
1

PaaSage

Model Based Cloud Platform Upperware

Deliverable D8.2.2

Open Source Prototype System 2

Version: 0.9

2

Project Deliverable

Name, title and organisation of the scientific representative of the project's coordinator:

Philippe Rohou, European Project Coordinator, ERCIM, +33 4 97 15 53 06, +33 6 28 47 40 72

Project website address: http://www.paasage.eu

Project

Grant Agreement number 317715

Project acronym: PaaSage

Project title: Model Based Cloud Platform Upperware

Funding Scheme: Integrated Project

Date of latest version of Annex I against which the
assessment will be made:

20 April 2016

Document

Period covered: Period IV
Deliverable number: D8.2.2

Deliverable title Open Source Prototype System 2
Contractual Date of Delivery: 30 September 2016
Actual Date of Delivery: 14 November 2016
Editor (s): Geir Horn

Author (s): Daniel Baur, Shirly Crompton, Kamil Figiela, Dennis
Hoppe, Tom Kirkham, Kyriakos Kritikos, Nikos

Parlavantzas, Christian Perez, Daniel Romero, Alessandro
Rossini, Arnab Sinha, Robert Viseur

Reviewer (s): Dennis Hoppe

Participant(s):

Work package no.: WP8

Work package title: Exploitation

Work package leader: Frédéric Fleurial Monfils

Distribution: Public

Version/Revision: 0.9

Draft/Final: Pre-Final

Total number of pages (including cover): 48

3

DISCLAIMER

This document contains description of the PaaSage project work and findings.

The authors of this document have taken any available measure in order for its content to be
accurate, consistent and lawful. However, neither the project consortium as a whole nor the
individual partners that implicitly or explicitly participated in the creation and publication of this
document hold any responsibility for actions that might occur as a result of using its content.

This publication has been produced with the assistance of the European Union. The content of this
publication is the sole responsibility of the PaaSage consortium and can in no way be taken to reflect
the views of the European Union.

The European Union is established in accordance with the
Treaty on European Union (Maastricht). There are currently
28 Member States of the Union. It is based on the
European Communities and the member states
cooperation in the fields of Common Foreign and Security
Policy and Justice and Home Affairs. The five main
institutions of the European Union are the European
Parliament, the Council of Ministers, the European
Commission, the Court of Justice and the Court of Auditors.
(http://europa.eu)

PaaSage is a project funded in part by the European Union.

http://europa.eu/

Contents

1 Architecture 6

2 Scope of Implementation 9
2.1 Introduction . 9
2.2 Components . 11

3 Licence and governance 41
3.1 The PAASAGE platform license . 41
3.2 Best practice on governance of Open Source Software projects 42
3.3 PaaSage Governance . 44

3.3.1 Component project leaders . 44
3.3.2 Board of Architects . 44

4 Availability and installation 46
4.1 Availability of PaaSage Platform and source code . 46
4.2 PaaSage Platform installation . 46

5 Conclusion 46

4

Executive Summary

This document is the final guide to the PAASAGE software platform and the various components developed in
PAASAGE. It presents the overall objectives of the software and the global architecture, before presenting the
work flow implemented for deploying cross Cloud applications.

Intended Audience

the PAASAGE software for cross cloud application deployment is a tool for DevOps1, which can be defined as
a development methodology with a set of practices aimed at bridging the gap between Development and Oper-
ations, emphasising communication and collaboration, continuous integration, quality assurance and delivery
with automated deployment [1], as illustrated in Figure 1 below2.

Figure 1: A DevOps is as a person working at the intersection of applicaton developer communities, operational
deployment, and quality assurance and operational monitoring.

This document aims at providing the necessary overview to understand PAASAGE and its objectives, and the
context of the developed software, without any knowledge required of other PAASAGE deliverables. However,
the extensive background necessary to fully understand the components and the implementation is found in the
related and referenced PAASAGE deliverables.

Structure of the document

A summary of the PAASAGE’s software architecture is given first, before the the implemented components.
The document also priovides insight into the Open Source Software governance model, and how a developer
my contribute to the PAASAGE platform in the futrue.

1https://kartar.net/2010/02/what-devops-means-to-me.../
2https://en.wikipedia.org/wiki/DevOps

5

https://kartar.net/2010/02/what-devops-means-to-me.../
https://en.wikipedia.org/wiki/DevOps

1 Architecture

PAASAGE is tool for DevOps to master the complex and often error prone task of deploying an application to
the Cloud. The DevOps could learn the interface and features of one Cloud provider, but it will be very costly to
master the development to different providers, and it could easly be a nightmare to deploy a complex distributed
application across several Cloud providers. It is a real challenge to orchestrate the simultaneous deployment
to many different Clouds at the same time as would be the case if some parts of the application can only run
on private Cloud resources for confidentiality reasons while one would like to use public Cloud providers for
application scalability. The main objective of PAASAGE is to assist the developer with difficult deployment
scenarios through autonomic cloud deployment. Figure 2 shows a very high level view of PAASAGE and the
scope covered by the project.

Application Software

Deployment
model

Automatic model
transformations

Model

Commercial Clouds

Deployed
application

Pa
aS

ag
e

Figure 2: The scope of PAASAGE is to extend the application model with platform annotations and user’s
goals and preference to a Cloud Application Modelling and Execution Language (CAMEL) model, which is
then transformed by PAASAGE to a deployed application in one or more Clouds. Even though the PAAS-
AGE platform is open source, proprietary elements indicated in red will stay proprietary throughout the use of
PAASAGE.

To support the developer, PAASAGE needs not only a model of the application to be deployed, but models
of the features of the available Cloud platforms, and goals and preferences to be satisfied by the deployment like
response times or deployment cost budgets. These different models are specified in domain specific languages
(DSLs) commonly referred to as the CAMEL model. CAMEL integrates the various DSLs using the Eclipse
Modelling Framework3 (EMF) on top of the Connected Data Objects4 (CDO) persistence solution to main-
tain model information between different application deployments. The CDO repository is referred to as the
metadata database, and the intention is that different PAASAGE users will be able to form a “social network”
and exchange models, e.g. one user has developed a parametrised model for a particular Cloud provider which
can be shared with the other users of the PAASAGE and immediately allows all PAASAGE users to deploy to
this Cloud provider. Please refer to the PAASAGE Deliverable D2.1.3 CAMEL documentation [2] for further
details on the modelling concepts, and Deliverable D4.1.2 Product database and social network system [3] for
information on the metadata database.

The application’s CAMEL model is first transformed by what is referred to as the upper ware. The main
purpose of this set of components is to derive a specific deployment configuration satisfying all the constraints
and goals for the deployment set by the user in the CAMEL model. This implies selecting one or more Cloud
providers and generating the necessary deployment scripts. These scripts are then passed to the PAASAGE

3http://www.eclipse.org/modeling/emf/
4http://www.eclipse.org/cdo/

6

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/cdo/

execution ware responsible for instantiating the different parts of the application on the selected Cloud providers
and monitor a set of defined metrics in order to make autonomous scalability decisions within the boundaries
of the deployment configuration. If the application execution triggers conditions that cannot be satisfied by the
current deployment configuration, the execution ware will pass control back to the upper ware to find a better
configuration for the current application context. The monitored metrics will subsequently be consolidated as
statistical knowledge in the metadata database to guide the decisions on future deployment configurations.

Legacy application New application

P
aa

Sa
ge

 P
la

tf
o

rm

Speculative
profiler

Speculative
profiler

Intelligent
reasoner

Extra functional
adaption

Design time
optimisation loop

M
etad

ata

Community
expertise

Platform specific
mapping

Execution
monitoring

Execution
control

Execution environments

Metadata sharing

Metadata collection
Execution
optimisation loop

• Provisioning and deployment requirements
• Scalability rules
• Service-level objectives
• Provider models

Figure 3: The overall PAASAGE architecture and workflow. The blue parts in the upper flow are the upper ware,
orange parts are the persistent metadata structure, green parts are the execution ware.

This feedback loop controlling the application deployment is depicted in Figure 3 showing the PAASAGE

work flow and the different logical parts of the upper ware and the execution ware. The upper ware consists
of a profiler whose task is to combine information from the different CAMEL DSLs and produce a consistent
model based profile of the deployment scenarios. This model is passed on to the reasoner part that finds a
deployment configuration that satisfies all constraints and optimises5 the goals set for the deployment by the
developer. The adapter produces the Cloud platform specific deployment scripts. It also maintains a casual
connection between the running application and the model, and reacts to context changes by issuing commands
to keep the deployment within the current deployment configuration found by the reasoner. The execution
ware has one part taking care of the actual mapping of the deployment configuration onto the Cloud platforms
chosen by the reasoner. This includes setting up the necessary resources and installing both the monitoring
infrastructure and the application components. The execution is then monitored and based on the observed
values, the execution control will then make autonomous scalability decisions within the boundary conditions
given by the deployment configuration, or pass control back to the upper ware to produce a new deployment
configuration that better suits the current execution context.

Several components have been identified in order to implement the upper ware in a flexible way. The
architecture of the upper ware is shown in Figure 4, and the different components are described in PAASAGE

Deliverable D3.1.2 Product Upperware [4]. Similarly, the architecture of the execution ware is shown in
Figure 5, and the detailed description of these components can be found in PAASAGE Deliverable D5.1.2
Product Executionware [5].

5Note that PAASAGE will iteratively optimise the found solutions, so the “optimal” solution is here to be understood as the best
solution found so far.

7

s

CP Generator
Model-to-

Solver

Meta
Solver

Utility function
Generator

Solution
Evaluator

LA based
allocator

MILP
Solver

Heuristics

CAMEL
Deployment Model

Metadata
database

Solver-to-
deployment

Rule
Processor

Plan
Generator

Adaptation
Manager

Execution Ware

Application
Controller

Rules

Actions

Monitoring info

Reconfiguration plan

Current Configuration

CAMEL

Metadata
database

Simulator
Wrapper

Cloud
simulator

Cloud
Simulator

Metadata
database

Execution ware API

CAMEL

Profiler

Reasoner

Adapter

CSOP
Solver

Upperware
Model

Figure 4: The full architecture of the PAASAGE upper ware with links to the other parts of the PAASAGE work
flow.

domain of PaaSage operator

metadata database

executionware

colosseum
(API and
business
logic)

upperware

sword
deploy-
ment library

domain of cloud operator (e.g. Flexiant)

Provider
API

virtual machine

component
instance

Lance

sensors

CDO server

global
Metrics
Collector Axe

Axe

Visor

TSDB
TSDB

other
virtual machineTSDB

driverdriverdriverdriver

model/logic flow
(monitoring) data flow

Figure 5: The full architecture of the PAASAGE execution ware with links to the other parts of the PAASAGE

work flow. TSDB = Time Series Data Base.

8

2 Scope of Implementation

2.1 Introduction

The PAASAGE software consists of the components that are necessary to realise the autonomic deployment flow
described by the PAASAGE architecture. The architecture is highly distributed, and the various components are
contributed by several PaaSage project partners. Furthermore, PAASAGE has been highly influential on work
in other projects outside of PAASAGE:

• The CAMEL6 development was initially joint work with the MODAClouds7. CAMEL is now used in
CACTOS8 aiming at improving data centre operation; CloudSocket9 aiming at semantic deployment of
buisness processes to Cloud workflows; and ARCADIA10, aiming to facilitate self-combining software
systems built from distributed micro-services combined in asyclic service graphs.

The feature set of CAMEL is a superset of the deployment specification offered by the Topology and
Orchestration Specification for Cloud Applications (TOSCA11) standardised by the Organization for the
Advancement of Structured Information Standards (OASIS12), and this has led to CAMEL now being
proposed as a run-time extension to TOSCA.

• The execution ware of PAASAGE is joint development with the CACTOS and CloudSocket.

The result of this enlargement of the PAASAGE development is that both CAMEL and the execution ware
mainly exist in repositories separate from PAASAGE, and that this deliverable is limited to describe the PAAS-
AGE interface components and the PAASAGE contributions to these joint efforts with other projects.

The main components of the PAASAGE released platform are shown in Figure 6. The components are
integrated around the CDO server that stores the initial CAMEL models received from the application DevOps,
and then stores each better solution the reasoner can find for the current application context. The deployed
model is updated by the Adapter based on any changes done by the execution ware. In this way the CDO server
will persist the whole execution history of the application and the reconfigurations and adaptations made during
the application’s lifetime.

The profiler part is supported by the CP Generator and the Rule Processor. The first component reads the
CAMEL model and converts it into a constraint programming model by defining the variables of the model,
their domains, and the constraints that must be satisfied by the deployment. The Rule Processor checks all
constraints of the CAMEL model and sets the domains of the variables accordingly. It also removes redundant
variables and constraints from the model, e.g. if the model defines that only virtual machines of a given size
should be used, only providers offering such virtual machines can be selected and all other providers must be
removed from the domain for the ’provider’ variable.

The reasoning engine is supported by five components in this release: The Meta Solver, the MILP Solver,
the CP Solver, the LA Solver, and the Solver to Deployment. The Meta Solver analyses the model and selects
the solver most suited for the problem. If the problem is linear in its constraints and utility function, the MILP
Solver will be used, otherwise the CP Solver or the LA Solver will be used. The three solvers are therefore
interchangeable but with different characteristics. In the future it is envisioned that PAASAGE can support
other solvers in addition to these three. It could also happen that the Meta Solver will be able to decouple the
problem into a linear and a non-linear part, and use the solvers in parallel. The ’utility function’ can be any
way of evaluating a candidate deployment, for instance a Cloud simulator or even a real world test deployment,
as indicated in Figure 4. The Meta Solver consequently informs the solvers how deployment candidates should
be evaluated. Once a solution has been found, the Solver to Deployment component converts the solver output
to Cloud Provider Specific Models (CPSM) for the providers involved in the proposed deployment.

Changing metrics will in general lead to a change in the solution found by a solver if the changed metric is
used in the solver’s objective function or in the set of constraints. Only the LA Solver is capable of optimise

6http://camel-dsl.org/
7http://www.modaclouds.eu/
8http://www.cactosfp7.eu/
9https://www.cloudsocket.eu/

10http://www.arcadia-framework.eu/
11https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
12https://www.oasis-open.org/

9

http://camel-dsl.org/
http://www.modaclouds.eu/
http://www.cactosfp7.eu/
https://www.cloudsocket.eu/
http://www.arcadia-framework.eu/
 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/

R
ea

so
n

er

CAMEL editor
Alessandro Rossini

Meta solver
 Shirley Crompton

MILP Solver
Kamil Figiela

LA Solver
Geir Horn

Solver to Deployment
Christian Perez

Adapter
Nikos Parlavantzas

Cloudiator
Daniel Baur

CDO Server
Kyriakos Kritikos

P
ro

fi
le

r

Execution
ware

CP Solver
Kyriakos Kritikos

Social Network
Manos Papoutsakis

Metric Collector
Kyriakos Kritikos

Plan Generator
Shirley Crompton

User Interface
Daniel Baur

SRL adapter
Frank Griesinger

A
d

ap
ter

Rule Processor
Denis Hoppe

CP generator
Lionel Seinturier

Figure 6: The components of the PAASAGE platform. The indicated persons are the project leaders of the open
source sub-projects for the various components and responsible for post PAASAGE debugging and continued
development.

over changing objective functions and constraints. Hence it will receive the updated metric value directly from
the execution ware. For the other two solvers, the Meta Solver will recive the updated metric and use this as a
fixed value parameter in the objective function passed to the solver for the concerned solver to find a solution
for the current execution context. If the solver is not able to find a better solution for the current context before
the next metric update, the solver will be terminated and restarted on the new problem defined by the received
metric values as only these will reflect the current context.

The Plan Generator takes the CPSMs, produces and validates a configuration plan, and sends this plan to
the Adapter component. If the application is already running, this plan will describe the necessary changes to
adapt the running configuration to the better configuration provided by the reasoner for the current execution
context. The adapter is then faced with the difficult task of assessing if it is worth doing the adaptation of
the running configuration. Should it decide to adapt the deployed application, it will then interface with the
execution ware to enact the necessary changes.

The execution ware has four PAASAGE components: The Cloudiator interface, the Metric Collector, the
SRL Adapter, and the User Interface. Cloudiator receives the deployment plan from the adapter and enacts
the deployment of the application on the selected providers. The montiored metric values from the running
application are collected by the Metric Collector responsible for distributing the metric values to the subscribers
in the upperware and to the Scalability Rule Language (SRL) Adapter. This adapter is responsible for scaling
the running application within a single provider; essentially by requesting the Cloudiator to start copies of
running virtual machines. Such platform level scaling can only happen within the multiplicity intervals set by
the reasoner in the current configuration. If the upper bound of the interval is reached and further scaling is
necessary, the current configuration is no longer valid, and an exception is triggered that propagates back to the
upperware Adapter that may have pending a more suitable configuration pre-computed by the reasoner. If that
is not the case the reasoner is requested to produce a better configuration for the current execution context.

10

2.2 Components

CAMEL Textual Editor
The CAMEL Textual Editor allows to specify multiple aspects of cross-cloud applications, such as provi-
sioning, deployment, service level, monitoring, scalability, providers, organisations, users, roles, security, and
execution.
The CAMEL Textual Editor is based on the Eclipse Modeling Framework (EMF)13 along with Object Con-
straint Language (OCL), Xtext14.
EMF is a modelling framework that facilitates defining DSLs. It provides the Ecore reflexive metamodel,
which is an Ecore model that conforms to itself (i.e., it is reflexive). The CAMEL metamodel is an Ecore
model that conforms to the Ecore metamodel.
OCL is a declarative language for specifying expressions on metamodels that are evaluated on models con-
forming to these metamodels. Eclipse OCL15 is a tool-supported implementation of OCL that integrates with
EMF. The CAMEL metamodel is annotated with OCL expressions for capturing (part of) the semantics of
cross-cloud applications and guaranteeing the consistency, correctness, and integrity of CAMEL models at
both design-time and run-time.
Xtext is a language development framework that is based on- and integrates with EMF. It facilitates the im-
plementation of Eclipse-based IDEs providing features, such as syntax highlighting, code completion, code
formatting, static analysis, and serialisation. The concrete syntax of CAMEL is a textual syntax defined as an
Xtext grammar. The textual syntax was preferred over the graphical syntax by the use case partners in PaaSage.
Thanks to the combination of EMF, Eclipse OCL, and Xtext, the CAMEL Textual Editor allows users not only
to specify CAMEL models but also to syntactically and semantically validate them.
The installation tutorial for the CAMEL Textual Editor along with the documentation of the language are
available at: http://camel-dsl.org/documentation/
Input parameters
No input parameter is consumed by the component.
Output parameters
No output parameter is produced by the component. CAMEL models can be saved in textual syntax (.camel)
or serialised to XMI (.xmi).
External dependencies
Library Description License Availability
EMF Eclipse Modelling Framework EPL 1.0 www.eclipse.org

Known limitations
No limitations are known for the component.

13https://www.eclipse.org/modeling/emf/
14https://eclipse.org/Xtext/
15http://wiki.eclipse.org/OCL

11

http://camel-dsl.org/documentation/
www.eclipse.org
https://www.eclipse.org/modeling/emf/
https://eclipse.org/Xtext/
http://wiki.eclipse.org/OCL

Social network
The PaaSage Social Network (SN) is a social platform targeted at the creation of a community of users and
developers. It enables users to exchange their experience and knowledge with respect to the PaaSage platform.
Through the PaaSage SN, users can connect to other SN users and view their contributions, join groups, deploy
applications, navigate through historical knowledge of previously executed application models, create applic-
ation models by also utilizing useful modeling recommendations provided by the SN as well as comment and
rate such applications models.
The registration section is kept simple by enabling the user to provide only the necessary details for the sign
up process (display name, email address, username and password). However, the easiest and quickest way for
a new user of the SN to log-in is to make use of their Facebook or Twitter account. In that way an account is
created in the SN taking information from the Facebook or Twitter account respectively.
Regarding the application models shared in the SN, the user can: i) search for a specific model, ii) apply filters
such as the deployment cloud, the geography and the tags of a model and iii) visit the application model page
of a model and have access to more details about it.
The social network can be used as a UI for the PaaSage platform and for the deployment of an application. The
first step is the user to fill in their PaaSage platform credentials. These credentials will allow the social network
to connect with the PaaSage platform using a RESTfull API. The next step is to upload the provider model to
the PaaSage platform. The last thing for the application deployment is the model of the application itself. The
deployment actually consists of two phases, the reasoning and the actual deployment. In the model page of an
application there is a button for each phase.
SN is available for users (socialnetwork.paasage.eu) to create accounts and exploit the functionality
exhibited by the SN.
Input parameters
The user of the SN has to fill in a register form in order to create a profile. Moreover, application models
must be uploaded to the SN to be shared with other users. Finally, the users have to specify the PaaSage
platform credentials in order to use it for application deployment and the cloud credential credentials in order
the necessary virtual machines to be created.
Output parameters
No output parameter is produced by the component. However, the uploaded application CAMEL model is
persisted into the Metadata Database.
External dependencies
Library Description License Availability
Elgg social networking engine GPLv2 https://elgg.org/

Known limitations
This component can be fully used.

12

socialnetwork.paasage.eu
https://elgg.org/

CP Generator Model-To-Solver
The CP-Generator Model-To-Solver component produces a CP Model and a PaaSage Application
Model from a CAMEL Model. The CP Model represents the selection of Cloud Providers for an application
as a constraint problem, i.e., as a set of variables and constraints. The PaaSage Application Model defines
relationships between concepts in the CAMEL Model and the CP Model. Furthermore, the CP-Generator
Model-To-Solver preselects Cloud provider candidates according to resources required by an application
and described in the CAMEL Model. The component is defined in a maven project. This means that de-
pendencies retrieval, compilation execution and generation of an executable Jar file is done through maven
plugins.
Input parameters
ModelId A string that represents the identifier in CDO Server of a CAMEL Model related to the applic-

ation being deployed.
OutputPath A string that represents an absolute file system path where a file containing the GenModeId

will be created.
Output parameters
GenModels A list containing the PaaSage Application (0) and CP (1) Models. The list is stored in CDO

Server.
GenModelsId A string representing the identifier of GenModels. The string is stored in the file system using

OutputPath as target.
External dependencies
Library Description License Availability
Saloon PaaS-
age 1.0

Library for searching valid configura-
tions in Provider Models

MPL2.0 http://saloon.gforge.
inria.fr/repositories/
releases/

log4j 1.2.17 Logging library for Java Apache
License 2.0

http://logging.apache.org/
log4j/1.2/

JUnit 4.8.2 Framework to write repeatable tests EPL 1.0 http://junit.org/

Commons io
1.4

Library of utilities to assist with devel-
oping IO functionality.

Apache
License 2.0

http://commons.apache.org/
proper/commons-io/

Known limitations
The current version process the CAMEL Model part related to Provider Models and Deployment.

13

http://saloon.gforge.inria.fr/repositories/releases/
http://saloon.gforge.inria.fr/repositories/releases/
http://saloon.gforge.inria.fr/repositories/releases/
http://logging.apache.org/log4j/1.2/
http://logging.apache.org/log4j/1.2/
http://junit.org/
http://commons.apache.org/proper/commons-io/
http://commons.apache.org/proper/commons-io/

CDO Server
CDO is a persistence and distribution framework for EMF-based applications which provides both client and
server functionality for the storage, updating and retrieval of models. CDO exhibits various interesting features,
such as multi-user or transactional access, parallel evolution, scalability, collaboration, data-integrity and fault-
tolerance. To this end, CDO technology was chosen for realizing the Metadata DataBase (MDDB) module of
the PaaSage platform.
Based on the above decision, a component encapsulating the functionality of a CDO server has been realized
which provides a model repository, backed-up by an underlying database, which is responsible for the storage
of models specified in any meta-model of EMF Ecore as well as their querying and retrieval in the form of a
java domain object.
Various types of model repositories are supported by a CDO server but the most important ones are the DBStore
and HibernateStore. Both types of stores can connect to a variety of databases but they support different
querying languages. A DBStore supports SQL while a HibernateStore supports the Hibernate Query Language
(HQL), which is a higher-level language providing an SQL-like syntax but operating over meta-model elements
and not tables. Both types of stores enforce a particular default mapping from the meta-models for which
models need to be stored to the respective database schema. However, this behavior can be modified. In
a DBStore, EAnnotations can be used on meta-model elements to explicate the way these elements will be
mapped. In a HibernateStore, mappings described through JPA annotations as well as some Hibernate-based
extensions can be enforced. Apart from this difference, DBStore supports additional CDO features than a
HibernateStore, such as the proper support of branches.
This CDO-server component can be exploited in two possible ways:

1. via the graphical environment of Eclipse where a CDO Session can be opened and then support either
CDO transactions or views. CDO transactions are more appropriate for the storage and updating of
models, while CDO views are more appropriate for querying the models stored in the CDO server. Please
note that this way of interaction is solely possible via the Luna version of the Eclipse Environment, which
maps to CDO version 3.4.0.

2. programmatically via the CDO Client, a component which has been developed in order to interact with
the CDO Server to be used in the code of the PaaSage component developers. This component provides
an interface through which CDO transactions or views can be opened and closed, models can be queried
with one or more languages (depending also on the type of the store realized by the CDO server), models
can be stored and models or objects can be deleted. A detailed documentation of this component is
available in the PAASAGE repository16. Please note that the CDOClient is compatible to interact with
the CDOServer, unless the CDO version supported in either component is modified. This is in contrast
to the case of the graphical based interaction where the user is responsible for ensuring the use of the
right CDO version.

To be continued...

16https://tuleap.ow2.org/plugins/git/paasage/cdo_client?p=cdo_client.git&a=blob_plain&h=
1d0abdaaea94d30df995ecc4eb1f028009aee745&f=documents/CDOClientDocumentation.pdf&noheader=
1

14

 https://tuleap.ow2.org/plugins/git/paasage/cdo_client?p=cdo_client.git&a=blob_plain&h=1d0abdaaea94d30df995ecc4eb1f028009aee745&f=documents/CDOClientDocumentation.pdf&noheader=1
 https://tuleap.ow2.org/plugins/git/paasage/cdo_client?p=cdo_client.git&a=blob_plain&h=1d0abdaaea94d30df995ecc4eb1f028009aee745&f=documents/CDOClientDocumentation.pdf&noheader=1
 https://tuleap.ow2.org/plugins/git/paasage/cdo_client?p=cdo_client.git&a=blob_plain&h=1d0abdaaea94d30df995ecc4eb1f028009aee745&f=documents/CDOClientDocumentation.pdf&noheader=1

...CDO Server
This component can be configured in many ways which include the configuration of the underlying database,
the port on which to listen for incoming connections by clients, the name of the respective repository and
its type. All this information can be configured via a .properties file whose structure and content is quite
comprehensive. The properties that can be configured are the following:

• dbtype - The type of the database. Until now, HSQLDB and MySQL are supported as the underlying
databases, where the values to be provided are hsqldb and mysql, respectively.

• dburl - The URL through which the server can connect to the underlying database

• username - The username for establishing the connection to the database

• password - The password for establishing the connection to the database

• repository - The name of the repository to be created

• storetype - The type of the repository to be created. CDO supports various stores but for now only
the DBStore (enabling posing SQL queries in various types of databases) and HibernateStore (enabling
posing HQL queries to a variety of databases) are supported. The respective values to be provided are
db and hibernate for the two kinds of stored supported, respectively.

• port - The number of port to which the server listens for incoming connections by clients.

• logging - Indicates whether logging should be set on or off.

• security - Indicates whether secured access to the CDOServer and its underlying repository is enabled
(value of “on”) or not (value of “off”). Please see more details in [6] D4.1.2 deliverable of PaaSage.

Input parameters
No input parameter is needed for the component to function. The information necessary is obtained from a
.properties file.
Output parameters
As this is a server, no output parameters are produced. Actually, the models stored are entered into databases,
so the server updates these databases and the corresponding db files.
External dependencies
Library Description License Availability
Eclipse Various Modules of the Eclipse Frame-

work
Eclipse Pub-
lic Licence
(EPL)

www.eclipse.org

Javax Java libraries for annotation and injec-
tion

BCL www.java.com

DOM4j Java Library for working with XML,
XSLT and XPath with full support for
DOM, SAX and JAXP

BSD http://dom4j.sourceforge.
net

Hibernate Hibernate Java Database LGPL 2.1 or
ASL 2.0

hibernate.org

MySQL MySQL Database GPL www.mysql.com

Known limitations
This component can be fully used. In case the component goes down (in very limited situations), it can be
easily restarted without losing the actual content of the underlying model repository.

15

www.eclipse.org
www.java.com
http://dom4j.sourceforge.net
http://dom4j.sourceforge.net
hibernate.org
www.mysql.com

CDO Client
This is a client component for the CDO Server enabling the storage and updating of models and the running of
queries over the contents of underlying CDO model repository. As diverse requirements have been raised by
the PaaSage component developers with respect to the different kind of model management functionality that
needed to be implemented for facilitating their interaction with the CDO model repository, the CDO Client
exposes methods which support the following tasks:

• EPackage registration mapping to the domain code to be manipulated

• textual (restricted to CAMEL models) or XMI model storage into a CDOResource with a particular
name

• model export in both textual or xmi forms from a CDOResource to the file system. If the model to be
exported references other models, then there are options to also export these models even in a recursive
manner

• CDO repository export into a zip file with models in either textual or xmi form for back-up purposes

• CDO repository (in the form of a zip file) import (see previous item for the content of this zip file)

• xmi to textual model transformation

• query evaluation over the CDO model repository. Different query dialects are supported (OCL, SQL,
HQL) depending on the type of store used to realise the model repository (see documentation of CDO
Server).

• model loading from a path in the file system or from a specific URL

• model validation according to Ecore semantics and the OCL constraints posed

• deletion of models/objects

• transaction/view opening

• transaction/view closing

• CDOSession closing - this is the last step in the exploitation of the CDOClient as the session with the
CDOServer is closed. The session is opened with the instantiation of the CDOClient.

A detailed documentation of this component is available in the PAASAGE repository17.
Please note that in case the CDOServer is configured with security on, then the CDOClient can be initiated
with a respective userName and password to be used for authentication. If authentication is successful, then
the respective session keeps the user credentials until the very end of the corresponding CDOClient object
lifetime. This means that during the lifetime of the CDOClient instance/object, the user or program will be
granted access to those resources on which it has the respective rights. There is no error to provide credential
information even if CDOServer is not configured for security but this information is actually ignored.

To be continued...

17https://tuleap.ow2.org/plugins/git/paasage/cdo_client?p=cdo_client.git&a=blob_plain&h=
1d0abdaaea94d30df995ecc4eb1f028009aee745&f=documents/CDOClientDocumentation.pdf&noheader=
1

16

 https://tuleap.ow2.org/plugins/git/paasage/cdo_client?p=cdo_client.git&a=blob_plain&h=1d0abdaaea94d30df995ecc4eb1f028009aee745&f=documents/CDOClientDocumentation.pdf&noheader=1
 https://tuleap.ow2.org/plugins/git/paasage/cdo_client?p=cdo_client.git&a=blob_plain&h=1d0abdaaea94d30df995ecc4eb1f028009aee745&f=documents/CDOClientDocumentation.pdf&noheader=1
 https://tuleap.ow2.org/plugins/git/paasage/cdo_client?p=cdo_client.git&a=blob_plain&h=1d0abdaaea94d30df995ecc4eb1f028009aee745&f=documents/CDOClientDocumentation.pdf&noheader=1

...CDO Client
This component can be configured in many ways mainly for properly interacting with a CDOServer. The
properties that can be configured are the following:

• host – the IP of the host on which the CDO Server runs

• port – the port on which the CDO Server listens

• repository – The name of the repository to be created (default is “repo1”)

• logging – Indicates whether logging should be set on or off (default is off).

Input parameters
user Name The user name in case the security feature of the CDO Server is on.
password The password in case the security feature of the CDO Server is on. This and the previous

parameter represent the user credentials for authentication and can be used in the instantiation
of the CDO Client.

property File
Path

The path in the file system where the .properties configuration file for the CDO Client can be
found. This parameter can be used in the constructor of the CDO Client.

Output parameters
We are talking about a component that provides multiple functionalities in the form of different methods. In
this respect, the output depends on the respective method called. This was also the case for the input of this
component, where we have chosen to explain the parameters for its construction.
External dependencies
Library Description License Availability
Eclipse Various Modules of the Eclipse Frame-

work
Eclipse Pub-
lic Licence
(EPL)

www.eclipse.org

Javax Java libraries for annotation and injec-
tion

BCL www.java.com

Log4j Apache logging library Apache Soft-
ware Licence
2.0

http://logging.apache.org/
log4j/2.x/

commons-
logging

Apache logging library Apache Soft-
ware Licence
2.0

https://commons.
apache.org/proper/
commons-logging/

javatuples Tuple management Apache Soft-
ware Licence
2.0

http://www.javatuples.org/

Known limitations
Textual syntax is only supported for CAMEL models. It is possible to use a textual syntax for another DSL but
this would require some modifications in the code and in the maven dependencies file.

17

www.eclipse.org
www.java.com
http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/
https://commons.apache.org/proper/commons-logging/
https://commons.apache.org/proper/commons-logging/
https://commons.apache.org/proper/commons-logging/
http://www.javatuples.org/

Importer
This component can be exploited for importing various types of models (basic models as well as provider
and use case models) into a CDO Repository by also respecting the model storage guidelines specified in the
context of WP4 (see D4.1.2 Deliverable [6]. In particular, this component generates the appropriate CDO
resource folder structure and imports the models into resources which are stored at particular points inside this
structure. Moreover, some of the CAMEL models provided might also be split into two or more parts.
More details about the main functionality exposed by this component are given below:

• import provider models from the file system into the CDO Repository

• import use case models according to the model storage guidelines by splitting the organisation inform-
ation into a seperate CDO resource with respect to the rest of the information involved in the respective
CAMEL model

• import geo location models into the CDO repository which are derived from the FAO geopolitical onto-
logy18

• import a basic metric model from the file system into the CDO Repository. This model can be ex-
ploited for expressing Service Level Objectives (SLOs) and optimisation requirements for multi-cloud
applications.

• import a basic security model which is generated from an excel file corresponding to the Cloud Controls
Matrix19 of Cloud Security Alliance. This model can be exploited for expressing high-level security
requirements and capabilities in the form of security controls for multi-cloud applications and cloud
providers, respectively.

A detailed documentation of this component is available in the PAASAGE repository20.

There is no configuration for this code but as it depends on the CDOClient code, the latter code should be
properly configured. More details about this can be found in the documentation of this latter component in this
deliverable as well as in the README file of this component in the respective git repository21.
Input parameters
inCDO This boolean parameter is used in the constructor of the Importer in order to denote whether

the models are to be imported in the CDO Repository. If this is not the case, then only the
models generated from non-XMI files (i.e., security and location models) are actually stored
in the file system.

hibernate This boolean parameter is used in the constructor of the Importer to denote the actual realisa-
tion of the CDO Repository. A value of true denotes that a HibernateStore is exploited, while
a value of false denotes that a DBStore is exploited. This parameter is required in order to
enable to formulate and perform the appropriate queries in the dialect that is actually being
supported from the underlying CDO model repository.

resourcePath The path in the file system where the XMI file or a directory of XMI files for the models to be
loaded, processed and stored in the CDO Repository should be situated.

To be continued...

18http://www.fao.org/countryprofiles/geoinfo/en/
19https://cloudsecurityalliance.org/group/cloud-controls-matrix/
20https://tuleap.ow2.org/plugins/git/paasage/cdo_client?p=cdo_client.git&a=blob_plain&h=

1d0abdaaea94d30df995ecc4eb1f028009aee745&f=documents/CDOClientDocumentation.pdf&noheader=
1

21https://tuleap.ow2.org/plugins/git/paasage/cdo_client?p=cdo_client.git&a=blob_plain&h=
45a9c2d3daa88a7269d3007f91fe4ec1907faa26&f=README&noheader=1

18

http://www.fao.org/countryprofiles/geoinfo/en/
https://cloudsecurityalliance.org/group/cloud-controls-matrix/
 https://tuleap.ow2.org/plugins/git/paasage/cdo_client?p=cdo_client.git&a=blob_plain&h=1d0abdaaea94d30df995ecc4eb1f028009aee745&f=documents/CDOClientDocumentation.pdf&noheader=1
 https://tuleap.ow2.org/plugins/git/paasage/cdo_client?p=cdo_client.git&a=blob_plain&h=1d0abdaaea94d30df995ecc4eb1f028009aee745&f=documents/CDOClientDocumentation.pdf&noheader=1
 https://tuleap.ow2.org/plugins/git/paasage/cdo_client?p=cdo_client.git&a=blob_plain&h=1d0abdaaea94d30df995ecc4eb1f028009aee745&f=documents/CDOClientDocumentation.pdf&noheader=1
https://tuleap.ow2.org/plugins/git/paasage/cdo_client?p=cdo_client.git&a=blob_plain&h=45a9c2d3daa88a7269d3007f91fe4ec1907faa26&f=README&noheader=1
https://tuleap.ow2.org/plugins/git/paasage/cdo_client?p=cdo_client.git&a=blob_plain&h=45a9c2d3daa88a7269d3007f91fe4ec1907faa26&f=README&noheader=1

...Importer
Output parameters
All main methods of this component return a boolean value which indicates whether the storage of the respect-
ive model loaded/processed or generated has been successful.
External dependencies
Library Description License Availability
Jena Core Jena Core Library for RDF Management Apache Soft-

ware Licence
2.0

https://jena.apache.org/

Apache POI Java API for Microsoft Documents Apache Soft-
ware Licence
2.0

https://poi.apache.org/

Known limitations
Currently tested on the Scalarm use case model. As now use case models are separated from the organisation
model of the provider of the use case, the respective code needs to be updated (simplified). The update should
also consider the import of user-specific provider models.

19

https://jena.apache.org/
https://poi.apache.org/

Knowledge Base (KB)
The Knowledge Base is the means via which added-value knowledge out of the CDO (model) repository can be
derived. The derivation relies on rules which are incorporated in the Knowledge Base and which, for the current
moment, enable the derivation of best deployment facts for applications and their components. Such derivation
relies mainly on the past execution history of the current application/task or of other applications/tasks that are
similar to the current one.
The rules have been designed carefully according to a specific domain model based on a particular mode of
interaction with the CDO repository. In particular, the rules rely on a statically provided CDOSession object
from which the respective CDO repository information can be obtained via queries. Rule facts rely on the
domain model which have been carefully designed so as to reduce the amount of communication needed with
the CDO repository by storing handles or CDOIDs to the actual objects stored in the CDO repository. This
enables browsing the facts generated and only when such facts need to be processed, an attempt to actually
retrieve the CDO object of interest is performed.
The current functionality of this Knowledge Base component is related to the management of know-
ledge bases and respective sessions operating over them. For an explanation of the lifecycle of know-
ledge bases and sessions as well as for inspecting examples of interaction with the Knowledge Base,
the reader should consult the (full) component documentation at: https://tuleap.ow2.org/
plugins/git/paasage/knowledge_base?p=knowledge_base.git&a=blob_plain&h=
84e22851678ae1bfd9a4292701f0cfd6a25a8387&f=documentation.doc&noheader=1.
The following kinds of functionality are currently supported:

• KnowledgeBase creation

• loading of rules in an existing KnowledgeBase

• StatefulKnowledgeSession creation for an existing KnowledgeBase

• firing of all rules of a KnowledgeBase in the context of a specific StatefulKnowledgeSession

• retrieval of current content produced within a StatefulKnowledgeSession

• domain object storage in the context of a StatefulKnowledgeSession

• query evaluation over the current content of a StatefulKnowledgeSession

• StatefulKnowledgeSession deletion

• KnowledgeBase deletion (leading also to the deletion of all of its StatefulKnowledgeSessions)

Two main clients are offered by this component which can be exploited for the knowledge base management.
The StandaloneClient is a thick client directly interacting with an internal Knowledge Base engine. As such,
all needed computations (e.g., firing of rules) occur at the client side. The RestClient is a Restful client which
exploits the jersey java library to invoke methods exposed by a RestService which encapsulates the facilities
of a Knowledge Base engine. Such a client is thus thin as the heavy work is performed at the server side
while the client just steers the calling of the server methods in order to properly manage its knowledge bases.
Both clients supplied offer the same set of methods which differ only in their signature due to the different
technologies employed. The base KB engine exploited is the Drools Engine22.
This component does not need configuration on its own. However, as it exploits the CDOClient for interacting
with the CDO Repository, the latter component needs to be properly configured. The way to perform this is
described in the documentation of the CDOClient component in this deliverable.

To be continued...

22www.drools.org

20

https://tuleap.ow2.org/plugins/git/paasage/knowledge_base?p=knowledge_base.git&a=blob_plain&h=84e22851678ae1bfd9a4292701f0cfd6a25a8387&f=documentation.doc&noheader=1
https://tuleap.ow2.org/plugins/git/paasage/knowledge_base?p=knowledge_base.git&a=blob_plain&h=84e22851678ae1bfd9a4292701f0cfd6a25a8387&f=documentation.doc&noheader=1
https://tuleap.ow2.org/plugins/git/paasage/knowledge_base?p=knowledge_base.git&a=blob_plain&h=84e22851678ae1bfd9a4292701f0cfd6a25a8387&f=documentation.doc&noheader=1
www.drools.org

...Knowledge Base
Input parameters
The constructors for the two clients do not take any input parameter. In the sequel, we mainly focus on the
public methods offered by the StandaloneClient for simplification reasons (more complicated parameters used
in the other client) as well as by relying on the fact that the signatures between the two clients are quite similar.
kbName The name of the KB. This parameter is used in all the public methods provided by this com-

ponent due to the way knowledge base management is performed.
sessionName The name of the session which is used for interacting with a KB. Similarly to the previous

case, this parameter is used in almost all public methods of this component. Such methods are
strictly related to the management of the session and not the knowledge base itself.

query The content of the query to be performed over a specific session on a certain KB.
parameters The parameters to the query to be posed.
objects The objects to be added to a particular session.
dirPath The path to the file system from which rules can be loaded on a certain knowledge base.
globalName The name of a global object to be passed to a session and thus be exploited during the rule

firing.
object The global object to be exploited in the firing of rules for a specific session (in our case to

interact with the CDO Repository).
Output parameters
Almost all main methods of the Standalone Client of this component return a boolean parameter indicating a
success of the method call. Only one parameter returns an array of the objects that are stored in a particular
session.
External dependencies
Library Description License Availability
Drools The Drools KB Engine MIT Licence http://www.drools.org/

JAXB API Java Architecture for XML Binding API CDDL v1.1
& GPL v2

https://jaxb.java.net/

Slf4j Simple Logging Facade for Java MIT Licence http://www.slf4j.org/

JUnit JUnit Testing Framework Eclipse Pub-
lic Licence
v1.0

http://junit.org/junit4/

Jersey RESTful Services Framework for Java CDDL v1.1
& GPL v2

https://jersey.java.net/

Known limitations

21

http://www.drools.org/
https://jaxb.java.net/
http://www.slf4j.org/
http://junit.org/junit4/
https://jersey.java.net/

Rule Processor
The Rule Processor component processes the output of the CP Generator in order to align the gener-
ated models—CP Model and PaaSage Application Model—with user requirements expressed in the original
CAMEL model. The result are modified models, if required, that satisfy these user requirements. User require-
ments, which can be directly defined in the CAMEL model, are currently limited to Cloud provider preferences.
Cloud provider candidates pre-selected by the CP Generator are checked against the Cloud providers a user
intends to deploy their application to. Users can either directly express their favoured Cloud providers, or
alternatively, include in the CAMEL model an indication to use either public or private Cloud providers. Ex-
ample: Candidates for Cloud providers are Amazon and GWDG, but the user requires the deployment to be
limited to Amazon. The Rule Processor then checks all constraints of the constraint programming model, and
removes redundant constraints and variables associated with GWDG. While performing the check against the
user requirements, it can result in internal components being no longer assigned to a Cloud provider candid-
ate. It arises when user-imposed requirements could not be fulfilled. The Rule Processor then returns with an
appropriate warning. Otherwise, the output of this component is—if required an updated—CP Model as well
as PaaSage Application Model.

Another check that the Rule Processor performs is related to service level objectives (SLO). Users can express,
for example, that the number of instances for an internal component should be greater than 2, but no larger
than 10. The Rule Processor evaluates the constraints associated with such a SLO, and—if required—adapts
the domain range. Users are informed about these updates. If the SLO cannot be satisfied, the Rule Processor
returns an error message. SLOs are checked automatically by the Rule Processor if they are included in a
CAMEL model.

The Rule Processor supports two modes of operation: as a stand-alone component called via the command line,
and as a daemon service that subscribes and publishes onto ZeroMQ message queues. In the latter case, the
Rule Processor expects a properties file named wp3_profiler.properties that sets the relevant queues.
If the file is not present, default values are used.

In summary, the Rule Processor acts as a component that can be applied by users to ensure that their require-
ments are correctly expressed by the constraint programming model. If requirements can not be fulfilled, users
are in need to adapt their CAMEL model based on information presented by the Rule Processor.

Input parameters
-m
<ModelId>

A string that represents an identifier in CDO Server of a CAMEL model related to the applic-
ation being deployed.

-c
<CDOId>

A string that represents an identifier in CDO Server of the models generated and stored by the
CP Generator, namely PaaSage Application Model and CP Model.

-o
<OutputFile>

A string that represents an absolute file system path. If the parameter is not given, it defaults
to rp_output. The file contains either the original CDO identifier (cf. <CDOId>) or a new
CDO identifier when the constraint programming model was modified; new identifiers end
with the suffix v2.

-d If the parameter is given, the Rule Processor starts as a service and subscribes and publishes
to ZeroMQ message queues defined in the properties file wp3_profiler.properties.
If not present, default values are used. The Rule Processor then subscribes to the queue
startSolving on tcp://localhost:5544, and publishes to the queue RPSolutionAvail-
able on tcp://*:5545.

Output parameters
<OutputFile> The file <OutputFile>, as provided via the -o parameter, contains either the original CDO

identifier (cf. <CDOId>) or a new CDO identifier when the constraint programming model
was modified. Per default, new identifiers end with the suffix v2.

To be continued...

22

...Rule processor
ZeroMQ
messages

If the Rule Processor is started as a service, it publishes to the queue RPSolutionAvailable a
multi-part message having the following structure: <ModelId>, <CDOId> (v2 if modified),
<CDOId> (previous identifier). If an error occurs, the second parameter is replaced with
the prefix RP_ERROR followed by an error message. The third parameter still contains the
original <CDOId>.

External dependencies
Library Description License Availability
commons-cli
1.3.1

An Apache Commons library that offers
an API for parsing command line op-
tions. The library is used to process and
validate given input parameters.

Apache
License v2.0

https://commons.apache.
org/proper/commons-cli/

commons-
jexl 2.1.1

An Apache Commons library that im-
plements an expression language to al-
low scripting features, amongst others,
in Java. The library is used to dynam-
ically check mathematical formulas un-
derlying service level objectives given in
a CAMEL model.

Apache
License v2.0

http://commons.apache.org/
proper/commons-jexl/

Log4j 1.2.17 An Apache library to provide a stand-
ardized way of logging information at
runtime. The component is used to
print progress, modifications, and res-
ults while the Rule Processor is valid-
ating a given constraint programming
model based on a CAMEL model.

Apache
License v2.0

http://logging.apache.org/
log4j/1.2/

JUnit 4.12 A framework to write unit tests for Java.
The framework is, in particularly, used
for testing the linear algebra functions
used in conjunction with the JEXL lib-
rary.

EPL v1.0 http://junit.org/junit4/

jeromq 0.3.5 The library provides a pure Java imple-
mentation of the ZeroMQ protocol.

LGPL v3.0 https://github.com/zeromq/
jeromq/tree/v0.3.5

Known limitations
The component currently is limited to user requirements based on Cloud providers and service level objectives;
requirements that arose during the project. The list of user-imposed requirements could be extended in the
future.

23

https://commons.apache.org/proper/commons-cli/
https://commons.apache.org/proper/commons-cli/
http://commons.apache.org/proper/commons-jexl/
http://commons.apache.org/proper/commons-jexl/
http://logging.apache.org/log4j/1.2/
http://logging.apache.org/log4j/1.2/
http://junit.org/junit4/
https://github.com/zeromq/jeromq/tree/v0.3.5
https://github.com/zeromq/jeromq/tree/v0.3.5

Meta Solver
The MetaSolver Component acts as a gateway to the different solvers which provide the reasoning capabilities
in the PaaSage platform. It takes the refined CP Model and PaaSage Application Model output by the Rule
Processor and prepares the CP Model for input into the solvers. For a first time deployment, the Metasolver
verifies and creates, if necessary, default values for all metric variables in the CP Model. For reconfiguring an
existing PaaSage application, it takes the run time metrics pushed by the Metrics Collector and maps the values
to the correct metric variables in the CP Model.
The Metasolver supports two modes of operation: as a stand-alone component called directly via
the command line, or as a daemon service that communicates via ZeroMQ messages to other
PaaSage components. A configuration file (wp3_metasolver.properties) is used to con-
figure the application. The properties file should be located under the PAASAGE_CONFIG_DIR
defined for the PaaSage Platform. If the file is not present, default values are used. The
Metasolver subscribes by default to the Rule Processor via the queue computeSolution on
tcp://localhost:5556; to the Metrics Collector on tcp://localhost:5552; to the Adapter via
the queue newCamelDeploymentAvailable on tcp://localhost:5550; to the MilpSolver via
the queue MILPSolutionAvailable on tcp://localhost:5540; to the CPSolver via the queue
CPSolutionAvailable on tcp://localhost:5541 and it publishes by default to all solvers via the
queue startSolving on tcp://localhost:5547 and to the Solver-to-Deployment component via the
queue newSolutionAvailable on tcp://localhost:5544.
ZeroMQ messages from the Rule Processor should contain in this order: a string representation of an iden-
tifier in CDO Server to the CAMEL model related to the application being deployed, a string representing
an identifier in CDO Server to the CP Model to be solved and a string representation to the CDO directory
identifier of the modified CP Model. Messages from the Adapter and solvers should contain in this order:
a string representation of an identifier in CDO Server to the CAMEL model related to the application being
deployed and a string representing an identifier in CDO Server to the CP Model to be solved. Messages from
the Metrics Collector should contains a string representation of the new value for the Metric identified in the
message queue. The metasolver publishes multi-part messages to the solvers which contain, in this order, a
string representation of an identifier in CDO Server to the CAMEL model related to the application being de-
ployed, a string representing an identifier in CDO Server to the CP Model to be solved and a time stamp to the
last Solution in the CP Model. Messages published to the Solvers-to-Deployment component differ slightly in
that the time stamp is replaced by a string representation to the CDO directory identifier of the modified CP
Model. If an exception occurs during processing, Metasolver publishes an error message to the subscribers
which would be intercepted by the PaaSage platform for feedback to the application designer.
Input parameters
-daemon This parameter is only applicable to the develop branch of the Metasolver which sup-

ports ZeroMQ. When this parameter is specified, the Metasolver starts as a service.
It subscribes and publishes to ZeroMQ message queues defined in the properties file
wp3_metasolver.properties. If the file is absence, default values are used.

Camel
Model Id

If started in command line mode, the first argument is a string representing an identifier in
CDO Server to the CAMEL model related to the application being deployed. This argument
is mandatory.

CP Model Id If started in command line mode, the second argument is a string representing an identifier in
CDO Server to the CP Model to be solved. This argument is mandatory.

Target Solver If started in command line mode, the third argument is an optional integer parameter specify-
ing the target solver or solvers to call. The options are: 0 denotes that call all available solvers,
1 denotes call MILPSolver, and 2 denotes call the CPSolver, and so forth.

Local Path
To Metrics
File

If started in command line mode, the fourth argument is an optional parameter specifying the
path to file containing key value pairs of metric variables and values to be added to the CP
Model before submission to the solver/s.

To be continued...

24

...Meta solver
Output parameters
None It is expected that the Solvers will generate new output and write directly to the CDO server.

An error message will be logged if the Metasolver encounters processing error.
External dependencies
Library Description License Availability
commons io
2.4

A library of utilities to assist with devel-
oping IO functionality.

Apache
License 2.0

http://commons.apache.org/
proper/commons-io/

eclipsesource
minimal-json

A fast and minimal JSON parser. MIT Licence https://github.com/
ralfstx/minimal-json/
releases/tag/0.9.1

javatuples
1.2

A simple JAVA library to provide a set
of java classes for working with tuples.

Apache
License 2.0

http://www.javatuples.org/

jeromq 0.3.5 The library provides a pure Java imple-
mentation of the ZeroMQ protocol.

LGPL v3.0 https://github.com/zeromq/
jeromq/tree/v0.3.5

JUnit 4.11 A framework to write unit tests for Java. EPL v1.0 http://junit.org/junit4/

Log4j 1.2.17 An Apache library to provide a stand-
ardized way of logging information at
runtime.

Apache
License v2.0

http://logging.apache.org/
log4j/1.2/

LOGBack
1.1.2

A logging framework. Dual EPL
v1.0 and
LGPL 2.1

http://logback.qos.ch/
index.html

SLF4J
1.7.10

A JAVA logging API. MIT Licence http://www.slf4j.org/

zeromq 3.1.0 Java binding for ZeroMQ. LGPL v3.0 https://github.com/zeromq/
jzmq

Known limitations
The MetaSolver is limited to the use of the two solvers (MILP and CP) for this prototype. It also expects the
Metrics Collector to provide values for all metrics identified in the CAMEL model.

25

http://commons.apache.org/proper/commons-io/
http://commons.apache.org/proper/commons-io/
https://github.com/ralfstx/minimal-json/releases/tag/0.9.1
https://github.com/ralfstx/minimal-json/releases/tag/0.9.1
https://github.com/ralfstx/minimal-json/releases/tag/0.9.1
http://www.javatuples.org/
https://github.com/zeromq/jeromq/tree/v0.3.5
https://github.com/zeromq/jeromq/tree/v0.3.5
http://junit.org/junit4/
http://logging.apache.org/log4j/1.2/
http://logging.apache.org/log4j/1.2/
http://logback.qos.ch/index.html
http://logback.qos.ch/index.html
http://www.slf4j.org/
https://github.com/zeromq/jzmq
https://github.com/zeromq/jzmq

Mixed Integer Linear Program solver
The MILP solver receives the definition of a constraint problem from the CDO server. The model is then
translated to the mathematical notation in CMPL. The challenge is not only to translate the model, but also to
convert the mathematical expressions into equivalent and valid formats. The CMPL mathematical modelling
system is then used to solve the problem using an open source solver, such as Cbc. The optimal values found
by CMPL are saved back to CDO.
Input parameters
Model A string that represents the identifier in CDO Server of the model that is subject to be optim-

ised.
Output parameters
CP solution Values of variables in the model stored in CDO are updated.
Text Debug output from CMPL and solver.
External dependencies
Library Description License Availability
CMPL Coliop/Coin Mathematical Program-

ming Language
GPLv3 http://www.coliop.org

jCMPL Coliop/Coin Mathematical Program-
ming Language

LGPLv3 http://www.coliop.org

Scala Scala standard library BSD-style http://www.scala-lang.org

Typesafe
Scala Log-
ging

Logging library Apache 2.0 http://github.com/
typesafehub/scala-logging

Typesafe
Config

Configuration management Apache 2.0 http://github.com/
typesafehub/config

Logback
Classic

Logging backend Dual: EPL
1.0 and
LGPL 2.1

http://logback.qos.ch

Known limitations
Only linear problems are supported.

26

http://www.coliop.org
http://www.coliop.org
http://www.scala-lang.org
http://github.com/typesafehub/scala-logging
http://github.com/typesafehub/scala-logging
http://github.com/typesafehub/config
http://github.com/typesafehub/config
http://logback.qos.ch

Constraint Programming solver (CPSolver)
The Constraint Programming (CP) solver is yet another solver which can be exploited for performing reasoning
over the space of possible deployment configurations for an application. The main difference with other solvers
is that it can include non-linear constraints and utility functions while it is also able to handle both integer-based
and real variables. In the context of the PaaSage project, the functionality of the CP solver is similar to the one
of the other solvers. This means that the procedure it follows to solve a CP model is the following:

• The CP solver receives the CDO repository path of the CP model, loads it into main memory and trans-
forms it internally to the appropriate Java structures required by the solver for representing the actual
constraint problem

• The constraint problem is solved

• The solution is written back to the CP model in CDO

Moreover, the latest developments of this solver led to its daemonisation in order to enable a queue-based
mechanism of interacting with it. The main component interacting with the CP Solver is the Meta-Solver
which requests the solving of a CP model in one queue and receives the result in another one. 0MQ23 has been
used for the realisation of the message queue mechanism, equivalently to all other components of the platform
that have been daemonised.
The latest solver developments also include the capability of the solver to address the existence of multiple
goals/optimisation requirements. In this case, the solver adopts the Simple Additive Weighting technique
in order to transform all the goals to a single one to be maximised. The developments also involve [7] the
possibility to interact with the Knowledge Base (KB) (see D4.1.2 deliverable [6]) in order to fix some parts of
the constraint problem to be solved by exploiting best deployments for components and applications, derived
as facts from the KB. This saves the solving time as well as takes into account the previous experience in
deploying and executing the current or similar applications to the current one.
Out of the context of the PaaSage platform main flow, the CP solver has been updated [8] to exhibit many other
interesting features which include:

• conjuctive selection of both SaaS and IaaS services for a multi-cloud application

• selection of software services for application tasks can rely on both externally offered SaaS as well as
internal software components deployed as services

• capability to include functions which explicate the way performance on lower levels of abstraction (i.e.,
IaaS services) can influence the performance on higher levels of abstraction (i.e., SaaS services)

• capability to handle quality constraints on different levels which include security constraints in the form
of security controls and Service Level Objectives (SLOs)

Concerning its implementation, the CP solver has been realised via the Choco constraint programming Java
library24 in conjunction with the Ibex solver25 for the addressing of real expressions and variables.

To be continued...

23zeromq.org
24www.choco-solver.org
25ibex-lib.org

27

zeromq.org
www.choco-solver.org
ibex-lib.org

...Constraint Programming solver
Input parameters
CP Model The path to the CDO model repository from which the CP Model can be retrieved as well as

updated
CAMEL
Model

The path to the CDO model repository from which the CAMEL Model can be retrieved. This
parameter is actually not required by the CP Solver but is exploited mainly in its daemonised
usage to distinguish the respective application for which the deployment has been reasoned
as an extra knowledge that is propagated back to the Meta-Solver along with the deployment
solution.

timestamp A timestamp value in the format of a long which can be used for signifying to the CP solver
which metric variable values to be used for solving the CP model. These metric variable values
are thus obtained from a previous solution of the CP model.

Output parameters
Solving Out-
come

A boolean value indicating whether the CP model was feasible and a solution was produced
for it or infeasible. The next parameters characterise mainly the daemonised version of the CP
solver.

CP Model The path to the CDO repository where the updated (with the new solution discovered) CP
model can be retrieved.

CAMEL
Model

The path to the CDO repository where the CAMEL model of the corresponding application
can be found.

External dependencies
Library Description License Availability
Choco Choco Constraint Programming Java

Library
BSD http://www.choco-solver.

org

Ibex Ibex Constraint Programming solver for
real variables

LGPLv3 http://www.ibex-lib.org

ZeroMQ Messaging Middleware LGPLv3 http://www.zeromq.org

Log4j Apache Logging library Apache 2.0 http://logging.apache.org/
log4j/2.x/

Known limitations
None.

28

http://www.choco-solver.org
http://www.choco-solver.org
http://www.ibex-lib.org
http://www.zeromq.org
http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/

Learning Automata based solver
The Learning Automata (LA) based solver searches for a solution to the constraint deployment problem using
Learning Automata to learn the best values of the discrete variables in the model and a non-linear solver to
solve for the continuous variables conditioned on the discrete variables. The background and algorithm can be
found in PAASAGE deliverable D3.1.2 [4].
Each discrete variable is assigned a learning automaton. Without any a priori knowledge about the value of
a discrete variable, any assigned value from the variable domain can be as good as every other value, and
the learning automation initiates the search with a uniform probability vector over all possible values in the
variable’s domain. If there is knowledge in the metadata database indicating that some values in the domain
may work better than others, then this initialisation will be non-uniform with the value probabilities reflecting
the relative goodness of the values in the variable’s domain. This will start the search making it more likely to
choose previously good assignments for a variable.
The LA will then interact iteratively in a game where each play involves every automaton assigning a value for
its discrete variable according to its probability distribution over the variable’s domain, and then the value of the
utility function is assessed after solving for the continuous variables. The objective is to learn the assignments
that maximises the utility in the long run. The problem is stochastic because the utility function can be based
on aggregated metric values that may change over time, e.g. the average number of users of the application
per day. Thus, evaluating the utility twice for the same assignment of variables, may give two different utility
values.
The benefit of this approach is that the solver can keep on running, always returning the best known solution for
the current execution context as soon as a solution better than the current best configuration is found. The solver
will receive updated metric values from the Metric Collector, and immediately take them into consideration in
the next play of the assignment game. The found solution will therefore be adaptive to the current execution
context of the application, and application deployment can take place with an initial solution and then be
adapted by the Adapter component as better deployment configurations become available.
The CP-model output from the Profiler is converted into a set of variables, their domains, and initial values are
retrieved from the CDO server, if such values are available. The constraints are also taken from the CP-model.
The variables, the constraints, and the utility function is then compiled and linked with the solver. This implies
that there is one solver for each application model, and if the model changes, the currently running solver
must be stopped and recreated for the possibly new variables, constraints, and utility function. This process is
described in deliverable D3.1.2 [4].
Input parameters
IP address A textual IP address for the Metrics Collector that receives the measurements from the run-

ning application and updates the metric values in the metadata database. It also publishes the
measured values to any solver subscribing to these updates.

ModelId A string that represents the identifier in CDO Server of the CP-model related to the application
being deployed.

Output parameters
None The solver will write back to the CDO server the assigned variable values and the correspond-

ing utility as soon as a feasible solution satisfying all constraints is found.
To be continued...

29

...Learning Automata based solver
External dependencies
Library Description License Availability
NLopt Open-source library for non-linear op-

timisation, providing a common inter-
face for a number of different free op-
timisation routines available on-line as
well as original implementations of vari-
ous other algorithms. Provided as a
standard package for most Linux distri-
butions

LGPL http://ab-initio.mit.edu/
wiki/index.php/NLopt

Theron A lightweight C++ concurrency library
based on the Actor Model

MIT http://www.theron-library.
com/

ZeroMQ A message queue library providing
sockets that carry atomic messages
across various transports like in-process,
inter-process, TCP, and multicast. Ver-
sion 3 or higher is required and this
is provided as a standard package with
most Linux distributions

LGPv3 http://zeromq.org/

zmqpp C++ binding for ZeroMQ as a ’high-
level’ library that hides most of the
C-style interface the core ZeroMQ
provides. Must be cloned from the Git
repository

MIT https://github.com/zeromq/
zmqpp

Known limitations
The source was released as part of the prototype and the interface has been tested to ensure that the solver is
correctly built for a given model.

30

http://ab-initio.mit.edu/wiki/index.php/NLopt
http://ab-initio.mit.edu/wiki/index.php/NLopt
http://www.theron-library.com/
http://www.theron-library.com/
http://zeromq.org/
https://github.com/zeromq/zmqpp
https://github.com/zeromq/zmqpp

Solver to deployment
Solver-to-deployer is a glue layer between the Reasoner and the Adapter. It participates to lowering the
dependencies of solvers to the remaining of PAASAGE. Upper ware metamodels aim at enabling interactions
between the Profiler and the Reasoner while lowering dependencies to CAMEL. Solvers produce solutions
using these upper ware metamodels. The main objective of the Solver-to-deployment component is to
translate the output of the Solvers into the Deployment Model CPSM.
Input parameters
Solution
Model Id

A string that represents the identifier in CDO Server of a Camel Model related to the solution
being deployed.

Output Path A string that represents an absolute file system path where a file containing the deployable
model will be created.

Output parameters
GenModels The CloudML model of the deployable solution.
External dependencies
Library Description License Availability
log4j 1.2.17 Logging library for Java Apache

License 2.0
http://logging.apache.org/
log4j/1.2/

Commons io
1.4

Library of utilities to assist with devel-
oping IO functionality.

Apache
License 2.0

http://commons.apache.org/
proper/commons-io/

Known limitations
The current version generates a CAMEL deployable model.

31

http://logging.apache.org/log4j/1.2/
http://logging.apache.org/log4j/1.2/
http://commons.apache.org/proper/commons-io/
http://commons.apache.org/proper/commons-io/

Adapter
The purpose of the Adapter is to transform the currently running application configuration into a target con-
figuration in an efficient and safe way. The component has the following responsibilities: (1) producing and
validating reconfiguration plans, (2) applying the plans to the running system, and (3) maintaining an up-to-date
representation of the current system state. The component typically operates as follows: (1) it obtains a target
deployment model from the Reasoner, (2) it produces a reconfiguration plan using the Plan Generator,
(3) it validates that the plan is acceptable, (4) it applies the plan to the running system using the execution-
ware, (5) it monitors the running system to detect changes, such as executionware-triggered scaling, and (6)
it ensures that changes are reflected in the CAMEL-based system representation. The current implementation
supports parallel plan execution, full causal connection between the running system and the CAMEL-based
representation, and plan validation based on historical reconfiguration information. The component interacts
with upperware using zeromq and with executionware using a REST API.
Input parameters
ModelId A string that represents the identifier in the CDO Server of the Camel Model representing the

target deployment.
URL The URL of the Executionware Frontend
Output parameters
REST-
Interface

Uses the REST Interface to interact with Executionware

External dependencies
Library Description License Availability
jeromq Pure Java implementation of libzmq LGPL 3.0 https://github.com/zeromq/

jeromq

log4j 1.2.17 Logging library for Java Apache
License 2.0

http://logging.apache.org/
log4j/1.2/

JGraphT JGraphT libraries EPL 1.0 and
LGPL 2.1

http://jgrapht.org/

JSON.simple A simple Java toolkit for JSON Apache 2.0 https://code.google.com/
archive/p/json-simple/

Halbuilder
Standard
4.0.1

Serializer/deserializer factory support-
ing HAL+XML and HAL+JSON

Apache http://www.gotohal.net

Gson 2.2.4 Java library that can be used to convert
Java Objects into their JSON represent-
ation

Apache 2.0 http://code.google.com/p/
google-gson/

Http Com-
ponents
4.3.3

Tools for HTTP and associated proto-
cols

Apache
License 2.0

http://hc.apache.org/

JUnit 4.11 Framework to write repeatable tests EPL 1.0 http://junit.org/

Commons
CLI 1.2

Parsing command line options Apache
License 2.0

commons.apache.org/cli/

Known limitations
None.

32

https://github.com/zeromq/jeromq
https://github.com/zeromq/jeromq
http://logging.apache.org/log4j/1.2/
http://logging.apache.org/log4j/1.2/
http://jgrapht.org/
https://code.google.com/archive/p/json-simple/
https://code.google.com/archive/p/json-simple/
http://www.gotohal.net
http://code.google.com/p/google-gson/
http://code.google.com/p/google-gson/
http://hc.apache.org/
http://junit.org/
commons.apache.org/cli/

SRL Adapter
The SRL Adapter is a sub component of the Adapter. Similar to the adaptation manager, the SRL Adapter is
responsible to transform the current running configuration to a new target configuration. It’s scope is however
limited to monitoring data and aggregation functions. For this purpose, the SRL Adapter extracts the monit-
oring description provided by the Scalability Rule Language inside the CAMEL language, and provides the
information to the ExecutionWare Frontend. In subsequent runs, the deviation between plan (model) and actual
state (ExecutionWare Frontend) is calculated, an the actual state is adapted.
Input parameters
ZeroMQ The SRL adapter receives a zeromq message from the adapter as soon as the adapter run has

finished. The zeromq message contains the current execution context and basic properties of
the current model.

MDDB The SRL adapter has a connection to the MDDB from which it retrieves the Scalability Rule
description.

Output parameters
REST-
Interface

Uses the REST Interface of the ExecutionWare Frontend to enact monitoring and aggregation
needs.

External dependencies
Library Description License Availability
jeromq zeromq Library for Java Mozilla Pub-

lic License
2.0

https://github.com/zeromq/
jeromq

Known limitations
None

33

https://github.com/zeromq/jeromq
https://github.com/zeromq/jeromq

Colosseum - ExecutionWare Frontend
The Cloudiator 26 component Colosseum acts as Executionware Frontend in PaaSage. It is the entry point
for the upper ware. It provides a REST-based interface which can be used by the upper ware to instruct the
underlying Execution Engine Sword. It orchestrates the allocation of virtual machines that is enacting using
the Sword component of Cloudiator, and the deployment of the application that is handled by Lance.
Input parameters
REST-
Interface

The REST-Interface offers the capabilities of the ExecutionWare to the Adaption Manager of
the Upperware.

Output parameters
Java The Executionware Frontend communicates with Sword using direct JAVA-calls.
REST-
Interface

The web-based interface provides the adaptation manager of the Upperware with control over
the Executionware.

RMI To orchestrate the deployment of the application, Colosseum communicates with the lifecycle-
agents (Lance) deployed on the managed virtual machines.

External dependencies
Library Description License Availability
Hibernate
Entityman-
ager

Database LGPL 2.1 http://www.hibernate.org

MariaDB
Java Client

Database LGPL 2.1 https://mariadb.com

Java Ham-
crest

Testing BSD www.hamcrest.org

Google
Guice

Dependency Injection Apache
License 2.0

https://github.com/google/
guice

Google
Guava

Helper Library Apache
License 2.0

https://github.com/google/
guava

Apache
Commons

Helper Apache
License 2.0

http://commons.apache.org/

type-parser Helper MIT https://github.com/
drapostolos/type-parser

reflections Helper WTFPL https://github.com/
ronmamo/reflections

JGraphT Graph Library LGPL http://jgrapht.org/

Known limitations
None

26https://cloudiator.github.io

34

http://www.hibernate.org
https://mariadb.com
www.hamcrest.org
https://github.com/google/guice
https://github.com/google/guice
https://github.com/google/guava
https://github.com/google/guava
http://commons.apache.org/
https://github.com/drapostolos/type-parser
https://github.com/drapostolos/type-parser
https://github.com/ronmamo/reflections
https://github.com/ronmamo/reflections
http://jgrapht.org/
https://cloudiator.github.io

ExecutionWare UI
The ExecutionWare UI provides a graphical interface for the REST interface provided by the ExecutionWare
component Colosseum. It allows the users of PaaSage to see the current deployment status of the application. In
addition it allows manual interaction with the ExecutionWare allowing to trigger e.g. manual scaling operation.
Furthermore, it allows the user to access the monitoring data collected by the monitoring infrastructure in a
graphical way.
Input parameters
REST-calls The UI communicates with the Colosseum component by fetching the JSON data of the REST

Api using Ajax calls.
Output parameters
Web The UI provides its information via Web pages viewable in a browser.
External dependencies
Library Description License Availability
Apache 2 Web Server APL 2.0 https://httpd.apache.org/

Angular.js Javascript Framework MIT License https://angularjs.org/

PHP Programming Language PHP License
v3.01

https://secure.php.net/

Known limitations
None

35

https://httpd.apache.org/
https://angularjs.org/
https://secure.php.net/

Sword - Abstraction Layer of Execution Engine
The component Sword of the Cloudiator framework27 acts as abstraction layer for the Execution Engine. It
harmonises the different provider specific APIs of the cloud providers, thus enabling the Colosseum component
to allocate virtual machines from different cloud providers. Currently supported APIs are: Openstack Nova,
Flexiant FCO, Amazon EC2 and Google Compute Cloud.
Input parameters
Java Sword receives virtual machine allocation request directly via Java calls from the Colosseum

component.
Output parameters
Cloud API Sword calls the different cloud provider APIs via an abstraction layer supporting several cloud

middlewares.
External dependencies
Library Description License Availability
jclouds Cloud Abstraction Apache

License 2.0
http://jclouds.apache.org/

Overthere Remote Shell Connection
(SSH/WinRM)

GPL 2.0
(FLOSS
Exception)

https://github.com/
xebialabs/overthere

Google
Guice

Dependency Injection Apache
License 2.0

https://github.com/google/
guice

Google
Guava

Helper Library Apache
License 2.0

https://github.com/google/
guava

Known limitations
None

27https://cloudiator.github.io

36

http://jclouds.apache.org/
https://github.com/xebialabs/overthere
https://github.com/xebialabs/overthere
https://github.com/google/guice
https://github.com/google/guice
https://github.com/google/guava
https://github.com/google/guava
https://cloudiator.github.io

Lance - Lifecycle Agent of Execution Engine
The component Lance of the Cloudiator framework28 acts as lifecycle-agent of the Execution Engine. It resides
on all virtual machines managed by the ExecutionWare and is responsible for deploying the application onto
the virtual machine. It supports two deployment modes: Docker and Plain.
Input parameters
Java RMI Lance receives deployment requests via a Java RMI interface. This interface is called by

Colosseum acting as ExecutionWare Frontend.
Output parameters
OS calls Lance calls the underlying operating system to install and start the component it is deploying.
External dependencies
Library Description License Availability
etcd (op-
tional)

Key-Value Store Apache
License 2.0

https://github.com/coreos/
etcd

etcd4j Client for etcd Apache
License 2.0

https://github.com/
jurmous/etcd4j

Docker (op-
tional)

Container Apache
License 2.0

https://www.docker.com/

Known limitations
None

28https://cloudiator.github.io

37

https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/jurmous/etcd4j
https://github.com/jurmous/etcd4j
https://www.docker.com/
https://cloudiator.github.io

Monitoring and Aggregation Infrastructure
The monitoring infrastructure is responsible for monitoring the metrics defined in the application model to
aggregate collected raw metrics and to communicate the results to the other components of the PaaSage archi-
tecture via the MDDB. The monitoring infrastructure consists of several components:

TSDB The time series database (TSDB) is distributed database suited for processing the large amount of
sensor data collected by the agents. It stores the collected data for use of the other components.

Agents The monitoring agents (Visor29) are responsible for collecting the sensor data. They implement probes
for monitoring basic data about the execution environement on the virtual machine. In addition they offer
an interface for the reporting of application specific data. The thereby collected sensor data is sent to the
TSDB.

Aggregation The aggregation framework Axe30 is responsible for aggregation the collected raw metrics.

Collector The collector is responsible for interlinking the time-series database with the meta-data database
(MDDB).

Input parameters
Sensors The sensors implemented in the monitoring agents aquire basic monitoring data of the execu-

tion environement on the virtual machines.
Sensor Inter-
face

The sensor interface offers an interface where applications can report application-specific
monitoring information.

REST The sensor offer a rest interface allowing Axe and Colosseum to configure monitoring needs.
RMI The aggregation framework receives its aggregation tasks from Colosseum via a RMI-based

interface.
Output parameters
Monitoring
Data

The collector provides the MDDB with the monitoring data stored in the TSDB. In addition it
provides the monitoring data to the Solvers using the zeromq message queue.

External dependencies
Library Description License Availability
kairosdb Time-Series Database Apache

License 2.0
https://github.com/
kairosdb

kairosdb-
client

Client for kairosdb LGPL2.0 https://github.com/
kairosdb

sigar Monitoring Library Apache
License 2.0

https://github.com/
hyperic/sigar

zeromq Message Queue LGPL http://zeromq.org/

Known limitations
None

29https://cloudiator.github.io
30https://cloudiator.github.io

38

https://github.com/kairosdb
https://github.com/kairosdb
https://github.com/kairosdb
https://github.com/kairosdb
https://github.com/hyperic/sigar
https://github.com/hyperic/sigar
http://zeromq.org/
https://cloudiator.github.io
https://cloudiator.github.io

Metrics Collector
This component is mainly used during the monitoring of multi-cloud applications. It can actually be exploited
in two ways: (a) as a code which can perform aggregations over raw measurements that are stored in a Time
Series DataBase (TSDB); (b) as a code which is mainly used for storing measurements in the CDO Reposit-
ory as well as reporting these measurements to interested subscribed components via the use of the ZeroMQ
messaging middleware. This component is currently exploited via the second way as metric aggregation is
performed by the Cloudiator framework.
Concerning metric aggregation, the component is able to produce aggregations for metrics within one cloud or
across clouds. In the first case, it should be deployed on the same user VM where the local TSDB is deployed
and run. In the second case, it should be deployed in the domain of the Executionware module. For the actual
aggregation, two main TSDBs are currently supported: (a) KairosDB31 and (b) InfluxDB32. The component
applies a multi-threaded architecture to perform the aggregation where threads are created to manipulate the
execution context of the application as well as the measurement of a specific composite metric pertaining to
this context. As such, the first type of threads is responsible for the management of the aggregation while
the second type for performing this aggregation. Local KairosDBs are exploited for local aggregation of
measurements while the CDORepository for the cross-cloud aggregation. To support the aggregation, quite
well-known statistics operations (e.g., mean, median, percentile, etc.) were either directly exploited or realised
from scratch (in case of KairosDB and cross-cloud aggregation via CDO).
Measurement storage and publishing relies on the facilities offered by the CDOClient and the ZeroMQ mid-
dleware. Concerning the publishing, the current rationale is that when a measurement is to be stored in CDO,
it is checked whether it maps to a metric which is directly associated to a Service Level Objective (SLO),
optimisation requirement or nonfunctional event of a scalability rule. If this is the case, then the measurement
is published and the respective subscribers, such as the Meta-Solver, can retrieve it.
More details about this component can be found in Deliverable D5.1.2 [5].

Metrics Collector is mainly configured via a file named as "eu.paasage.executionware.metric-
collector.properties". This file contains the following properties that need to be set:

• db – it can take the values of “influx” or “kairos” mapping to the two TSDBs currently supported, i.e.,
InfluxDB and KairosDB, respectively.

• host – the name/IP of the host where the TSDB resides

• port – the port number on which the TSDB listens

• mode – the operation mode of the Metrics Collector which can take the values of either “local” or
“global”. Local mode indicates that the Metrics Collector should be deployed and run in a user VM
to perform local aggregations. Global model indicates that the Metrics Collector should be run in the
domain of the Executionware module to aggregate cross-cloud measurements as well as to perform the
measurements storage in CDO and their reporting.

• runServer – a boolean value is expected here to denote whether a publication server should also be ex-
ecuted in order to support the publishing of measurements. By default the value is false. This parameter
should only be set on in the case of a global MetricCollector. Please note that in the most recent devel-
opment of this component, the publishing can be configured also via the respective class (MetricStorage
and its two actual implementations) which performs the storage and publishing of measurements.

To be continued...

31https://kairosdb.github.io/
32https://www.influxdata.com/

39

https://kairosdb.github.io/
https://www.influxdata.com/

...Metrics Collector

• runClient – a boolean value denoting whether a subscription client should also be executed in order to
receive requests for measuring collections of metrics on behalf of a certain application instance. By
default the value is false. This parameter should only be set on in the case of a global MetricCollector.

• directCall – a boolean value denoting whether the public methods of the Metrics Collector are to be
called in a direct or indirect manner (e.g., via a command file). By default this property takes the value
of false.

• dynamic – a boolean value is expected to denote whether the public methods are dynamically called by
changing the content of the command file. Obviously, this property should only be set on if the value of
the directCall configuration property is false. By default, this property takes the value of false.

Please note that as this component has to store measurements in CDO, it exploits a CDOClient component. As
such, the latter component needs to be also properly configured. The way to perform this is described in the
documentation of the CDOClient component in this deliverable.
Input parameters
property File
Path

The path to the file system where the configuration file for this component is situated.

metric IDs A list of CDOIDs for the metric instances that need to be measured. Depending on the method
actually called, the respective semantics is different. If the metric instances need to be meas-
ured, then readMetrics has to be called. If the metric instances need to be deleted, then delete-
Metrics has to be called. Please note that the update of metrics can be performed via a deletion
and a subsequent insertion of the metric instances.

exec Context
Id

The CDOID of the Execution Context for which the measurements need to be produced.
Please remember that the execution context represents a certain multi-cloud application execu-
tion episode for which we need to store measurements as well as cater for triggering scalability
rules, if needed.

Output parameters
All main methods of this component do not return any output parameter value.
External dependencies
Library Description License Availability
InfluxDB The InfluxDB TSDB MIT Licence https://www.influxdata.

com/

KairosDB The KairosDB TSDB Apache Soft-
ware Licence
2.0

https://kairosdb.github.
io/

Docker-java Java Docker API Client Apache Soft-
ware Licence
2.0

https://github.com/
docker-java/docker-java

ZeroMQ Messaging Middleware LGPLv3 http://www.zeromq.org

Log4j Apache Logging library Apache 2.0 http://logging.apache.org/
log4j/2.x/

Known limitations

40

https://www.influxdata.com/
https://www.influxdata.com/
https://kairosdb.github.io/
https://kairosdb.github.io/
https://github.com/docker-java/docker-java
https://github.com/docker-java/docker-java
http://www.zeromq.org
http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/

3 Licence and governance

3.1 The PAASAGE platform license

PaaSage is a committed open source project and all code necessary for running the platform must be available
as open source, even if it constitutes development prior to PaaSage. Many of the PAASAGE components are
enhancements and innovations involving existing open source modules and projects. The PAASAGE members
wish to favour the creation of source code commons, but avoid the problems of “virality” that cause incom-
patibility problems between software components. The following principles have therefore been set for the
adoption of an open source license in PAASAGE:

1. The chosen license should be compatible with the licenses currently in use by the PAASAGE partners for
their open source projects being enhanced through PAASAGE. The currently used licenses are: Apache33,
LGPL3.034 and Eclipse35.

2. The license should protect the investment we have done in PAASAGE and should therefore be “weak co-
pyleft”36, i.e. if someone improves the PAASAGE platform code, these improvements should be released
back as open source for others to use.

3. The chosen license should not restrict commercial use of PAASAGE, and should permit PAASAGE soft-
ware to be integrated with commercial closed source software whether it will be simple use of the PAAS-
AGE platform or linking other libraries with PAASAGE.

The open source cloud computing projects landscape is characterised by a majority of initiatives hosted by
Apache Foundation. The Apache license is also used by other organisations such as Appscale37 or Red Hat38.
As a consequence, the Apache license is often used in “Infrastructure as a Service” (IaaS) and “Platform as
a Service” (PaaS) projects. Although it is widely used in open source cloud project, the permissive Apache
license does not satisfy the constraints expressed for the PAASAGE project.

An additional desire for the common PAASAGE license was that it should be well know in the developer
communities to facilitate easy adoption of the PAASAGE code base. The selection was therefore confined to
the the list of recommended licenses that is published by Open Source Initiative39 leading to a choice among
four licences:

GNU Lesser General Public License (LGPL) Version 2.1 suffers a lack of clarity due to the distinction between
dynamic or static linkage. The last version, version 3.0, clarify the point by removing that distinction.
The LGPL is compatible with the widely used GPL.

Mozilla Public License (MPL) 40 was created by Netscape in order to protect the Mozilla projects and to
simplify the use of third-parties modules that are under various free and proprietary licences. The MPL
1.1 is incompatible with the widely used GPL. The new MPL 2.0 was written with the compatibility
problem in mind.41 The MPL 2.0 license can be compatible with MPL 1.1 and GNU licenses, which is
acknowledged42 by the Free Software Foundation (FSF).

Common Public License (CPL) or Eclipse Public License (EPL) The EPL is an evolution of the CPL43. It
is a file based weak copyleft license that is associated to the Eclipse projects. The EPL is incompatible
with the widely used GPL.

33http://opensource.org/licenses/Apache-2.0
34http://opensource.org/licenses/LGPL-3.0
35http://opensource.org/licenses/EPL-1.0
36http://en.wikipedia.org/wiki/Copyleft
37www.appscale.com
38www.redhat.com
39http://opensource.org/licenses
40http://opensource.org/licenses/MPL-2.0
41https://www.mozilla.org/MPL/2.0/FAQ.html
42https://www.gnu.org/licenses/license-list.html#MPL-2.0
43http://www.ibm.com/developerworks/library/os-cpl.html

41

http://opensource.org/licenses/Apache-2.0
http://opensource.org/licenses/LGPL-3.0
http://opensource.org/licenses/EPL-1.0
http://en.wikipedia.org/wiki/Copyleft
www.appscale.com
www.redhat.com
http://opensource.org/licenses
http://opensource.org/licenses/MPL-2.0
https://www.mozilla.org/MPL/2.0/FAQ.html
 https://www.gnu.org/licenses/license-list.html#MPL-2.0
http://www.ibm.com/developerworks/library/os-cpl.html

Common Development and Distribution License (CDDL) 44 was created by Sun Microsystems. It is in-
spired by MPL. The added value of the license compared to the widely used MPL is unclear.

The LGPL 3.0 license is stronger in terms of reciprocity and responsibility to contribute to the development.
However some companies could be afraid by the “GNU” label. The MPL 2.0 license is easier for the cre-
ation of combined works that contain files with various licenses. In consequence, MPL 2.0 has been adopted
unanimously by the PAASAGE consortium members as the common licence for the PAASAGE software.

Note that this does not prevent partners of PAASAGE or users of PAASAGE to replace PAASAGE com-
ponents with commercial components for better performance as per the third principle above. It also does not
prevent partners to the PAASAGE project to sell packaged versions of PAASAGE, or provide services on the
PAASAGE platform.

The chosen open source license must be referenced in the source code. The developers have to indicate
the license in the source code of the software. The original text is written in a file that is named LICENSE or
LICENSE.txt45 in the root directory of the source code. Each source file should contain the following text as
part of the file header:

Copyright (C) 2014 NAME <EMAIL COMPANY.EXT>
OPTIONAL CONTACT DETAILS

This Source Code Form is subject to the terms of the
Mozilla Public License, v. 2.0. If a copy of the MPL
was not distributed with this file, You can obtain one at
http://mozilla.org/MPL/2.0/.

3.2 Best practice on governance of Open Source Software projects

Governance in software projects can be defined as “the complex process that is responsible for the control of
project scope, progress, and continuous commitment of developers” [9]. In particular, the scope and purpose of
the “governance model” for an open source project can be defined as follows46:

“A governance model describes the roles that project participants can take on and the process
for decision making within the project. In addition, it describes the ground rules for participa-
tion in the project and the processes for communicating and sharing within the project team and
community. In other words it is the governance model that prevents an open source project from
descending into chaos.”

— Ross Gardler and Gabriel Hanganu

Owing to its importance, the governance of open source projects has attracted the interest of the manage-
ment science community and software communities alike. In the interest of keeping this document brief, a full
survey of the literature is omitted, and the interested reader is referred to the extensive literature reviews in
Capra et al. [10] and O’Mahony [11].

The traditional view is that highly structured development projects, based on disciplined adherence to
defined methodologies and development plans is the best way to increase development efficiency. However,
over the last decade this view has been challenged by agile methodologies based on informal governance and
autonomous coordination among the developers. Open source projects receive contributions from a community
of developers over which traditional project management methodologies cannot be applied. Governance of
open source projects and agile software development therefore have much in common. However, as a research
project PAASAGE has clear plans and responsibilities, and clear deliverables. The governance model must
reconcile these two perspectives on the PAASAGE’s code base.

44http://opensource.org/licenses/CDDL-1.0
45This file can be copied from https://www.mozilla.org/MPL/2.0/index.txt
46http://oss-watch.ac.uk/resources/governancemodels

42

http://mozilla.org/MPL/2.0/
http://opensource.org/licenses/CDDL-1.0
https://www.mozilla.org/MPL/2.0/index.txt
http://oss-watch.ac.uk/resources/governancemodels

The good news is that the extensive study of 75 major open source projects undertaken Capra et al. leads
them to conclude that a larger degree of openness in the governance leads to better code produced, however
at the expense that the development effort is higher [10]. This can intuitively be explained by the fact that
open governance requires better defined and complete modules interacting through well defined interfaces, but
it takes longer to develop such complete components.

As aforesaid, PAASAGE as a research project has clear goals and structured plans, but on the other side
aims to deliver an open source code base. Hence, it needs to ensure optimal source code quality in its code
base, so as to enable a governance model that considers both perspectives. As part of Task 1.7 (Evaluation
Framework) of PAASAGE, a final list of specific software metrics will be defined for evaluating the efficiency
and reliability software quality characteristics. Currently, the software metrics of availability and response time
but also metrics related to code quality [12] are considered for evaluating the PAASAGE platform’s efficiency
and reliability; key characteristics defined also in the ISO/IEC 25010:2011 software quality model. In terms of
reliability Kotaiah et al. state: "The root causes of poor reliability are found in a combination of non-compliance
with good architectural and coding practices" [13].

Although the standard defines software product quality characteristics, ISO has not yet provided concrete
models and measurement tools. Hence, EU research projects are studied and reviewed in order to identify a con-
crete model and tools for assessing open source quality and the support capacity of the developers community.
QualiPSo research project defined the OpenSource Maturity Model (OMM), an assessment model for evaluat-
ing Free/Libre Open Source Software (FLOSS) and in specific the FLOSS development process [14]. It defines
a set of rules and guidelines describing how to conduct the assessment process. The key project objective is to
build trust in FLOSS software, promoting the adoption of the OMM model by FLOSS communities as a basis
for developing products efficiently and making their products trustworthy for customers [14]. QUALOSS EU
research project defined a methodology and tools for improving the productivity and the quality of open soft-
ware products, in a similar context to QualiPSo OMM. The QUALOSS quality model further supports though
assessment of the support capacity of the open software community in terms of development and evolution
of the open source software product [15]. Both quality models provide appropriate rules and guidelines for
accomplishing source code quality evaluation in PAASAGE. At the present stage, QUALOSS model is deemed
more suitable for the task at hand since it addresses a key aspect of the “hybrid” governance model that needs to
be adopted in PAASAGE since it assesses also the support capacity of the developers community. Nevertheless,
the study of quality models is an ongoing task in PAASAGE that currently focuses also on the review of quality
models via comparative studies, e.g. [16, 17].

O’Mahony has identified five core principles that participants to open source projects value as essential to
good community management [11]. Owing to the fact that the PAASAGE open source project will be the only
place where the project code will be developed after month 24 of the project, these principles will be adhered
to on a sliding scale ranging from full project control until now up to full community control two years after
the end of the project.

The governance model will be revised annually. The PAASAGE project has appointed Geir Horn from the
University of Oslo to be the Open Source Manager until the end of the project, and he is responsible for the
annual revisions of the governance model. The model described below in Section 3.3 will be in effect during
the first two years after the end of the funded PAASAGE project, i.e. until October 2018, and confirms with
O’Mahony’s five principles:

Independence is currently not possible as the code is strictly linked to the European research project PAAS-
AGE, and it is backed by the organisations contractually co-funded as part of this project. However, a
research project is not a legal entity and no agreements exists or shall exist among the PAASAGE partners
that will allow them to keep control over the open source PAASAGE project beyond the project period.
Thus the PAASAGE open source project will gradually gain independence from the PAASAGE research
project as more developers from the community participates to the maintenance and evolution of the code
base.

Pluralism is already in place as each of the prototype components and each of the components of the full
PAASAGE architecture have different owners as indicated in Figure 6. Some of these components exists
as interfaces to open source projects with separate communities outside of PAASAGE. There is con-
sequently no single organisation or person that can claim the ownership of the code base.

43

Representation Currently, each component in the PAASAGE Open Source Project has a named developer
assigned and this developer is the project leader for that component, and represents the component’s
developer team when deciding on the future for the PAASAGE platform.

Decentralised decision making is ensured by the developers assigned as responsible for their component lead-
ing the development of the component and deciding on the implementation details of the component
jointly with other external community developers contributing to the component. The fundamental regu-
lation is that the developer who contributes the most, will also have the most to say over the components
future evolution.

Autonomous participation is ensured since the PAASAGE developers now working on the code are named
individuals, albeit paid by their organisations under the PAASAGE research project contract. External
developers are granted the rights to download, test, and use the PAASAGE code base. The PAASAGE team
of developers commit to react timely to any bugs detected by external code users. Furthermore, individual
developers are invited to contribute to improving the PAASAGE code base; however, contributions will
be monitored by the component owner who autonomously decides whether the provided contribution
can be included into the component. It is envisaged that after September 2016 external developers will
be accepted as part of the PAASAGE development team by the the component owner, after which there
will be no distinction between the type of developer involved and working to maintain and enhance the
PAASAGE open source code base.

3.3 PaaSage Governance

The governance of the PaaSage open source project extends the best practices identified by explicitly naming
the people filling the various roles for the first two years after the end of the project, i.e. until September 2018
unless they are replaced according to the procedures described below.

3.3.1 Component project leaders

The role of the component project leader is

• To allocate bugs reported for the component to one of the component developers

• To decide on proposed contributions from users of the component that are not yet developers

• To give commit rights to qualified developers

• To decide on features and further development directions for the component together with the developers
who hold commit rights.

The list of component leaders is given in Table 1.

3.3.2 Board of Architects

The Board of Architects will be responsible for the overall management of the PAASAGE code base, and its
evolution with new features and components. The duty of the board is

• To decide on the inclusion of new components;

• To decide on the removal of some components;

• To approve replacements of component project leaders based on recommendations and requests from the
component project team;

• To decide on the development tools to use;

• To promote the PAASAGE platform to users and other projects.

44

Table 1: PAASAGE components and project leaders

Component Sub-repository Project leader
CAMEL editor camel Alessandro Rossini

camel_cdo_storage Kyriakos Kritikos
Social network social_network Manos Papoutsakis

paasage_frontend Etienne Charlier
xmi_to_camel_tool Christian Perez
paasage_rest_tester Etienne Charlier

CDO Server cdo_server Kyriakos Kritikos
importer Kyriakos Kritikos
knowledge_base Kyriakos Kritikos

CP Generator cp_generator Lionel Seinturier
Rule Processor rule_processor Dennis Hoppe
Meta Solver meta_solver Shirley Crompton
MILP Solver milp_solver Kamil Figiela
CP Solver cp_solver Kyriakos Kritikos
LA Solver la_based_reasoner Geir Horn

la_converter Lionel Seinturier
Solver to Deployment solver_to_deployment Christian Perez
Adapter adapter Nikos Parlavantzas
Plan Generator plan_generator Shirley Crompton
Cloudiator interface executionware_backend Daniel Baur
Metric Collector metrics_collector Kyriakos Kritikos
SLR adapter srl-adapter Frank Griesinger
Execution ware user interface executionware_ui Daniel Baur
Common components cdo_client Kyriakos Kritikos

upperware_metamodel Lionel Seinturier
pom Etienne Charlier

PAASAGE deployment deployment_scripts Etienne Charlier
paasage_one_click_install Etienne Charlier

Tools user_cloud_provider Kyriakos Kritikos
_model_generator

identity_management Etienne Charlier

The initial Board of Architects consists of the PAASAGE team members listed in Table 2 with addition of the
above mentioned project component leaders. The board will strive to achieve consensus for its decisions. In
the unlikely event that consensus cannot be reached, the board will vote. Any board member can at any time
ask that a discussion is concluded by a vote. A quorum of 2/3 of the components must take part in the vote for
it to be valid. Each person has cumulatively a number of votes corresponding to the roles the person has in the
board according to Table 2.

The board will always meet in on-line meetings as needed to fulfil its duties as described above. There will
also be quarterly on-line meetings of the board to assess status of the platform, and propose proactive actions.
Furthermore, each component project leader may at any time ask the board to meet in order to resolve issues
related to a particular component.

45

Table 2: PAASAGE Board of Architects

Role Votes Name
Chair 4 Geir Horn
Co-chair 3 Christian Perez

3 Jörg Domaschka
Social Network Moderator 1 Kostas Magoutis
Integration Manager 2 Stéphane Mouton
Component project leader 1 One per component as named in Table 1. A

person representing multiple components has
multiple votes.

4 Availability and installation

4.1 Availability of PaaSage Platform and source code

Both source code and ready-tu-use packaging of the PaaSage Platform must be broadly available. OW247 is an
open source community providing services for open source projects such as source code repository to manage
and control source code versions, and issues tracker. OW2 defines itself48 as aiming to

“a) promote the development of open-source middleware, generic business applications, cloud
computing platforms and b) foster a vibrant community and business ecosystem.”

PaaSage as open source project is member of OW2. The entire source code of the PaaSage Platform
is hosted in OW2 open source repository and available for download. In addition, the PaaSage Platform is
automatically built and assembled from source code using tools and infrastructure provided by OW2. Details
of the build and integration process can be found in Deliverable D6.2.2 [18].

OW2 also hosts a web page dedicated to PaaSage49. The page gathers information on the project and
links to documentation50, source code repository through Tuleap version control system51 and downloadable
PaaSage Platform installation script.

4.2 PaaSage Platform installation

PaaSage Platform installation and configuration has been primarily documented in Deliverable D8.3.1 [19]. In
order to foster adoption of the PaaSage Platform, the team of WP9 - Training and Dissemination - has adapted
content of D8.3.1 to produce training materials. The goal is to ease the PaaSage platform installation process
by guiding users steps by steps. The resulting installation instructions are available from the PaaSage web site,
both from the front page52 and from the "Training materials" section of the site53. Training material and how it
has been produced are described in Deliverable D9.3.2 [19].

5 Conclusion

This brief guide documents the components developed for the PAASAGE platform, the governance of the open
source project, and gives instructions on how to install and run the software, which is the actual deliverable.

47https://www.ow2.org
48https://www.ow2.org/bin/view/About/OW2_Consortium
49https://projects.ow2.org/bin/view/paasage/
50http://www.paasage.eu/training-materials/paasage-in-a-nutshell
51https://tuleap.ow2.org/plugins/git/?group_id=107
52http://www.paasage.eu, "Download the PaaSage platform"
53http://www.paasage.eu/training-materials/installing-and-configuring

46

https://www.ow2.org
https://www.ow2.org/bin/view/About/OW2_Consortium
https://projects.ow2.org/bin/view/paasage/
http://www.paasage.eu/training-materials/paasage-in-a-nutshell
https://tuleap.ow2.org/plugins/git/?group_id=107
http://www.paasage.eu
 http://www.paasage.eu/training-materials/installing-and-configuring

References

[1] Ramtin Jabbari, Nauman bin Ali, Kai Petersen, and Binish Tanveer, “What is DevOps? a systematic
mapping study on definitions and practices,” in Proceedings of the Scientific Workshop Proceedings of
XP2016, XP ’16 Workshops, (Conference location: Edinburgh, Scotland, UK), p. 12:1–12:11, ACM,
May 2016.

[2] A. Rossini, K. Kritikos, N. Nikolov, J. Domaschka, F. Griesinger, D. Seybold, and D. Romero, “D2.1.3 –
CAMEL Documentation ,” paasage project deliverable, PaaSage project consortium, October 2015.

[3] K. Kritikos, M. Korozi, B. Kryza, T. Kirkham, A. Leonidis, K. Magoutis, P. Massonet, S. Ntoa,
A. Papaioannou, C. Papoulas, C. Sheridan, and C. Zeginis, “D4.1.1 – Prototype Metadata Database and
Social Network,” paasage project deliverable, PaaSage project consortium, March 2014.

[4] C. Perez, S. Crompton, K. Figiela, G. Horn, F. Griesinger, D. Hoppe, T. Kirkham, K. Kritikos,
M. Malawski, N. Parlavantzas, L. Pouilloux, D. Romero, C. Sheridan, P. Silva, and A. Sinha, “D3.1.2
– Product Upperware ,” paasage project deliverable, PaaSage project consortium, October 2015.

[5] D. Hoppe, K. Kritikos, C. Sheridan, E. Yaqub, J. Domaschka, D. Baur, F. Griesinger, D. Seybold, B. Balis,
D. Król, M. Malawski, and A. Zarioh, “D5.1.2 – Product Executionware,” paasage project deliverable,
PaaSage project consortium, September 2016.

[6] T. Kirkham, K. Kritikos, B. Kryza, K. Magoutis, P. Massonet, C. Papoulas, M. Korozi, A. Leonidis,
S. Ntoa, C. Sheridan, A. Innes, and D. A. Imrie, “D4.1.2 – Product Database and Social Network System,”
paasage project deliverable, PaaSage project consortium, September 2015.

[7] K. Kritikos, K. Magoutis, and D. Plexousakis, “Towards Knowledge-Based Assisted IaaS Selection,” in
CloudCom, (Luxembourg), IEEE, 2016.

[8] K. Kritikos and D. Plexousakis, “Multi-cloud Application Design through Cloud Service Composition,”
in CLOUD, (New York, NY, USA), pp. 686–693, IEEE, 2015.

[9] Patrick S. Renz, Project Governance - Implementing Corporate Governance and Business Ethics in Non-
profit Organizations. Contributions to Economics, Physica Verlag Heidelberg, 2007.

[10] Eugenio Capra, Chiara Francalanci, and Francesco Merlo, “An empirical study on the relationship
between software design quality, development effort and governance in open source projects,” IEEE
Transactions on Software Engineering, vol. 34, no. 6, pp. 765–782, 2008.

[11] Siobhán O’Mahony, “The governance of open source initiatives: what does it mean to be community
managed?,” Journal of Management & Governance, vol. 11, no. 2, pp. 139–150, 2007.

[12] Diomidis Spinellis, Code Quality: The Open Source Perspective. Effective Software Development, Ad-
dison Wesley, 2006.

[13] Bonthu Kotaiah , Dr. R.A. Khan, “A survey on software reliability assessment by using different machine
learning techniques,” International Journal of Scientific & Engineering Research, vol. 3, no. 6, pp. 1–7,
2012.

[14] E. Petrinja, R. Nambakam, and A. Sillitti, “Introducing the opensource maturity model,” in Emerging
Trends in Free/Libre/Open Source Software Research and Development, 2009. FLOSS ’09. ICSE Work-
shop on, pp. 37–41, May 2009.

[15] M. Soto and M. Ciolkowski, “The qualoss open source assessment model measuring the performance of
open source communities,” in Empirical Software Engineering and Measurement, 2009. ESEM 2009. 3rd
International Symposium on, pp. 498–501, Oct 2009.

47

[16] E. Petrinja, A. Sillitti, and G. Succi, “Comparing OpenBRR, QSOS, and OMM assessment models,” in
Open Source Software: New Horizons (P. Ågerfalk, C. Boldyreff, J. González-Barahona, G. R. Madey, and
J. Noll, eds.), vol. 319 of IFIP Advances in Information and Communication Technology, pp. 224–238,
Springer Berlin Heidelberg, 2010.

[17] A. Adewumi, S. Misra, and N. Omoregbe, “A review of models for evaluating quality in open source
software,” IERI Procedia, vol. 4, no. 0, pp. 88 – 92, 2013. 2013 International Conference on Electronic
Engineering and Computer Science (EECS 2013).

[18] E. Charlier and S. Mouton, “D6.2.2 – Final integration, user scripts and end-to-end tests ,” paasage project
deliverable, PaaSage project consortium, June 2016.

[19] E. Charlier and S. Mouton, “D8.3.1 – Exploitable Prototype System Product,” paasage project deliverable,
PaaSage project consortium, September 2016.

48

