example to exemplify 
how to specify CAMEL models in textual syntax. The complete Scalarm CAMEL 
model in textual syntax can be downloaded at: 

https://tuleap.ow2.org/plugins/git/paasage/camel?p=camel.git&a=blob&h=421be9e

1caa955ee9d15725a6c26966cc5df9e9f&hb=f8905ee94cbef60fdf49a6aabe274e33b3

2ff022&f=examples/Scalarm.camel. 

 

Scalarm stands for Massively Scalable Platform for Data Farming and intends to fulfil 
the following requirements: 

• support to all phases of a data farming experiment, starting from the 
experiment design phase, through simulation execution and progress 
monitoring, to statistical analysis of results, 

• support of different size experiments from dozens to millions of simulations 
through massive scalability, 

• support for heterogeneous computational infrastructure including private 
servers, computer clusters, grids and clouds. 

Scalarm’s architecture utilizes a service-oriented approach with additional 
modification, which addresses the scalability requirement.  

 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 46 of 94 

Pre-Requisites 
In order to follow this tutorial, it is recommended that the CAMEL Textual Editor is 
installed and launched in your system. This will enable you to copy the models 
illustrated in this tutorial and play with them such that you get accustomed and learn 
CAMEL. You should also be aware of some of the main features of this editor (see 
last section in this document as well as https://eclipse.org/Xtext/#feature-overview), 
such as auto-completion, which can assist you in the rapid specification and updating 
of your models. The prospective reader does not need to have any knowledge of 
CAMEL to understand the content of this tutorial but in some cases it is 
recommended that the user reverts to the CAMEL documentation in order to fully 
comprehend some relevant notions or inspect further details, if needed – this might 
happen in some cases as the goal of this tutorial is not to cover CAMEL in its entirety.  

 

Audience 
We consider that the specification of a CAMEL application model involves input 
from three types of users. To this end, this tutorial targets all of them. These user 
types are the following: 

Application Designer: This type of user is expected to have knowledge of the 
main deployment and non-functional requirements of the application at hand, such as 
the application topology and requirements on application response time. 

Business User: This type of user will set the higher level business 
requirements, such as the cost of application execution, and specific business 
policies/restrictions, such as data processing only using EU hosts. 

Systems Admin: This type of user will know the wider technical context from 
an organizational perspective that the application should execute within. 
Requirements such as the wider security policies and technical details (e.g., OS-
specific component configuration demands) can be set by this user type. 

 

The end user monitors application execution in the Cloud against the requirements 
posed and could belong to either one of the user types above and as a result have 
needs for different levels of monitoring detail. The end user choice also depends on 
the organization’s characteristics. It may also be possible that the setting of 
requirements is delegated to one of the above user types, although, as already stated, 
requirements from each type of user is needed for the PaaSage platform to provide the 
optimum Cloud-based application management.  

 

4.2  CAMEL creation 

A CamelModel is a collection of sub-models mapping to the captured information 
aspects, including deployment details, end user requirements, monitoring 
measurements / metrics, scalability and organization details relevant for the multi-
cloud application management lifecycle. Each aspect is mapped to a respective sub-
model. All relevant aspects and corresponding sub-models, associated to the different 
types of user requirements, policies and rules that can be specified, are discussed in 
detail in the sequel in different sub-sections.  



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 47 of 94 

4.2.1  Deployment Aspect – DeploymentModel 

A DeploymentModel is a collection of DeploymentElements. A deployment element 
can be a Component, a Communication, or a Hosting. A deployment element can refer 
to Configurations, which represent sets of commands to handle the deployment 
element’s life cycle. 

4.2.1.1 Components 

A Component represents a reusable type of application component. A 
component can be an InternalComponent managed by the PaaSage platform, or 
a requirement for a VM (short for virtual machine) offering maintained by the 
cloud provider. A virtual machine or a deployment model can be associated to a 
VMRequirementSet, which refers to a set of requirements for a single virtual 
machine or for all virtual machines, respectively, such as hardware, operating 
system and location requirements. These requirements are specified via a 
CAMEL requirement model (see also Listing 6).  

 

Assume that we have to specify the Experiment Manager component of the 
example Scalarm use case. Listing 1 shows this specification in textual syntax 
where the corresponding component has been mapped to the definition of an  
internal component (i.e., an internal software component of the 
application) called ExperimentManager. provided 
communication ExpManPort represents that the Experiment Manager 
offers a communication port (443) via which its features can be exploited.  
required communication StoManPortReq and InfSerPortReq 
specify that the Experiment Manager requires features from the Information 
Service, which is another internal component, through port 11300 and from the 
Storage Manager through port 20001, respectively. The property mandatory 
of the latter signifies that the communication between the components should 
be obligatorily established, as the Execution Manager component needs to 
exploit the Storage Manager features from the very beginning of its 
initialization. As such, the Storage Manager will have to be started before the 
start of the Execution Manager.  



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 48 of 94 

 

Listing 1: Scalarm sample internal component 

 

required host CoreIntensiveUbuntuGermanyReq  indicates that 
the Experiment Manager needs to be hosted on a specific VM that satisfies 
certain requirements indicated in the description of this VM in the model. 
configuration ExperimentManagerConfiguration specifies the 
commands to handle the life cycle of the Experiment Manager. download, 
install, and start specify the Unix shell scripts for downloading, 
installing, and starting the Experiment Manager, respectively. 

 

Then, assume that we have to specify the virtual machine on which the 
Experiment Manager needs to be deployed (which can be used for other VMs, 
if this is necessary). Listing 2 shows this specification in textual syntax. 
requirement set CoreIntensiveUbuntuGermanyRS specifies a 
reusable set of requirements for the VM being modelled. quantitative 
hardware, os, and location refer to the requirements CoreIntensive, 
Ubuntu, and GermanyReq, respectively, from the requirement model 
ScalarmRequirement (cf. Listing 6), mapping to the specification of the 
hardware requirements. 

 

In vm CoreIntensiveUbuntuGermany the previous requirementSet is 
connected to the specification of the VM on which the Experiment Manager 
will be hosted.  

 

provided host CoreIntensiveUbuntuGermany is the hosting port 
of the VM via which a respective component can be connected to indicate to the 
system that it should be hosted on that VM. 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 49 of 94 

 

Listing 2: Scalarm sample vm 

 

4.2.1.2 Communications 

A Communication represents a reusable type of communication binding 
between a required and a provided communication port.  

 

Assume that we have to specify the communication binding between the 
Experiment Manager and the Storage Manager. Listing 3 shows this 
specification in textual syntax. Communication 
ExperimentManagerToStorageManager specifies that reusable type of 
communication binding between the two internal components in question.  
from .. to .. block specifies that the communication binding is from 
the required communication port StoManPortReq of the component 
ExperimentManager to the provided communication port StoManPort of the 
component StorageManager. type: REMOTE specifies that the Experiment 
Manager and the Storage Manager is chosen to be deployed on separate virtual 
machine instances. 

 

Listing 3: Scalarm sample communication 

 

4.2.1.3 Hostings 

A Hosting represents a reusable type of containment binding between a 
required and a provided host port. 

 

Assume that we have to specify the hosting binding between the Experiment 
Manager and the virtual machine CoreIntensiveUbuntuGermany. 
Listing 4 shows this specification in textual syntax. 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 50 of 94 

hosting ExperimentManagerToCoreIntensiveUbuntuGermany 
in Listing 4 below, specifies such a hosting binding. from .. to .. 
block specifies that the hosting binding is from the required hosting port 
CoreIntensiveUbuntuGermanyPortReq of the component 
ExperimentManager to the provided hosting port 
CoreIntensiveUbuntuGermanyPortReq of the virtual machine 
CoreIntensiveUbuntuGermany. 

 

 

Listing 4: Scalarm sample hosting 

 

4.2.2 Requirement Aspect – RequirementModel 

A RequirementModel is a collection of Requirements which can be associated to an 
application and/or its main components. A requirement can be a HardRequirement, 
such as a service level objective (SLO) (e.g., response time < 100ms), which the 
PaaSage platform must satisfy at all costs, or a SoftRequirement, such as an 
optimization objective (e.g., minimize cost), which the platform will attempt to satisfy 
in the best possible way with no precise guarantees.  

 

A RequirementGroup represents a tree-based requirement structure which can contain 
simple requirements as well as requirement sub-structures (i.e., complex requirements 
/ requirement groups). The property requirementOperator of RequirementGroup 
represents the logical operator that is used to connect these requirements and it can be 
assigned two different alternative values mapping to known logical operators (AND 
(logical conjunction) or OR (logical disjunction)). A requirement group refers to an 
Application for which all the requirements must be satisfied. 

 

Different kinds of requirements are supported by CAMEL, each analysed in 
respective subsections. 

4.2.2.1 Hard requirements 

A hard requirement can be attached to the specification of the requirements for 
a VM, or to a whole deployment model. In the former case, it specifies that 
instances of the VM must conform to the requirement in question. In the latter 
case, it specifies that all VM instances should be constrained according to that 
requirement.  

 
Hardware, OS & Image and Provider Requirements 
Two types of a HardwareRequirement exist. On the one hand, a 
QualitativeHardwareRequirement represents benchmarking constraints / 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 51 of 94 

requirements with the intention to have a better classification and respective 
filtering of the VMs according to particular aspects like computation, memory, 
networking (e.g., computationally-large VMs vs memory-intensive VMs) or in 
an overall manner (by combining benchmark results over different aspects). As 
such, the respective properties min- and maxBenchmark of 
QualitativeHardwareRequirement of this class represent the range of 
benchmark results that a virtual machine instance must satisfy. On the other 
hand, a QuantitativeHardwareRequirement represents a set of constraints over 
the features of a VM (e.g., core number and RAM size) which can be used to 
perform typical filtering over the VM offerings across all cloud providers. For 
instance, in Listing 6, we can see that the user imposes for a respective 
hardware requirement that the number of cores provided should be from 8 to 32 
while the size of main memory should range from 4096 to 8192 MB. 

 

An OsOrImageRequirement can be specialized into an OSRequirement or an 
ImageRequirement. The former represents a requirement on the operating 
system run by a virtual machine, where the property os of OSRequirement 
represents the required operating system (e.g., “Ubuntu”, “Windows”, etc.), 
while the property is64os represents whether the operating system must 
conform to a 64bit architectures (e.g., x86-64). The latter represents a 
requirement on the image deployed on a virtual machine, where the property 
imageId of ImageRequirement represents the identifier of the required image. 

 

A ProviderRequirement represents alternative cloud providers that could only 
be considered for the application deployment (e.g., Amazon and Rackspace 
only). 

 

Location Requirements 
A LocationRequirement refers to one or more Locations, which represent either 
geographical regions (e.g., a continent, a subcontinent, a country, or even a 
region) or cloud locations (i.e., regions and availability zones in Amazon cloud 
like us-east-1a). 

 

Security Requirements 
A SecurityRequirement refers to one or more SecurityControls, which represent 
the security controls that must be supported for a cloud provider in order to 
make it amenable for selection for use (see also Section 1.2.7 to comprehend 
the way security controls can be specified). Moreover, it can refer to an 
Application or InternalComponent, which represent the application or 
component on which the security controls must be enforced. If the security 
requirement refers to an application, then all cloud providers’ offerings and 
services, which are used by the application, must support the corresponding 
security controls. In case the security requirement refers to a single component, 
such as a virtual machine, then only offerings from cloud providers supporting 
the respective security controls can be selected for the particular component. 

 

Scale Requirements 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 52 of 94 

A ScaleRequirement can be referred to by a ScalabilityRule which dictates how 
corresponding scaling actions which can be performed are restrained. A 
ScaleRequirement can be a HorizontalScaleRequirement, which represents the 
minimum and maximum amount of instances allowed for a component, so that 
scale-out and scale-in actions will not exceed these bounds, respectively. 
Alternatively, it can be a VerticalScaleRequirement, which represents the 
minimum and maximum values allowed for virtual machine properties (e.g., 
number of CPU cores), so that scale-up and scale-down actions will not exceed 
these bounds, respectively. 

 

Service Level Objectives 
A ServiceLevelObjective represents an SLO. SLOs are used to specify 
measurable performance objectives (e.g., upper and/or lower thresholds 
regarding availability, response time, throughput, etc.) of a cloud service. In 
CAMEL, a ServiceLevelObjective refers to a Condition, such as a 
MetricCondition, which represents the metric condition that must be satisfied 
(i.e., the corresponding measurement values must not cross a particular 
threshold). Such a condition is specified via a metric model (see Section 1.2.4). 

 

4.2.2.2 Soft requirements  

Optimization Requirements 
An OptimisationRequirement refers to a Metric, which represents how a metric 
should be optimized. Moreover, it refers to an Application or 
InternalComponent. The property optimisationFunction of 
OptimisationRequirement represents the optimization function applied to the 
metric and can be assigned the values of MINIMISE or MAXIMISE. 

 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 53 of 94 

 

Listing 6: Scalarm provider model 

 

Assume that we have to specify the requirements for the components of the Scalarm 
use case. Listing 6 show this specification in textual syntax. quantitative 
hardware CoreIntensive specifies that a VM must have from 8 to 32 CPU 
cores and from 4 to 8 GB of RAM. os Ubuntu specifies a quantitative hardware 
requirement prescribing that a VM must support the 64-bit edition of the Ubuntu 
operating system. location requirement GermanyReq specifies that a VM 
must be deployed in Germany. All three above requirements are referred to by the 
requirement set CoreIntensiveUbuntuGermanyRS in the deployment model 
ScalarmDeployment (cf. Listing 2). locations refers to the location DE, indicating 
the iso2 code for the country of Germany, in the location model ScalarmLocation (cf. 
Listing 7). 

 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 54 of 94 

horizontal scale requirement 
HorizontalScaleSimulationManager specifies that the component 
SimulationManager must scale horizontally between 1 and 5 instances. component 
refers to the internal component SimulationManager in the deployment model 
ScalarmDeployment (cf. Listing 2).  

 

slo CPUMetricSLO is a specific SLO which is associated via the service 
level property to the metric condition CPUMetricCondition in the metric model 
ScalarmModel (cf. Listing 9). optimization requirement 
MinimisePerformanceDegradationOfExperimentManager specifies 
that the metric MeanValueOfResponseTimeOfAllExperimentManagersMetric of the 
component ExperimentManager, which is the average response time over all 
instances of the Experiment Manager application component, should be minimized 
and that this minimization has a priority of 0.8. 

 

4.2.3 Location Aspect – Location Model 

A LocationModel is a container for locations which is mainly used to represent 
location requirements. Two kinds of locations can be captured. On the one hand, 
physical locations are represented by GeographicalRegions. The property name of 
such a location represents its name in English, while the property alternativeNames 
represents alternative names of this location in other natural languages. A 
geographical region can refer to a parent region, which allows creating hierarchies of 
geographical regions. A GeographicalLocation can be a Country, which represents a 
distinct entity in the political geography.  

 

On the other hand, a CloudLocation represents a virtual location that is specific to a 
particular cloud (e.g., the eu-west-1 availability zone in Amazon EC2). Similar to the 
geographical region, a cloud location can refer to a parent location, which allows 
creating hierarchies of cloud-specific locations (e.g., regions and encompassing 
availability zones in Amazon EC2). 

 

Assuming that we have to specify the locations for the Scalarm use case, Listing 7 
shows this specification in textual syntax. region EU specifies the region 
(continent) Europe. country DE specifies the country Germany. parent 
regions refers to the parent region of Europe for this country. Only the parents of a 
region need to be specified and not all possible ancestors. The ancestors of a country 
can be inferred in a recursive way by exploring the aforementioned parent-to-child 
relationship/property.   



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 55 of 94 

 

Listing 7: Scalarm location model 

4.2.4 Measurement/Metric Aspect – MetricModel 

A metric model can be used to specific conditions over quality metrics or properties 
for applications and components (sw components and VMs), which can be associated 
to SLOs or (scalability rule) events, as well as all appropriate details to measure these 
metrics and properties. A condition can be specified by exploiting the following 
constructs analysed in the next sub-sections. 

4.2.4.1 Metrics 

A Metric is a standard of measurement which encapsulates all appropriate 
details for measuring non-functional properties. A RawMetric (e.g., raw 
response time) maps to the description of how raw measurements over a certain 
non-functional property (e.g., response time) can be produced. A 
CompositeMetric, in turn, represents an aggregated metric computed from other 
metrics. A metric refers to a Unit of measurement (e.g., the unit of SECONDS 
for the raw response time metric). In order to assist in checking the correctness 
of measurement values or their aggregations, a metric also refers to a 
ValueType, which represents the range of values the metric is allowed to take. 

4.2.4.2 Metric Formulas 

Each CompositeMetric refers to a MetricFormula, which explicates the 
computation formula used for deriving the composite metric measurements. 
For that purpose, a MetricFormula refers to one or more 
MetricFormulaParameters, which constitute its input, as well as to a pre-
defined function to be applied on this input. There exist three kinds of 
parameters: constants, Metrics, or MetricFormulas. As such, a MetricFormula 
represents a measurement aggregation tree over particular metrics connecting 
different sub-formulas into a coherent whole.  

4.2.4.3 Properties 

Any Metric also refers to a measurable Property, i.e., the non-functional 
property of a component or an application that is measured by this metric. The 
attribute type represents the kind of property, where a value of MEASURABLE 
represents that the property can be measured, e.g., in the case of response time 
or CPU load, while a value of ABSTRACT represents that the property is not 
measurable. An abstract property that is not measurable can be realized by 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 56 of 94 

more concrete and possibly measurable properties. In this way, the construction 
of property hierarchies is supported. 

4.2.4.4 Metric Conditions 

A MetricCondition represents a constraint imposed on a metric. A constraint is 
violated when the respective condition threshold is not met by the produced 
measurements of this metric. The violation of a metric condition may lead to 
the triggering of a simple, non-functional event, which might be part of the 
overall event pattern of a scalability rule, and/or to the violation of an SLO.  

4.2.4.5 Property Conditions 

A PropertyCondition represents a condition on a non-functional property. This 
way, it is possible to specify, e.g., constraints on the cost for the whole 
application or one or more of its components. Then, it is up to the PaaSage 
platform to interpret these constraints appropriately in order to derive the 
required property values (e.g., based on a particular internal to the platform 
metric used for producing the respective property value). 

4.2.4.6 Condition Contexts 

A condition, either pertaining to a metric or to a property, refers to a particular 
ConditionContext, which represents the context under which it should hold. 
The context explicates whether the condition must be enforced on the whole 
application or a particular component/VM. It also indicates for how many 
instances of the application or component/VM the condition must be checked. 
Two different types of quantification are distinguished: relative, in the form of 
percentages over the number of instances for an application or a component, 
and absolute, in the form of the actual number of instances for these 
applications or components.  

4.2.4.7 Metric Context 

A MetricContext is a condition context that also refers to the metric to be used 
for evaluating a respective condition as well as to information regarding the 
measurement schedule and window for this metric. For a composite metric, a 
CompositeMetricContext includes a reference to the contexts of the composing 
metrics of this metric. For a raw metric, a RawMetricContext represents a 
reference to the sensor that produces the measurements of this metric. The 
PaaSage runtime generates contextual information whenever possible so that it 
is not necessary to create all composing contexts by hand. This is possible as 
some information is inherited from the composite metric’s context to its 
composing metrics’ contexts (actually scheduling and window of measurement 
information).  

Consequently, the definition of a context is only obligatory when information 
should not be inherited but differentiated for a specific composing context. For 
example, if we have specified the context of raw availability, the context of raw 
uptime (component of raw availability) does not need to include measurement 
scheduling and window information (e.g., measure the metric every 10 
seconds) as this will be identical to the one encompassed in the availability’s 
context.  

 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 57 of 94 

4.2.5 Scalability Aspect – ScalabilityModel 

A scalability model encompasses the specification of a set of scalability rules, 
regulating the adaptive runtime behaviour of a particular application, along with the 
events used to trigger them as well as the scaling actions executed upon this 
triggering. These three latter constructs are analysed in more detail below in separate 
subsections. 

4.2.5.1 Scalability Rules 

A ScalabilityRule associates an Event and a set of Actions. The Event 
represents either a single event or an event pattern/aggregation that triggers the 
execution of the actions. The Actions either specify which components and 
virtual machines should be scaled (i.e., case of scaling actions) and how global 
deployment decisions are made (i.e., for event creation actions). In the case 
where local adaptation fails or scalability limits based on given scaling 
requirements have been reached (that need to be associated to the respective 
ScalabilityRule). A scalability rule also refers to Entities, such as the user or the 
organization, which has specified it. 

4.2.5.2 Actions 

An Action can be specialized into a ScalingAction or an EventCreationAction. 
The ScalingAction, in turn, can be specialized into a HorizontalScalingAction 
or a VerticalScalingAction. The HorizontalScalingAction refers to a VM and an 
InternalComponent (both specified via the deployment package). In case such 
an action is executed, the specified component is scaled (out or in) along with 
the virtual machine hosting it. The property count defines the number of 
additional instances to create, or the number of existing instances to destroy. In 
contrast to horizontal scaling, the VerticalScalingAction refers to a concrete 
VMInstance. The properties named by the *Update pattern define the amount 
of virtual resources (e.g., CPU cores, RAM, etc.) to be added to or removed 
from the virtual machine instance. An EventCreationAction signifies via the 
creation of an event that the scaling actions are not sufficient to maintain the 
target service level of a multi-cloud application. For instance, a multi-cloud 
application may still violate the target response time defined in an SLO despite 
the scale-out or scale-up actions performed. 

4.2.5.3 Events 

Events can be simple or composite (i.e., event patterns). A SimpleEvent can be 
specialized into a FunctionalEvent or a NonFunctionalEvent. The 
FunctionalEvent represents a functional error (e.g., a virtual machine or a 
component has failed). A NonFunctionalEvent refers to a metric or property 
condition that is triggered when this condition is violated. (e.g., the response 
time of a component exceeds the target response time in an SLO). The 
NonFunctionalEvent refers to a MetricCondition, which defines the threshold 
for the metric. On the other hand, an event pattern is an aggregation of events 
based on logical or time-based operators (e.g., a logical conjunction of two 
other events via the AND logical operator).  

 

Listing 8 shows the Scalarm’s scalability model in textual syntax. This model 
encompasses one scalability rule that associates one binary event pattern with a scale-



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 58 of 94 

out action, while it is restricted by the scaling policy specified in Listing 6. The 
semantics of this rule specifies that we need to scale-out the SimulationManager 
component of Scalarm when particular bounds/conditions of two metrics are violated, 
mapping to respective events aggregated via a logical conjunction into the 
corresponding binary event pattern, provided that the number of instances of this 
component is less than 5. The scale-out action specification indicates important 
information about the scaling, such as the scale action type, which is the component to 
be scaled and onto which the VM type/offering will be hosted.  

 

Listing 8: Scalarm scalability model 

Listing 9 shows the Scalarm’s metric model in textual syntax, which encloses the 
specification of the event conditions involved in the previously analysed scalability 
rules, and the corresponding metrics encompassed in these conditions along with their 
scheduling information. The two metrics map to common information for two 
families of metrics: (a) a raw (sensor) metric measuring CPU load and (b) an average 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 59 of 94 

CPU load metric; the latter metric will be instantiated with two different contexts, one 
with a window of five minutes, and another with a window of one minute. This is due 
to the semantics of the corresponding conditions mapping to these contexts which 
impose applying different bounds on the same composite metric with  different 
measurement scheduling and window directives. In particular, one condition 
(CPUAvgMetricConditionAll) will be violated when the average CPU, computed 
every 1 minute with a sliding window of 5 minute, for all instances of the 
SimulationManager component is greater than 50%, while the other condition 
(CPUAvgMetricConditionAny) will be violated when the average CPU, computed 
every 1 minute with a sliding window of 1 minute, for any instance of 
SimulationManager is greater than 80%.  

 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 60 of 94 

 
 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 61 of 94 

 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 62 of 94 

 

Listing 9: Scalarm metric model 

4.2.6 Security Aspect – SecurityModel 

A SecurityModel is container of security-related constructs which can be exploited to 
specify security requirements and capabilities that can assist in the filtering of  cloud 
providers during deployment plan reasoning. Such constructs are now analysed in 
detail.  

 

A SecurityControl represents a technical or administrative countermeasure that aims 
to address security risks in a cloud-based application. Such a construct actually 
characterises high-level security requirements or capabilities that have to be satisfied 
or realised by the application owner or cloud provider, respectively. The property 
specification is used to specify textual descriptions of security controls in the CAMEL 
model. A security control can be linked to raw or composite security metrics which 
are specialisations of non-functional metrics (see Section 1.2.4). This kind of linkage 
enables the connection of high-level requirements or capabilities expressed via 
security controls to more concrete requirements or capabilities expressed via 
conditions on security metrics. As such, we can evaluate whether a particular security 
control is satisfied via assessing the respective conditions on metrics associated to this 
control. A security control is also associated to a security domain and sub-domain. 
The latter constructs can be exploited to perform a partitioning of security-related 
building blocks in terms of security controls, metrics and properties.  

 

 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 63 of 94 

 

 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 64 of 94 

Listing 12: A set of security related models 

 

A security property is a kind of a non-functional property. Certifiable security 
properties can actually be measured/certified and are thus connected to respective 
security metrics. A SecuritySLO is a kind of SLO which involves security metrics and 
properties in its conditions. 

 

Assume that we have to specify a security model for the Scalarm use case. Listing 12 
above shows this specification model in textual syntax. domain IAM specifies the 
security domain of Identity & Access Management (IAM). domain IAM_CLCPM and 
IAM_UAR specify two sub-domains of IAM, namely Credential Life Cycle/Provision 
Management (CLCPM) and User Access Revocation (UAR), respectively. The 
property IdentityAssurance specifies an abstract security property associated with the 
security domain IAM.  

 

Security control IAM_02 (related to the establishment of user-control access and 
policies at the cloud provider side) specifies a security control associated with the 
security sub-domain (CLCPM) and the property IdentityAssurance. Similarly, 
security control IAM_11 (related to the timely deprovisioning of user access) 
specifies a security control associated with the security sub-domain (UAR) and the 
property IdentityAssurance. Note that these security controls are part of the set of 
security controls of the Cloud Control Matrix3 identified by the Cloud Security 
Alliance (CSA)4. security capability SecCap specifies a security capability associated 
with the security controls IAM_02 and IAM_11. Finally, the organisation model 
AmazonExt refers to the security capability SecCap, which specifies that the Amazon 
provider supports this security capability. 

4.2.7 Type Aspect - TypeModel 

The type model includes the specification of values as well as of the types to which 
these values conform. Such types can be associated to metrics and feature attributes.  

 

A Value represents a generic value. It can be specialised into a NumericValue, 
StringValue, BooleanValue, and EnumerateValue. A numeric value can be further 
split into the IntValue, DoubleValue, and FloatValue. A numeric value can also be 
split into NegativeInf and PositiveInf, which represent negative and positive infinity, 
respectively, and can be used for specifying one of the two bounds of range-based 
value types.  

 

The StringValue and BooleanValue classes represent string and boolean values, 
respectively. On the other hand, the EnumerateValue represents an enumerated value. 
The property name represents the string associated with the value, while the property 
value represents an integer associated with the value (or position in the enumeration).  

 

                                                 
3 https://cloudsecurityalliance.org/download/cloud-controls-matrix-v3-0-1/ 
4 http://www.cloudsecurityalliance.org 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 65 of 94 

ValueType represents a generic value type. It can be specialised into a 
StringValueType, BooleanValueType, Enumeration, List, Range and RangeUnion. 
StringValueType and BooleanValueType represent string and boolean value types, 
respectively. Enumeration represents an enumeration type that can take 
EnumerateValues.  

 

List represents a list type having members of which that can be of a basic (i.e., a 
numeric, string, or boolean value) or complex value type (e.g., an enumeration or a 
range). The property primitiveType represents the basic value type, and it has to be 
used in the first case. The referenced type represents the complex value type, and it 
has to be used in the second case.  

 

A Range represents a range-based value type. It has two references lowerLimit and 
upperLimit. A limit represents an actual bound, either upper or lower, of a range. The 
property included indicates whether the limit’s value is included or not in the range. 
The RangeUnion represents a union of range-based value types. It refers to the 
contained range-based value types as well as to the primitive type that is common 
across all the contained value types. 

 

Assume we have to record the types of the Scalarm use case. Listing 14 shows this 
specification in textual syntax. The range statements specify two integer-based ranges 
and one double-based range. The first range is associated as a value type to the 
CPUMetric (cf. Listing 9 to represent that CPU metric values should be between 0 
and 100, both included). The second range is associated as a value type to the 
ResponseTimeMetric to signify that the values of this metric should be between 0, not 
included (i.e., between 1), and 10000, included. The third range is associated to the 
AvailabilityMetric and signifies that the respective metric values should be between 
0.0 and 100.0, where both bound/limit values are included. 

 

 

Listing 14: Scalarm type model 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 66 of 94 

4.2.8 Unit Aspect – UnitModel  

A UnitModel is a collection of units that can be associated to metrics of a metric 
model or attributes of a provider model. A Unit represents an abstract unit. It can be 
specialised into the following classes: 

• CoreUnit, which represents the unit of CPU cores 
• MonetaryUnit, which represents a monetary unit (e.g., EUROS) 
• RequestUnit, which represents the unit of number of requests 
• StorageUnit, which represents the unit of storage (e.g., BYTES) 
• ThroughputUnit, which represents the unit of throughput (e.g., REQUESTS 

_PER_SECOND) 
• TimeIntervalUnit, which represents the unit of time interval (e.g., SECONDS) 
• TransactionUnit, which represents the number of transactions 
• Dimensionless, which represents a unit without dimension (e.g., a unit of 

PERCENTAGE is dimensionless). 
 

Assume that we have to specify the units of the Scalarm use case. Listing 15 shows 
this specification in textual syntax. The unit model encompasses seven units that are 
used in the metric model. The specification of each unit follows the pattern: 
<unit_class> <unit_name>: <unit_type> (where the latter is an enumeration of all 
possible unit types). For instance, monetary unit {Euro: EUROS} specifies a 
monetary unit named “euros” and typed EUROS. 

 

 

 

4.3  Summary 

In this section, we have introduced CAMEL in the context of the specification of non-
functional and deployment requirements as well as scalability rules. For each aspect, 
we have described the main modelling concepts, their properties and relations, while 
we have provided concrete examples of the respective aspect-specific part of the 
CAMEL syntax by relying on the Scalarm use case.  

 

Through the use of the CAMEL textual editor, we believe that the prospective user 
does not only have access to many interesting editing services but also is presented 
with the capability to learn the CAMEL essentials without having to revert to any 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 67 of 94 

extensive CAMEL documentation. The editor also enables rapid production of 
CAMEL models. The editor’s services encompass capabilities for syntactic and 
semantic highlighting, domain validation reporting, auto-completion and clever 
suggestion (by also catering for user-intuitive cross-reference specification within or 
across CAMEL sub-models), while the automatic generation of the XMI CAMEL 
form is also supported. Such capabilities and the editing mode cater mainly devops 
and admin types of users as they are more close to the way these user types work. 

 The remaining user types, i.e., a business user, who is not comfortable with the 
editing mode can revert to the alternative ways to specify CAMEL models which are 
graphics-based. These latter ways include the default graphical tree-based CAMEL 
editor offered by the Eclipse Environment which can operate over the file system or 
the MDDB CDO Repository [D4.1.2], or a web-based editor developed via Eclipse’s 
RAP5 technology which enables the on-line editing of CAMEL application 
(application + requirement) and organisation models over the MDDB CDO 
Repository.   

 

  

                                                 
5 Eclipse.org/rap 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 68 of 94 

5 Social Network User Guide 
The PaaSage Social Network (SN) is a social platform targeted at the creation of a 
community of users and developers. It enables usersto exchange their experience and 
knowledge with respect to the PaaSage platform. Through the PaaSage SN, users can 
connect to other SN users and view their contributions, join groups, deploy 
applications, navigate through historical knowledge of previously executed 
application models, create application models by also utilizing useful modeling 
recommendations provided by the SN as well as comment and rate such applications 
models. SN is available for users (socialnetwork.paasage.eu) to create accounts and 
exploit the functionality exhibited by the SN. This section presents the basic 
functionality of the PaaSage Social Network and provides an overview of the pages 
and the actions that a user can perform. Furthermore, in the following subsections, all 
the required information about how to use and navigate through the PaaSage Social 
Network is supplied. 

 

5.1  Site Sections 

The fundamental view of the Social Network Web Site is shown in Table 2 below. In 
the top-bar navigation menu the user can navigate through the key elements of the 
SN, which are the home page, Models, Community. Home page is the entry page of 
the social network. Information about the activity of the user models is depicted here. 
Moreover, the live feed part, which is an infinite scroll, shows the latest activity of all 
the members of the social network. Models page includes application models 
described in the Camel Meta-model [D2.1.2]. Finally, the Community supplies the 
necessary functionality for users to ask questions, get feedback from other users and 
create / join groups. In the right corner of the top-bar navigation menu, the following 
shortcuts are supplied: 

 

 

My Area  

 

The My Area section contains the user’s 
configurations, runs, 

models, components, and credentials 

 

Notifications Any system notification to the user. 

 

The user profile photo Redirects to the user’s profile. 

 

Friends Redirects to the user’s friends. 

 

Messages The text messages sent from other users. 

 

Settings The user’s settings. 

Table 2: Top-bar navigation menu shortcuts 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 69 of 94 

 

The Main Window displays the main information that the user wants to see according 
to the user action/selection performed. For instance, if the user clicks the Community 
link from the top-bar, the Main Window will contain the home page of the 
community. The Sidebar section contains neighboring information about the Main 
Window and some actions that maybe the user wants to perform, such as filtering the 
Main Window information. 

 

 

Figure 21: Site Sections: 1) The top-bar section provides the basic navigation 
options. 2) The Main Window provides the main information that the user desires to see. 3) The 
sidebar sections exist basically for additional, secondary information and 4) the footer of the site 

 

Finally, the last element of the page is the Footer which is kept simple and provides 
the links to: 

• Contact Information 
• Terms of Service and 
• Privacy Policy 

 

5.2  User Login / Register 

The introductory page of Social Network (SN), shown in Figure 22, has the basic 
functionality for login, register and additionally some information about the SN 
capabilities. If the user has an account on the SN, then he/she can log-in by typing 
his/her username or email as well as password in the top right section. If the user is a 
new visitor then he/she can register to the SN. The registration section is kept simple 
by enabling the user to provide only the necessary details for the sign up process 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 70 of 94 

(display name, email address, username and password). It must be highlighted that the 
user can provide additional details in the profile settings pages which are analyzed in 
the following subsection. The easiest and quickest way for a new user of the SN to 
log-in is to make use of their Facebook or Twitter account. In that way an account is 
created in the SN taking information from the Facebook or Twitter account 
respectively. After the sign-up or log-in process, the user is redirected to the models 
home page, which is analyzed later on. 

 

 

Figure 22: Log-in and Registration Page 

 

 

Figure 23: User General Settings 

5.3  User Profile 

The user’s profile page is shown in Figure 24. In the top of the main page the user can 
see the models he/she has contributed to the SN. Such contribution items are shown 
throughout all the web site in order to incentive the user to provide feedback to the 
community. After the contributions page part, the user can see the top discussion 
topics, nominated according to the rating of other users. In the next section of the 
main page body, the user can see his/her activity feed. Finally, in the sidebar section, 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 71 of 94 

the user can add his/her skills (e.g., web application development) and areas of 
interest (e.g., servers). 

When the mouse is over a tag in the skills or in areas of interest section, a remove 
button appears to assist the user in deleting the desired entry/tag. 

 

 

Figure 24: User's profile page 

Bellow the area of interest there is a list with all the connections of the user. The View 
all link redirects to the friend’s page, shown in Figure 25. The user’s friends’ page 
can be also accessed by clicking the Friends shortcut at the top-bar menu. In this page 
the user can perform three actions: 

• See his/her friends' profiles 
• Send a message to a friend or 
• Remove a particular friend from his/her friend list. 

 

The actions Send and Remove appear when the user mouse is over a specific user. 

 

Figure 25: User's Friends page 

Finally, below the Connections area groups that the user is member of are depicted. 
Groups are part of the Community page of the social network which is presented in 
the next session. 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 72 of 94 

 

5.4  Social Network Community 

The SN Community delivers to the user the functionality provided below: 
• Create, Join or Leave a group 
• Ask a question or begin a topic 
• Reply to a question or a topic and 
• Associate models and application executions to a question or a reply. 

The home page of the community page is shown in Figure 26. In this page the user 
can join the suggested groups, navigate through the discussion feed or find new 
friends in the suggested connections section. 

 

The outlook of a group of which the user is already a member is shown in Figure 27. 
The member can do the followings actions: 

• Ask questions, 
• Reply to questions 
• See the group members 
• Invite her friends to join the group and 
• See other popular groups 

When a user is member of a group can also see the group activity where information 
about which member of the groups started which discussion topic is available. 
Furthermore, a list with all the discussion topics of the group is depicted next to group 
activity. When a new discussion topic is started or when a group member shares an 
answer a notification is sent to all group members. Notifications can be reached using 
the Notification shortcut in the top-bar menu.  

 

Figure 26: Community Home Page 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 73 of 94 

 

Figure 27: A group's view 

 

5.5  Models 

All the applications live in the Models section of the SN. The home page of the 
models is shown in Figure 28. The user can perform the following actions on models 
he / she has access too: 

• Search for a specific model 
• Apply filters such as the deployment cloud, the geography and the tags of a 

model 
• Visit the application model page of a model and have access to more details 

about it (full model view) 

 

In full model view the user can: 
• Navigate through the past executions in Runs tab 
• Leave a comment about the model in the Discussions tab 
• See or add a review in Review submenu () and 
• Find similar models based on their tags 

 

Figure 28: The home page of models 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 74 of 94 

 

As mentioned above, the user can see the past executions of an application model 
(Figure 29). The user can filter these executions based on their cost, date, uptime, 
geography, cloud provider and up to 2 of their metrics. Moreover, the executions can 
be sorted by any of their metrics. A right click on any execution reveals its 
configuration.  

 

 

Figure 29: Models: Past Executions Page Section 

Figure 30 shows the Similar Models tab. Under Similar models tab we can see other 
models that are shared on the platform and are considered similar to sugarCRM based 
to their tags. The higher a model is depicted, the more same tags it shares with the 
SugarCRM model. In Figure 30 below, the first similar model shares 4 tags with the 
model in question, the second shares 2, while the two last ones share only 1. 

 

 

Figure 30: Similar Models tab 

 

 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 75 of 94 

5.6  Deployment of an application 

The social network can be used as a UI for the PaaSage platform and for the 
deployment of an application. The first step is the user to fill in their PaaSage 
platform credentials. These credentials will allow the social network to connect with 
the PaaSage platform using a RESTfull API. The My Area shortcut redirects the user 
to the My Area page. Under the credentials tab the platform credentials that must be 
filled in are an endpoint, an email, a password and a tenant.  

 

The next step is to upload the provider model to the PaaSage platform. Right bellow 
the PaaSage platform credentials the user can browse for the provider model and 
upload it. Figure 31 shows the outlook of the credentials tab.  

 

 

Figure 31: Credentials tab 

 

The last thing for the application deployment is the model of the application itself. 
The deployment actually consists of two phases, the reasoning and the actual 
deployment. In the model page of an application there is a button for each phase as we 
can see in Figure 32 bellow.  

 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 76 of 94 

 

Figure 32: Reason and Deploy button in the application model page 

 

First the user clicks on the Reason button. The reasoning lasts up to a minute. Finally, 
the Deploy button must be clicked. The deployment may take several minutes due to 
many time-consuming processes that take place. At any time the user can be informed 
about the deployment of their application under the Active runs tab. Every application 
model that is shared by the user and is deployed is shown here. The page is refreshed 
every 5 minutes and there is also a Refresh button. The name of each application, its 
state and substate are depicted. All these are shown in Figure 33 bellow.  

 

 

Figure 33: Active runs tab 

 

  



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 77 of 94 

5.7 Summary 

In this section, several aspects of the PaaSage social network have been discussed, 
such as the specification of user profiles, creation of a discussion group enhancing 
collaboration among users, management and search of CAMEL models, exploitation 
of knowledge produced of the execution history of the same or similar applications 
and deployment of an application using the PaaSage platform. The presence of 

experts in the social network makes it an important alternative to any 

documentation or tutorial that a user would need for using the PaaSage platform.  

 

 
  



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 78 of 94 

6 Training Workshops 

6.1 Design and implementation 

In this section the conduct of a training workshop is described providing a step by 
step tutorial. The instructions of this tutorial were used for the conduct of a 1 hour 
training session about PaaSage project during the 10th Symposium and Summer 
School on Service-Oriented Computing, which took place on June27 – July 1, 2016 in 
Crete, Greece. However, they can also be used for an extended training workshop, 
which could last half or even a whole day, with some additions to the existing agenda. 

 

These headlines can be referred to the main parts of the training workshop tutorial: i) 
general overview of the PaaSage project; ii) success stories; iii) introduction to 
CAMEL; iv) application deployment using the ruby client of the PaaSage platform; v) 
introduction of the PaaSage social network and integration with the PaaSage platform; 
and vi) questionnaires. 

6.1.1 General overview of the PaaSage project 

For the entry part of the tutorial a PowerPoint presentation has been created named 
paasageInNutshell.pptx, which includes 11 slides. The presenter talks about what 
PaaSage is and the need for developing once and deploying on many clouds that it 
serves. After that, the new opportunities are mentioned, such as the cross-cloud 
application provisioning, the ability to select the best cloud service based on user 
requirements and the avoidance of vendor lock-in.  Features of PaaSage such as 
multi/cross cloud application, deployment optimization, modeling of application 
aspects, e.t.c and the architecture of the PaaSage platform are next in the line. The 
presentation also includes the scope of the tutorial, it focuses on usage of respective 
tools and entry points of the PaaSage platform and on how to use the platform to 
achieve multi-cloud deployments as well as share knowledge.  

 

Finally, the presenter asks the participants to provide their feedback in the end of the 
workshop by filling in a questionnaire. The duration of this part could range between 
10 and 20 minutes depending on the level of detail. The skeleton of the presentation is 
shown below: 

a. what PaaSage is 
b. need served by the PaaSage platform 
c. opportunities PaaSage offers 
d. architecture of PaaSage platform 
e. features of PaaSage 
f. scope and outline of the tutorial 
g. feedback from the participants 

 

6.1.2 Success stories 

This part is devoted to successful usage of the PaaSage platform in real-life scenarios. 
This is the case of use-case partners of PaaSage project, which are going to produce a 
success story video for their applications. For the time being and while this document 
is being created, 2 of these videos are available, ASC-S use-case video and Lufthansa 
Systems use-case video. The duration of each video is approximately 3:30 minutes, so 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 79 of 94 

if all of them are going to be watched the duration of this part as a whole would be 
around 20 minutes.    

6.1.3 Introduction to CAMEL 

During this section the audience has the opportunity to watch and practice on how to 
express an application using CAMEL. However, the participants have to become 
familiar with CAMEL first; the PowerPoint presentation named CAMEL.pptx of 27 
slides serves this purpose. As a start, the presenter refer to the features of this 
modeling language such as the re-usage of existing languages, the fact that it is an 
integration of other DSLs, the existence of syntactic and semantic model validation, 
e.t.c. After that, how CAMEL is involved in the PaaSage workflow and how the 
integration of the language was achieved is explained. Moreover, respective tools are 
mentioned; the three editors: i) tree, ii) textual and iii) graphical editor. The presenter 
explains which the capabilities of each editor are and what kind of sub-models they 
can create.  

 

The last and maybe most important part is the tool training. The focus is on the 
textual editor, the purpose is to create a CAMEL model for an application and all this 
is done through exercises on how to use the editor. The presenter asks the audience to 
use an editor of their choice in order to complete some tasks on application modeling. 
They can of course use the CAMEL textual editor itself. A basic model, which can be 
downloaded by the participants, can be used as a starting point for the exercises. The 
participants watch the presenter to add requirements to the application model, edit 
existing requirements, add/remove application metrics, create requirement sets, e.t.c. 
They are asked to perform similar tasks. The difficulty of the tasks is incremental. In 
the end of this part the audience has seen how most of the relevant aspects are covered 
by CAMEL. The duration of this section is about 60 minutes but it can range 
depending on the tasks the participants are asked to perform and their difficulty. The 
skeleton of the CAMEL presentation is shown below: 

a. CAMEL features 
b. CAMEL in PaaSage workflow 
c. CAMEL integration 
d. tool support 
e. sustainability (documentation, deliverables, code, webpage) 
f. tool training 

� focus on textual editor 
� CAMEL model for SugarCRM application 
� exercises on how to use the editor 

 

6.1.4 Application deployment using the ruby client of PaaSage 

platform 

What follows is a demonstration of the PaaSage platform. A Ruby client is used in 
order the presenter to communicate with the PaaSage platform, upload at least two 
models (cloud provider model and application model), start the reasoning phase and 
start the deployment phase. The PaaSage platform should be already installed 
somewhere and be accessible. Since the deployment of an application takes a lot of 
time, this section of the training workshop could start before the coffee break and end 
after it. In such a case the deployment can be done in real time and the results can be 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 80 of 94 

seen after the break. The only thing the presenter will do after the break is to connect 
to the VM the application in deployed and show that it works as expected. A good 
strategy would be the model that is used for this deployment to be the same with the 
model that was constructed during the previous section.  

 

The focus is on the familiarization of the participants with the PaaSage platform. They 
do not have to follow the steps of the presenter; just watch the feedback of the 
platform. The duration of this section could be up to 60 minutes, including a 45 
minutes break. The skeleton of this section is shown below: 

a. create resource for cloud provider model 
b. upload cloud provider model 
c. check if cloud provider model is uploaded 
d. create resource for application model 
e. upload application model 
f. check if application model is uploaded 
g. start reasoning 
h. check if reasoning is finished 
i. start deployment  

 

 

6.1.5 Introduction of PaaSage social network and integration with 

PaaSage platform 

During this part of the training workflow the participants become familiar with the 
PaaSage social network and learn how to use it as an entry point to the PaaSage 
platform. They are prompted to create profiles in the social network and follow the 
steps of the presenters according to specific scenarios. 

 

The first task is to visit the website and login. Since the majority of them have not 
created a profile in the past, they are asked to create one by filling in the sign up form 
or by just making use of their Facebook/Twitter account. What follows is a small 
description, by the presenter, of the social network entry page and then they are 
prompted to browse for a specific application model page. In order to do that they 
have to visit the Models page and scroll done until they discover the name of the 
application in question or use the search input of the page. They do not have to type 
the whole name of the application, just a part of it. In any case, they click on the name 
of the application and visit the application model page. 

 

Once again, the presenter describes what can be found in that page emphasizing the 
Tags feature. The focus is on the tabs Runs and Similar models. Under Runs tab the 
user can find the visualization of executions. There are charts for each application 
specific metric, a table where each row is an actual execution and a filter area that can 
be used in order the user to focus on those executions that there are interested in. As 
an exercise the presenter asks the participants to filter the executions of the 
application asking only those that the value of a specific metric ranges between two 
predefined values. Under Similar models tab the user can find other models that are 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 81 of 94 

shared on the platform and are considered similar to the application in question based 
to their tags. The higher a model is depicted, the greater the similarity.  

 

The next task is to visit the profile page of the contributor of the application. The 
participants are asked to it by clicking the name of the contributor, under the name of 
the application. What they can do here is to add the contributor to the users they 
follow and discover other models and discussion topics that are shared on the social 
network by the contributor. Finally, they can have a look to the whole activity of the 
contributor in the social network.  

 

A strong feature of the PaaSage social network is its community. The participants are 
prompted to visit the Community page and browse for a specific group. This group 
can be part of the suggested groups but in any case they can use the search input of 
the page. After they visit the page of the group they are asked to become members 
using the Join group button. The presenter, which is also member of this group, starts 
a new discussion topic by asking a question and the participants should answer to that 
question taking part to the discussion. An extra exercise is to associate an application 
model or an application execution with a specific question.  

 

The last part of this introduction to the social network is the presenter to show how 
the social network can play the role of a UI for the PaaSage platform and use it to 
deploy an application. Three different steps should be followed for a successful 
deployment, the user must add the platform credentials, the provider model must be 
uploaded and the user must make use of the Reason and Deploy buttons.  For the first 
step, a form must be filled in at My Area page, under the Credentials tab. Right below 
this form, there is the area where the user can upload any provider model that is 
needed for the deployment. In order the last step to be fulfilled the user must visit the 
application model page, click first the Reason button and, after the reasoning is done, 
click the deploy button. Since the deployment of an application is already 
demonstrated during the training workshop, there is no need for the presenter to 
actually start a second deployment process. If we also consider that deployment is a 
time consuming process, the presenter can mention the existence of the Deploy button 
but not actually click on it. The participants should not follow the steps of the 
presenter, just watch the whole process.  

 

The duration of this section is about 60 minutes and it depends on how quickly the 
participants can follow the presenter’s instructions and what kind of difficulties they 
will face. A Word document named SocialNetworkLiveDemo.docx is actually a step 
by step tutorial presenting the main functionalities of the social network and can be 
used for the conduct of this introduction to social network section. The skeleton of 
this section is shown below: 

a. login to the social network 
b. browse for specific application model 
c. browse information of the chosen model 

1. Runs tab 
2. Similar models tab 

d. visit profile page of the contributor 
e. visit community page 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 82 of 94 

f. deployment of the application 
1. add platform credentials 
2. upload provider model 
3. reason and deployment buttons 

 

6.1.6 Questionnaire  

In the end the participants are asked to complete a questionnaire in order to rate and 
comment their experience. The duration of this section is about 10 minutes and it 
depends on the size of the questionnaire. In any case, what has to become clear to the 
participants is that this is an essential part of the training workflow. A good strategy is 
the questionnaires to be delivered as a hard copy to the participants in order their 
completion not to be postponed.  

6.1.7 Additional sections 

If there is enough time more sections could be added in the training workshop such 
as:  

a. Discussion about the different steps of the PaaSage workflow. What 
happens during reasoning, which components participate, e.t.c. 

b. How participants can contribute to PaaSage and use it in the future 

 

 

  



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 83 of 94 

7 Industrial workshops 

7.1 Product launch strategy 

As the PaaSage platform gained in stability and functionalities, a launching strategy 
for potential end users has been developed and implemented in years 3 and 4 of the 
project lifetime. 

On basis of discussions within the Project Executive Board members, it has been 
decided to organise several ‘product launch events’, under the form of industrial 
workshops distributed over several countries, instead of organising a single workshop. 

The PaaSage product launch strategy is thus based on following action plan: 

• Select a professional open source repository (OW2) to host the PaaSage 
source code and support the developer’s community. 

• Revamp the PaaSage web site, and convert it from a ‘project-based’ web site 
towards a ‘product-based’ web site.  This process and the results are 
extensively documented in deliverable D9.1.2 (“Website product”). 

• Organise industry focused events, under the form of ‘Industrial Workshops’, 
following the plan exposed in D9.4.2 (“Industrial workshops Planning”). 

• Publish a professionally-looking leaflet presenting PaaSage as a product. 

7.2 Structure of the industrial workshops 

In order to maximize the impact of the industrial events, these have been organised by 
PaaSage industrial partners and targeted to that specific industrial partner ecosystem 
in its region. 

Two kinds of industrial events have been organised: 

1. Joining a related event, and having a specific session / booth for presenting 
PaaSage: 

a. In Cyprus, coordinated by IBSCY, with the support of UCY (March 
2015). 

b. In UK, coordinated by STFC, with the support of Flexiant (March 
2015) 

c. In Belgium, coordinated by CETIC (2 events in November 2015)  
d. In Norway, coordinated by EVRY, with the support of SINTEF and 

UiO (February 2016) 
e. In France, coordinated by INRIA6 (at the OpenStock Workshop Lyon 

2016, June 2016) 
2. PaaSage-specific events, synchronized with a PaaSage consortium meeting: 

a. In Belgium, coordinated by BE.WAN (September 2015) 
b. In Germany, coordinated by ASC(S (April 2016) 
c. In Norway, coordinated by EVRY (September 2016) 
d. In Hungary, coordinated by LSY (September 2016) 

For the second kind of events (that are PaaSage-specific), the event organisation as 
well as the related communication campaign are in the hands of a PaaSage industrial 
partner.  The workshop duration is typically ½ day, in the afternoon.  As the industrial 
workshops are co-located together with a PaaSage consortium meeting, PaaSage 

                                                 
6  The scope of the French industrial workshop has been reduced due to the 

withdraw of the French industrial partner (SYSFERA). 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 84 of 94 

partners are able to attend and contribute to the workshop presentations without 
additional cost, and also to gain experience for subsequent workshop organisation. 

The typical agenda of Industrial Workshops is as follows: 

• Welcome and introduction 
• Presentation of PaaSage & CAMEL (objectives, architecture, main features…) 
• Use case presentation (focus on the industrial partner use case) 
• Demo or open/interactive booth  
• Panel discussion, Q/A 
• Cocktail and networking. 

Of course, each organiser has the possibility to tune the standard agenda to its specific 
context and needs. 

 

7.2.1 ASC(S Industrial Workshop (Stuttgart, Germany) 

Invitation and venue 

 
The event has been organised on 11 April 2016 by the Automotive Simulation Center 
Stuttgart e.V. in close cooperation with the large scale European project PaaSage. 
See https://www.asc-s.de/en/workshops.  

 

Target audience 

Tier-2 and Tier-3 suppliers, and especially SMEs in automotive industry, as well as 
automotive OEM’s. 

 

Workshop programme 

13:00 WARM-UP 

Arrival of the guests and welcoming them over a cup of coffee 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 85 of 94 

13:30 INTRODUCTION ROUND 

Introduction to the workshop 

13:40 TAKE THE POLE POSITION - PART 1 

KEYNOTE: Driving Vehicle Development from Road to Rig to 
Simulation 

Jürgen Kohler – Daimler AG 

 Cognitive Computing meets Computer Aided Engineering 

Dr. Stefan Suwelack - Karlsruhe Institute of Technology (KIT), Institute 
for Anthropomatics Humanoids and Intelligence Systems Lab 

 PaaSage: Model-based Cloud Platform Upperware 

Prof. Dr. Keith Jeffery, Dr. Geir Horn, Dr. Alessandro 

Rossini, Prof. Dr. Kostas Magoutis, Carlos Falconi 

PaaSage Project Consortium (EU FP7) 

14:50 PIT STOP 

Coffee break and PaaSage live demo 

15:10 TAKE THE POLE POSITION - PART 2 

Simulation Driven Innovation in the Cloud – A Game Changer? 

Dr. Detlef Schneider - Altair, Inc. 

 Usage of GPU LS-DYNA in the Cloud 

Prof. Dr. Ulrich Göhner - DYNAmore GmbH 

 COMSOL Server: Simulation without frontiers 

Dr. Bernhard Fluche - COMSOL Multiphysics GmbH 

16:10 PIT STOP 

Coffee break and PaaSage live demo 

16:30 TAKE THE POLE POSITION - PART 3 

The NUBERISIM platform - A new way to predict fluid flow noise using 
cloud-based Computational Aero-Acoustics 

Carlos Falquez, Dr. Iris Pantle, Dr. Balazs Pritz 

NUBERISIM, Falquez, Pantle und Pritz GbR 

 Overview of Cloud Systems and Services for CAE  

Christopher Woll and Jan Martini - GNS Systems GmbH 

 CAEaaS: on-demand simulation out-of-the-cloud 

Markus Westhäußer – T-Systems International GmbH 

17:30 CHEQUERED FLAG 

Get-together – networking and small snack and 

PaaSage live demo 

 

Workshop outcome 

The half day event was very well visited by an international audience of about 50 
participants including key representatives from science and automotive industry. The 
agenda was composed of several interesting speeches which showed the state-of-the-
art in cloud technology and gave the participants a hint of the road of future 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 86 of 94 

technologies. The lectures presented encouraged an intense exchange among the 
European experts in the field of cloud computing. 

 
During the breaks the participants exchanged their insights and the PaaSage platform 
was demonstrated to the audience showcasing the best qualities of the platform as the 
Multicloud deployment. The professional exchange was supported through a get-
together at the end of the event, where plenty of opportunities were afforded to build 
new business networks around the PaaSage technology. 

 

7.2.2 EVRY Industrial Workshop (Oslo, Norway) 

Invitation and venue 

EVRY has organised an industrial workshop in its premises in Oslo. See below the 
invitation leaflet. 

 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 87 of 94 

Target audience 

The target audience consists of EVRY partners and customers.   

 

Workshop programme 

 
 

Workshop outcome 

The workshop was attended by 25 partners and customers of EVRY.  A lot of interest 
was expressed around the PaaSage platform and the CAMEL language.  Specifically, 
the Gartner representative (Peter Hidas), invited as keynote speaker, was extremely 
impressed by the strength of the PaaSage platform. 

 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 88 of 94 

  

  

 

7.2.3 LSY Industrial Workshop (Budapest, Hungary) 

Invitation and venue 

The LSY industrial workshop has been organised in Budapest on 27 September 2016, 
under the title “Future of Clouds Conference”. 

 
The conference was followed by an “Aviation IT Technology Fair” where LSY 
presented several internal projects as well as its contribution to 3 EC-funded projects 
(PaaSage, Beacon and Musa). 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 89 of 94 

Target audience 

LSY employees, external community from other IT companies, universities, members 
of EU funded projects. 

 

Workshop programme 

WELCOME & KEYNOTE I. 

Dr. Dirk Muthig, 

Head of CTO & Innovations, Lufthansa Systems 
Cloud is about how computing is done and not about where. By coupling research and innovation, the 
EU projects make it easier for the public and private sectors working together in delivering innovation 
and securing Europe’s global competiveness. The leading universities, research companies and IT 
companies of Europe and Lufthansa Systems work together in order to help new developments to be 
designed for Cloud usage. 

 

KEYNOTE II. CLOUDS: DRAWBACKS AND VIRTUES 

Ferenc Frész, Chief Executive Officer of Cyber Services PLC 
What are the benefits of developing and deploying applications on multiple Cloud infrastructures? 
Which questions need to be answered regarding security issues? 

 

MULTI-CLOUDS: POSSIBILITIES, AND SECURITY ISSUES - PODIUM 
DISCUSSION 

Prof. Dr. Keith G. Jeffery, European Research Consortium for Informatics and 
Mathematics; 

Philippe Massonet, Scientific Coordinator, CETIC - ICT Applied Research Center, 

Stefan Spahr, Software Architect, Lufthansa Systems (Lufthansa Systems 
representative of the MUSA project) 
How can we create an open and integrated platform to support both the design and deployment of 
Cloud applications, hiding the complexity of working with Clouds from developers? What are the most 
important security solutions within Clouds? Is Multi-Cloud the ultimate answer? 

 

WHY MODEL-BASED DEVELOPMENT IS NEEDED 

Dr. Alessandro Rossini, Research Scientist, SINTEF 

Stefan Spahr, Software Architect, Lufthansa Systems 
What is the practical usefulness of a modelling language that can be executed and thus used as a way of 
controlling applications automated deployment in Clouds for Aviation IT? 

 

OPTIMIZATION OF CLOUD APPLICATIONS 

Dr. Geir Horn, Head of European ICT Projects, University of Oslo 
Can “elasticity” be the key feature of Clouds? How can the pay per use model minimize the 
infrastructure costs and increase the performance when needed? 

 

NEW LEVELS OF CLOUD SECURITY - PODIUM DISCUSSION 

Dr. Geir Horn, Head of European ICT Projects, University of Oslo 

Philippe Massonet, Scientific Coordinator, CETIC - ICT Applied Research Center, 

Ferenc Frész, Chief Executive Officer of Cyber Services PLC 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 90 of 94 

Security is always one of the major issues when looking at the utilization of Cloud infrastructures. 
Therefore these concerns of cloud service consumers’ needs to be addressed; even though this is an 
exhaustive challenge, in most cases, it is achievable. 

 

WHAT IS THE VIEW OF THE HUNGARIAN CLOUD EXPERTS? - OPEN 
DISCUSSION 
The developed tools of the Horizon 2020 and FP7 Programs are all published in Open Source. What is 
the view of the Hungarian Cloud experts on Open Source in the context of its commercial application? 

 

Workshop outcome 

The workshop was very well attended, with close to 200 participants.  Below are 
some pictures of the event. 

 

  

  

 

 

7.3 New PaaSage leaflet 

In order to support the launch of the PaaSage platform, a new leaflet has been 
designed and created, focusing on key features, benefits and success stories.  It is 
available on the web site as a PDF document and has been distributed at the latest 
PaaSage industrial workshops. 

The following screenshots illustrate the new PaaSage leaflet: 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 91 of 94 

 

Figure 34: PaaSage leaflet 1 

 

 

Figure 35: PaaSage leaflet 2 



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 92 of 94 

7.4 PaaSage roll-up 

For supporting PaaSage presence at various events (industry fairs, conferences…), a 
roll-up has been designed (see following picture). 

 
 

 

  



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 93 of 94 

8 Conclusion 
This deliverable has provided training material and documentation which can be used 

to guide a practical understanding of the PaaSage platform. The material is geared 
towards different types of users so as to streamline a variety of tasks, such as the 

deployment and configuration of the PaaSage platform, specific management actions 
concerning its Executionware, the modeling of end-user requirements in CAMEL and 
the sharing and exploitation of knowledge incarnated in PaaSage's Social Network. 

By leveraging training material on how to configure, build and deploy the PaaSage 
platform (Section 2), the level of difficulty of using the PaaSage platform is 
significantly lowered, since the goal was to make it as easy as possible for a 
newcomer to get it running. This is illustrated with the description of the 
Executionware components in this document.  

Outside of the core technical components the CAMEL standard developed on this 
project expresses user requirements through the Cloud lifecycle. CAMEL is vital to 
both the use and understanding of the platform project and is used to capture the 
needs of application developers/owners, focusing mainly on deployment, non-
functional requirements and scalability rules. The approach to training and 
documentation around CAMEL has focused on usability and the provision of user 
friendly textual and web based editors supported by the Social Network.  

An ideal starting point to both understanding the PaaSage platform’s main component 
functions and use of CAMEL is the Social network. Training material on the PaaSage 
social Network has been a core focus of the project. Using the Social Network 
training providers can walk users through the specification of user profiles, creation of 
a discussion groups to enhance collaboration among users, management supporting 
the discovery and sharing of CAMEL models. This collaboration is further enhanced 
by the shared exploitation of knowledge produced from the execution history of the 
same or similar applications deployed on the PaaSage platform. 

This technical material formed the base of the delivery of training workshops in the 
project. For example the PaaSage training workshop organized in the main track of 
the 10th Symposium and Summer School on Service-Oriented Computing 
(SummerSOC) in July 2016, used several of the training materials described in this 
deliverable. 

Through the life of this project we have delivered over a dozen workshops using the 
wide resource of training material created during the life of PaaSage. The future of 
PaaSage depends on the provision and access to this material; this is done via the 
PaaSage website and code via the OW2 presence of the project. Videos and other 
training aids have been made available on public sites such as YouTube. Thus 
providing a legacy for PaaSage and a spring board by which further development and 
customization beyond the project can take place.  



D9.3.2 – Final Training Materials and Workshop Product Launch  Page 94 of 94 

9 Bibliography 
[CloudML] Nicolas Ferry, Franck Chauvel, Alessandro Rossini, Brice Morin and 
Arnor Solberg. “Managing multi-cloud systems with CloudMF”. In: NordiCloud 
2013: 2nd Nordic Symposium on Cloud Computing and Internet Technologies. Ed. by 
Arnor Solberg, Muhammad Ali Babar, Marlon Dumas and Carlos E. Cuesta. ACM, 
2013, pp. 38–45. ISBN: 978-1-4503-2307-9. DOI: 10.1145/2513534.2513542. 
[D1.6.1] The PaaSage Consortium. D1.6.1—Initial Architecture Design. PaaSage 
project deliverable. Oct. 2013. Available at: 
http://www.paasage.eu/images/documents/paasage_d161_final.pdf  
[D2.1.2] Alessandro Rossini, Nikolay Nikolov, Daniel Romero, Jörg Domaschka, 
Kyriakos Kritikos, Tom Kirkham, Arnor Solberg, CloudML Implementation 
Documentation. PaaSage Deliverable D2.1.2, March 2014. Available at: 
http://www.paasage.eu/images/documents/paasage_d2.1.2_final.pdf  
[D3.1.1] Amin Bsila, Nicolas Ferry, Kamil Figiela, Geir Horn,Tom Kirkham, Maciej 
Malawski, Nikos Parlavantzas, Christian Perez, Jonathan Rouzaud-Cornabas, Daniel 
Romero, Alessandro Rossini, Arnor Solberg, Hui Song, Upperware Prototype. 
PaaSage Deliverable D3.1.1, March 2014. Available at: 
http://www.paasage.eu/images/documents/paasage_d3.1.1_full.pdf  
[D4.1.1] Kyriakos Kritikos, Maria Korozi, Bartosz Kryza, Tom Kirkham, Asterios 
Leonidis, Kostas Magoutis, Philippe Massonet, Stavroula Ntoa, Antonis Papaioannou, 
Christos Papoulas, Craig Sheridan, Chrysostomos Zeginis, Prototype Metadata 
Database and Social Network / Prototype of Metadata Integration Extension. PaaSage 
Deliverable D4.1.1, March 2014. Available at: 
http://www.paasage.eu/images/documents/PaaSage-D4.1.1_final.pdf  
[D5.1.1] Anthony Sulistio, Panagiotis Garefalakis, Damianos Metalidis, 
Chrysostomos Zeginis, Craig Sheridan, Kuan Lu, Jörg Domaschka, Bartosz Balis, 
Dariusz Król, Edwin Yaqub, Prototype Executionware and Prototype new Execution 
Engines. PaaSage Deliverable D5.1.1, March 2014. Available at: 

http://www.paasage.eu/images/documents/PaaSage_D5_1_1_final.pdf  


