
D1.6.2 – Final Architecture Design Page 1

PaaSage

Model Based Cloud Platform Upperware

Deliverable D1.6.2

Final Architecture Design

Version: 1.0

D1.6.2 – Final Architecture Design Page 2

D1.6.2

Name, title and organisation of the scientific representative of the project's coordinator:

Mr Tom Williamson Tel: +33 4 9238 5072 Fax: +33 4 92385011 E-mail: tom.williamson@ercim.eu

Project website address: http://www.paasage.eu

Project

Grant Agreement number 317715

Project acronym: PaaSage

Project title: Model Based Cloud Platform Upperware

Funding Scheme: Integrated Project

Date of latest version of Annex I against which the 20
th

 April 2016
assessment will be made:

Document

Period covered: M1-M48

Deliverable number: D1.6.2

Deliverable title Final Architecture Design

Contractual Date of Delivery: 30 September 2016 (M48)

Actual Date of Delivery: 30 September 2016

Editor (s): Tom Kirkham, Keith Jeffery

Author (s): Tom Kirkham, Keith Jeffery

Reviewer (s): Pierre Guisset, PhilippeMassonet

Participant(s): Keith Jeffery, Geir Horn, Lutz Schubert, Philippe Massonet,
 Kostas Magoutis, Brian Matthews, Tom Kirkham, Christian
 Perez, Alessandro Rossini,

Work package no.: 1

Work package title: Technical Foundation

Work package leader: STFC

Distribution: PU

Version/Revision: 1.0

Draft/Final: Final

Total number of pages (including cover): 76

D1.6.2 – Final

Architecture

Design Page 3

DISCLAIMER

This document contains description of the PaaSage project work and findings.

The authors of this document have taken any available measure in order for its content to be accurate, consistent and

lawful. However, neither the project consortium as a whole nor the individual partners that implicitly or explicitly

participated in the creation and publication of this document hold any responsibility for actions that might occur as a

result of using its content.

This publication has been produced with the assistance of the European Union. The content of this publication is the
sole responsibility of the PaaSage consortium and can in no way be taken to reflect the views of the European Union.

The European Union is established in accordance with the

Treaty on European Union (Maastricht). There are currently

28 Member States of the Union. It is based on the European

Communities and the member states cooperation in the

fields of Common Foreign and Security Policy and Justice

and Home Affairs. The five main institutions of the

European Union are the European Parliament, the Council

of Ministers, the European Commission, the Court of Justice

and the Court of Auditors. (http://europa.eu)

PaaSage is a project funded in part by the European Union.

D1.6.2 – Final Architecture Design Page 4

CONTENTS

EXECUTIVE SUMMARY .. 10

INTRODUCTION .. 12

Intended Audience ... 12

Document Structure ... 12

Main Actors .. 12

Architecture Overview ... 14

PaaSage’s model-based methodology ... 15

CAMEL .. 17

CLOUD PROBLEM SCOPE .. 19

Rationale ... 19

Current State of the Art Capabilities .. 19

Other Research Projects ... 19

PaaSage Beyond the State of the Art ... 22

PAASAGE LIFECYCLE & STORYBOARD ... 24

Lifecycle Overview .. 24

Storyboard Overview .. 24

IDE... 25

IDE Design Storyboard .. 25

IDE Functionality ... 26

Specification using PaaSage IDE ... 26

Modelling Phase Using the IDE ... 27

Modelling .. 27

PaaSage Modelling Storyboard .. 27

Modelling Functionality .. 28

Specification of application outside PaaSage IDE... 28

D1.6.2 – Final Architecture Design Page 5

Specification of business goals ... 29

Specification of application processing policies ... 29

Specification of Technical Constraints .. 29

Other... 30

Deployment .. 30

PaaSage Deployment Phase ... 30

Deployment Storyboard ... 30

Pre-selection of Constraints and Data Preparation for Reasoner (“Profiling”) .. 31

Optimisation and decomposition ... 33

Execution .. 34

Execution Storyboard ... 34

Execution Functionality .. 35

Adaptation towards the host ... 35

Deployment .. 36

Execution .. 36

Monitoring .. 36

Local Adaptation (remodelling) .. 37

Global Adaptation (remodelling) .. 37

COMPONENT DESCRIPTIONS .. 40

IDE... 40

CAMEL Editors .. 40

Dashboard .. 41

Cloudiator ... 41

Profiler .. 41

CP Generator .. 42

Rule Processor .. 42

Reasoner ... 43

D1.6.2 – Final Architecture Design Page 6

Solvers Overview .. 43

Meta solver ... 44

CP Solvers ... 44

Learning Automata (LA) based allocator .. 45

Utility Function Generator.. 46

Solution Evaluator .. 46

Simulator Wrapper ... 47

Constraint Logic Programming ... 47

MILP Solver ... 48

Solver to Deployer .. 48

Adapter ... 48

Plan Generator ... 49

Adaptation Manager .. 49

Application Controller .. 50

Metadata Database .. 50

Metadata database layer ... 51

Application descriptions ... 51

Application requirements and goals .. 51

Runtime aspects and application execution histories .. 52

Rules and policies ... 52

Provisioned resources .. 53

Cloud provider characteristics .. 53

Users, roles, organizations ... 53

Analytics Layer .. 55

Social network infrastructure ... 55

Trust and Identity Management .. 57

Executionware .. 58

D1.6.2 – Final Architecture Design Page 7

Component Instance .. 59

Component Wrapper/Message Interceptor .. 60

Enforcement Engine ... 60

Monitor(s) / Metrics Collector .. 61

Interpreter .. 62

FUTURE WORK .. 63

CONCLUSION .. 63

ANNEX 1 GLOSSARY OF TERMS .. 65

Cloud Related Concepts ... 65

PaaSage Concepts ... 71

BIBLIOGRAPHY .. 73

D1.6.2 – Final Architecture Design Page 8

TABLE OF FIGURES

Figure 1 PaaSage Actor Interaction ... 13

Figure 2 Main PaaSage Architectural Stack .. 15

Figure 3 Application lifecycle overview. .. 16

Figure 4 Main PaaSage Components and Life Cycle Direction .. 24

Figure 5 Storyboard Design Phase ... 26

Figure 6 Storyboard Modelling Phase ... 27

Figure 7 Storyboard Deployment Phase .. 31

Figure 8 Storyboard during the Execution Phase .. 34

Figure 9 The global adaptation loop .. 38

Figure 10 Architecture of the Profiler ... 42

Figure 11 Components that make up the Reasoner ... 43

Figure 12 Architecture of the Adaptor .. 49

Figure 13 Metadata database architecture ... 50

Figure 14 Integration of PaaSage metadata database .. 54

Figure 15 PaaSage knowledge base and reasoning engine ... 55

Figure 16 The architecture of the Social Network infrastructure ... 56

Figure 17 Identity Management in PaaSage ... 57

Figure 18 Architecture of the Executionware and its interfaces ... 59

Figure 19 Multi-Cloud monitoring and adaptation of Service-based Applications 61

D1.6.2 – Final Architecture Design Page 9

D1.6.2 – Final Architecture Design Page 10

EXECUTIVE SUMMARY

This document outlines the final PaaSage architecture. The deliverable describes the key components that

make up the PaaSage platform. It also includes how these relate to the use cases, using a Storyboard

approach to link the use case behaviour with the architectural components. The document also sscans the

current Cloud Market and outlines future application of this final architecture by potential end users.

The architecture delivers and supports the following novel features in PaaSage:

• Advanced modelling language for Clouds (CAMEL), utilising models to characterise users,

applications, data and platforms as the common thread through the PaaSage environment;

• Live Cloud model adaptation to ensure application execution in-line with service level

agreements (SLA) and key performance indicators (KPI) criteria;

• Model-based support for the porting of applications into the Cloud;

• Cross Platform application execution utilising PaaSage models;

• Optimised Cross-Cloud model based deployment of applications;

• Support for the development of complex deployments and the migration of local systems to

Clouds in a model-based standardised way;

• Support for PaaSage features is delivered in the following architectural measures;

o Support of a powerful Cloud modelling language developed with the wider Cloud modelling

community (CAMEL);

o Provision of intelligent Integrated Development Environments (IDE) and Social Network

supporting the modelling language and supporting the developer in the task of optimising

the application using knowledge from experts and monitoring;

o Creation of infrastructure that allow a Cloud application modelled with PaaSage to be

deployed in a distributed environment, interacting with multiple Cloud providers as

required for Cross-Cloud deployments;

o Creation of components to measure and monitor critical performance indicators from

various classes of users, from running applications and to reuse the historical metadata

available on the services in future application design and deployment.

The platform can be used in the following ways:

• Within a commercial or non-commercial organisation to improve the way applications utilise

internal and external Cloud platforms;

D1.6.2 – Final Architecture Design Page 11

• Within an open systems development community to improve knowledge of how various

applications perform on various (combinations of) Cloud platforms;

• As an individual development environment for individual application developers who

develop (for sale or other use) applications that need to be deployable across differing

Cloud platforms;

• And by the following classes of users:

o Organisational or government policymakers;

o Organisational chief executives;

o Organisational IT director;

o Systems administrators (including database administrators);

o Application developers or modifiers;

o Business application owners.

D1.6.2 – Final Architecture Design Page 12

INTRODUCTION

Intended Audience

The deliverable is a public document designed for readers with some Cloud computing experience but little

knowledge of PaaSage. For the external reader the document aims to set out the key elements of the

PaaSage high level architecture design and the motivations behind it. For the more technical reader the

integration and more detailed description of the platform architectural components are contained in the

document. Designed to draw together individual components, more specific component descriptions can

be found in the separate work package deliverables.

Document Structure

This deliverable has the following structure. After the introduction and initial Architecture overview, the

deliverable introduces the updated PaaSage problem scope, summarising PaaSage against current state of

the art work within the domain of Cloud computing. Effort is made in this section to highlight where

PaaSage sits in relation to the state of the art and current marketplace.

The technical focus begins in the following section with a business level overview of the PaaSage Use Case

functionality. Focus here is on how PaaSage is used across the cloud lifecycle, the use cases are expressed

as storyboards to aid reader understanding.

The final main block of content is a more detailed analysis of the PaaSage platform drilling into the

component levels of the architecture. This section explains each component and how they interact with

each other. The Future Work section explores potential directions for future adaption of the architecture

for end users. Finally, the deliverable ends with a Conclusion.

Main Actors

The main actors in PaaSage (in addition to the business application end-user and associated organisational

management actors) can be split into between the application designer/developer (DevOps), and Cloud

Provider with PaaSage sitting in-between. The interaction of parties depends on the PaaSage platform

deployment and application scenario. During some application deployments PaaSage will interact with

multiple Cloud Providers and vice versa as illustrated in Figure 1.

D1.6.2 – Final Architecture Design Page 13

Figure 1 PaaSage Actor Interaction

In this document when “user” is mentioned the document refers to users of PaaSage which are application

designers working towards a personal or corporate business goal via deploying to the Cloud using PaaSage.

These users engage directly with PaaSage in an application development / design role via an interface such

as an Integrated Development Environment (IDE). They are distinguished from business application users,

in the respect that they gain from PaaSage’s use in their business activity. Types of business application

users in the PaaSage use cases include the Lufthansa flight scheduler and EVRY Milk Bank manager.

The platform acts as a broker between the user and the Cloud environment and can be deployed within an

organisation or in an open community. For user / application designer we aim to realise through

development and use of the PaaSage platform a design once and deploy to all concept. Thus, users engaged

with PaaSage can have confidence that the modelling / business goals they create will be supported when

their application is deployed across Cloud environments. This makes the Cloud more transparent, increases

confidence in using Clouds and helps business better predict / control resource usage / cost when

deploying to the Cloud.

Deployments within an organisation such as Lufthansa present the PaaSage platform as a shared

organisational resource. The main remit of the platform is to aid the deployment of applications in the

Cloud around the specific business model. These deployments are likely to yield commercially sensitive

D1.6.2 – Final Architecture Design Page 14

data especially the intelligence on business history of use and expert knowledge in the metadata database

and are therefore subject to organisational policies. Data which is less commercially sensitive can be shared

outside of the platform with other PaaSage implementations; the business application benefits from shared

data too.

The other type of deployment is in less commercially sensitive open communities. Application

scenarios here include ones where high levels of collaboration are needed on projects such as

presented by the eScience domain. Here PaaSage is a shared resource, especially the intelligence in the

metadata database in terms of history of use and expert knowledge. As mentioned above instances of

organisational deployments will have access to and use the open community deployments.

PaaSage can be provided by a third party supplier which provides both closed and open facilities. For the

PaaSage platform we have created a new integrator / broker business model for Clouds. This model will

encourage SMEs with domain specific knowledge to support model creation and integration with

marketplaces of IPs.

Cloud Providers do not have to present any specialised interfaces to engage with PaaSage. However, the

platform supports provider specific interfaces for monitoring recording and sharing data on executions.

PaaSage creates new business innovation for all actors identified above. This is driven by PaaSage technical

and market innovation at the platform provider level. Through this innovation and methodologies to

increase trust and confidence in Cloud adoption, it is expected that PaaSage will open up new markets to

Cloud Providers. Beyond the project in return we expect the Cloud Providers to increasingly support and

feed into the development of PaaSage standards to aid integration and release this business.

Architecture Overview

The architecture deliverable describes the design of the different components / services in the project.

Together these elements form what we refer to as the PaaSage platform. More detailed explanation of

individual services / components will be found in the more specific work package deliverables within the

technical work packages WP2, WP3, WP4 and WP5.

The overall PaaSage design is summarised into 3 main component groupings as described in the Description

of Work, the Integrated Development Environment (IDE), Upperware and Executionware:

The IDE work was focused on the development of Cloud Modelling capability. The IDE work extends the

popular open source development platform Eclipse and supports the chosen Cloud Application Modelling

Execution Language (CAMEL) including CloudML [1] [2]. The IDE as a PaaSage layer has the role of ensuring

that model-based integration of the various functional components in the project is possible within a

variety of application scenarios.

The Upperware has integrated with the IDE around the Social Network. This was following guidance from

the projects reviewers and use case owners. PaaSage presents the social network as the point in which IDE

tools sit alongside components that process models created by the IDE. At a high level the Reasoning and

Adapter groups of components support the use of model-based knowledge to provide the executable

D1.6.2 – Final Architecture Design Page 15

deployments. In the final year of the project following on from review input we have added a monitoring

Dashboard and CAMEL Web Editor to complement this set of components.

The Executionware provides platform-specific mapping and technical integration of PaaSage to the

Application Programming Interfaces (APIs) of the execution infrastructure of various Cloud providers. This

link also provides monitoring capabilities focused on the behaviour of Cloud providers and execution of the

applications. Data from this monitoring is passed back to the Upperware to aid possible remodelling of the

execution criteria in order to maintain service level objectives expressed in CAMEL to support application

behaviour.

Figure 2 Main PaaSage Architectural Stack

Figure 2 elaborates on the main three elements of the PaaSage stack. Each one of these main PaaSage

elements integrates with the same service and component metadata database which underpins the Social

Network. This store contains information about past executions and also performance of different Cloud

providers. It is the main knowledge store in PaaSage and provides knowledge from outside the platform via

social networks and other authenticated third party actors.

PaaSage’s model-based methodology

PaaSage’s model-based methodology is based upon the key Cloud lifecycle phases of modelling,

deployment and execution. These phases are based on the Waterfall Model of Software Development with

the following mappings: Modelling phase (Requirements, Design), Deployment phase (Implementation) and

Execution phase (Verification, Maintenance) [3].

D1.6.2 – Final Architecture Design Page 16

Modelling is concerned with modelling the deployment of applications, profiling platforms and

infrastructures, and specifying Quality of Service (QoS) requirements and data management policies.

Deployment is concerned with matching the Deployment Models of applications with the profiles of

platforms and infrastructures based on negotiated SLAs and policies, and selecting one or more suitable

Deployment Models. Execution is concerned with the management of the run-time execution of

applications and monitoring / recording of KPIs based on SLAs and policies.

It should be stressed that although a waterfall model is used in the phases through which an application

passes in PaaSage, the actual software development in the PaaSage project to provide the PaaSage

platform is done using a spiral, agile approach. During operation the feedback loops to renegotiate factors

such as SLA lend to the agile behaviour of the platform.

In order to facilitate the integration across the components responsible for each lifecycle phase, PaaSage

adopts a series of interlinked models.

Figure 3 Application lifecycle overview.

Models in PaaSage are initialised as empty templates, populated with characterising and deployment rules

that are extracted and replaced with deployment characteristics. Models are initially formed from user

input in the IDE and contain platform, data and policy specific information. We envisage three types of

model in PaaSage per lifecycle phase.

D1.6.2 – Final Architecture Design Page 17

Modelling Phase: PaaSage users design the cloud application using the CAMEL model editor by adding

their requirements and goals to their chosen Cloud Profile Model template. The Profiler transforms the

populated template to a Constraint Problem model to ensures that user needs are set into terms that the

Reasoner can understand.

Deployment Phase: The Reasoner consumes the requirements packaged up in the Constraint Problem

Model passed from the Profiler. It computes the optimal deployment solution using the requirements

supplemented by historical (or empirical) data from sources such as the Metadata Database and produces a

Deployment Model specifying the desired deployment characteristics.

Execution Phase: The Adaptation Engine checks the Deployment Model against the current state of the

Cloud Providers and deploys the application together with suitable infrastructure and platform services to

support and monitor the applications execution. Reconfiguration of the deployed application is triggered

when a breach of user requirements or goals is detected by the monitoring services.

CAMEL

CAMEL has been created by taking into account a review of the standards used to capture application

requirements in current approaches to the Cloud lifecycle. PaaSage refers to these standards as DSLs

(Domain Specific Languages). One such DSL is CloudML. CloudML has been developed within the

MODAClouds [4] project. As part of the work on MODAClouds and PaaSage we have combined work on

CloudML into CAMEL.

Models and execution data are stored in the Metadata Database. This allows reuse of the models and the

ability for component such as the Reasoner to look at the performance data of previous models when

composing new ones. This knowledge is also shareable between PaaSage platforms (subject to security and

privacy) set on the social network which is the source of the 3
rd

 party actors to drive the creation of

PaaSage knowledge and models.

More detailed information on CAMEL can be found in the WP2 deliverables.

D1.6.2 – Final Architecture Design Page 18

D1.6.2 – Final Architecture Design Page 19

CLOUD PROBLEM SCOPE

Rationale

After four years of PaaSage the fact remains for most businesses that moving to the Cloud is

difficult; generally little or no expertise exists in the form of tools and platforms to help the

developer restructure his/her application toward the Cloud. Users from the business

community struggle to visualise the implications in terms of measurable threats and benefits

from application movement to the Cloud.

Thus, there has been only a slow take-up of Cloud technology for real business applications,

although Clouds have been used for shared email environments, shared storage systems and

similar purposes. Certainly many organisations have experimented using Cloud platforms

(private or public) for systems development and one-off applications but major barriers exist

in terms of the inability for applications to reconfigure dynamically across Private, Public and

Hybrid Clouds and maintain pre-Cloud SLA/QoS parameters.

The PaaSage project addressed these problems using a model-centric approach. By

developing a model-based Cloud management platform PaaSage puts user requirements at

the start, centre and end of the Cloud lifecycle. PaaSage has delivered a platform-supported

approach that provides greater flexibility and assurance for user / business requirements

when managing applications across the whole Cloud lifecycle and deployment architectures.

In terms of the problem scope PaaSage presents also a Cloud Agnostic method to Cloud

Adoption. This removes a key problem with Cloud adoption of vendor lock-in. For the future

of Cloud Computing PaaSage provides a base to reduce the risks by which Clouds can be

better managed and specified by potential end users.

Current State of the Art Capabilities

Other Research Projects

Research in providing Infrastructure as a Service is a focus of several projects. Particular

focus of work in this domain is in the support of innovation in infrastructure provision and

monitoring toward greater resource use in the Cloud. A good example of such an approach

can be seen in the OPTIMIS project [5]. The OPTIMIS Toolkit comprises a set of tools to be

used by Service Providers (SPs), Infrastructure Providers (IPs), Software Developers (SDs),

and end users. Building on this projets such as HolaCloud (http://www.holacloud.eu/) are

advancing this approach under H2020.

In terms of platform, effort has been made in developing PaaS provision using more

standardised approaches. A good example here can be seen in the effort to merge Service

Oriented Architectures with Clouds. The Cloud4SOA [6] project is focused on integrating SOA

D1.6.2 – Final Architecture Design Page 20

principles of modularity and web services with the provision of PAAS. Other innovations of

provision of platform are in the development of federated PaaS in projects such as Contrail

[7].

Service development in Clouds as a focus of work can be seen in the data management

community. Projects in this domain have tended to focus on the improved presentation and

categorisation of data in Clouds to aid integration with Cloud services. A good example of

such work can be seen in the cloudTM project [8]. Here the project is focused on creating a

data centric middleware in order to aid better identification of data and its requirements to

aid better efficiency and fault tolerance in the Cloud.

Linked to the PaaSage project is the effort from the MODAClouds project for the

development of the CloudML standard. In addition, other modelling projects are

focusing on the use of models to support specific challenges such as the migration of

legacy systems to the Cloud. In the Artist project models are use to describe and wrap

legacy systems to aid migration [9]. Other projects are looking to existing standards to

aid the model based management of Clouds, such as the Mosaic Cloud project that has

embraced ontologies as central to their modelling solution [10].

II. Commercial Offerings

Microsoft's Windows Azure [11] offers not only PaaS but also services for IaaS (e.g. VMs,

virtual network, storage), and SaaS (e.g. Office 365, media, active directory and web

hosting). Each service can be used separately or combined to create an application. Users

can manage the instantiation of a service through a simple modelling in a web portal,

directly in a development environment (e.g. Visual Studio or Eclipse), REST API, and/or a

command line tool. In terms of SLA, Windows Azure provides a guarantee of at least 99.9%

availability of the time on their services [12].

Google App Engine (GAE) [13] is a PaaS for developing and hosting web applications in

Google-managed data centres. Thus, users need only to upload their applications without

the need for maintaining any servers. GAE supports applications that run in one of several

run-time environments, such as the Go environment, the Java environment, the PHP

environment, and the Python environment. An application may be running in one or more

GAE instances. The GAE instances are not real VMs but application sandboxes. They are

similar to VMs, where both have a set amount of RAM allocated to them. However, GAE

instances don't have the overhead of running operating systems and/or other applications.

Thus the GAE instances have more usable memory than the VMs. Moreover, each GAE

instance includes a security layer to ensure that instances cannot inadvertently affect each

other. GAE also guarantees a SLA of at least 99.95% of the time in any calendar month [14].

With regards to monitoring of instances, the GAE Dashboard in the Admin Console has six

graphs that provide users with a quick visual reference of system usage. The information

displayed in these graphs gives the user a snapshot of resource consumption per second

over a period of up to 30 days.

D1.6.2 – Final Architecture Design Page 21

CloudBees [15] is a PaaS specialized in Java applications. The developers have the

possibility to implement their applications with any JVM-based language, such as Java,

Scala, and JRuby and to use a variety of run-times, such as JBoss, Tomcat, and the Play

Framework. The PaaS enables the creation and removal of applications, databases and

users. The applications can also be started, stopped and replicated. CloudBees exposes a

REST API enabling the execution of these actions. The monitoring of applications is done

through the New Relic Monitoring service [New Relic, Inc], a performance management tool.

Cloud Foundry [16] is an open-source PaaS Cloud software as well as a hosted service

offered by VMware. Many other companies offer PaaS services using the Cloud Foundry

platform (e.g., AppFog and ActiveState). The PaaS supports multiple programming languages

such as: Ruby, Python, PHP, NodeJS, Erlang and JVM-based languages like Groovy and Java.

It also supports multiple run-times and frameworks (e.g., Spring, Rails and Sinatra) and

application services (e.g., MySQL, MongoDB and RabbitMQ). Applications, users and

databases can be added or removed. Applications can also be started, stopped, updated and

replicated. Such operations are supported via a REST API, which also enables the retrieval of

statistics related to uptime, disk use, CPU and memory usage. Additional information related

to java applications can be retrieved by using Spring Insight [Spring], a byte-code

instrumentation-monitoring tool.

Heroku [17], a Cloud application platform, supports JVM-based languages such as Java,

Scala, Clojure and other programming languages as: Python, Ruby and Node.js. The REST API

provided by the platform enables developers to create, remove and update users,

applications and databases. Applications can also be started and stopped. Processes related

to applications can be replicated for scaling purposes. The New Relic Monitoring service is

used to monitor resources such as CPU, memory, network and processes.

Jelastic [18] is Cloud PaaS solution, which runs any Java or PHP application on the Cloud.

Users select a software stack that includes application servers (e.g., Tomcat, GlassFish, Jetty)

and SQL or NoSQL databases (e.g., MariaDB, PostgreSQL, MySQL, MongoDB, CouchDB). The

platform provides an intuitive GUI enabling the creation of applications and databases. The

GUI also provides functionality to start and stop applications, configure the load balancer

and modify the number of application servers. It is possible to retrieve statistics about CPU,

memory, disk, and network utilisation for load balancer, web server and database instances.

IBM Bluemix [45] is a PaaS offering from IBM to provide Cloud services. Focused on DevOps

the platform supports the build, run, deployment and management of applications on the

IBM Cloud. The concept of Bluemix is that it presents a model based approach supporting

various common languages to define models.

Amazon Web Services [46] main products are the Elastic Compute Cloud and Amazon

Storage Services (S3). The platform offers its own custom CloudFormation templates to

enable modelling of AWS. The platform provides its own models and methods to monitor

and manage deployed services. As of 2014 Amazon have started the concept of Pop up Lofts

in cities such as Berlin. These are designed to support SMEs in the use of AWS, perhaps and

D1.6.2 – Final Architecture Design Page 22

acknowledgement from Amazon that despite the well-defined sets of services and APIs

offered from Amazon getting to grips with the Cloud is still a challenge for some SMEs.

PaaSage Beyond the State of the Art

PaaS applications today have largely approached the task of application support through the

creation of interfaces capable of supporting multiple programming languages backed up

with management GUIs. This approach is reflected in the current state of the art and in the

approaches from Jelastic, Heroku, Cloud Foundry, Cloud Bees and even within Google and

Azure described above. This approach assumes that the application developer user has a

good knowledge of his / her application and how it should work / consume resources in the

Cloud. Efforts such as BlueMix which focus on DevOps assume the same level of knowledge

but also present the ability for a more holistic view on the operation of the application in the

Cloud.

PaaSage takes a step back from providing a purely technical interface to the PaaSage

application developer user and encourage the user to model his / her requirements before

technical integration takes place. User defined application models expressed in CAMEL allow

for a richer expression of application and business application end-user requirements

translating down to how the Cloud is managed in terms of resource usage. Advancing

research in MODAClouds and projects such as Mosaic [19] inform work in PaaSage which

groups domain specific standards in models at all stages of application use in the Cloud. The

models are used from modelling through to execution in the Cloud; they will ensure that the

user is presented with a consistent model of application activity based on his/her original

requirements during design and deployment.

The management of the model driven application in the Cloud is novel and unique as it

breaks from existing work in the automated management of Cloud applications. Common

approaches via the use of an application developer user focused GUI linked to execution and

policy are improved upon in PaaSage to provide a common link in the GUI to the deployed

model provided by the user. This model-driven approach gives a more holistic view of the

application deployment. For example, a model-driven view can express more detail than a

standalone policy or set of rules as models can contain information on the relationship

between different monitored elements and incorporate rules.

The PaaSage core components make knowledge-based Profiling, Reasoning and Adaptation

decisions on the deployment that improve the performance of the Application deployed in

the Cloud in step with user requirements. This work builds on techniques developed in

projects such as cloudTM [47]. PaaSage presents knowledge-based live management of

services and data in a holistic way. This holistic view improves on project work in this area

such as done by OPTIMIS where management decisions are made in isolation from the

deployment. For example, in OPTIMIS the deployment optimisation is done in isolation from

run-time optimisation. A common resulting problem in such systems is in the transfer of

resources and subsequent time taken to transfer images during Cloud transformations [20].

D1.6.2 – Final Architecture Design Page 23

In PaaSage linking of deployment and operation via the model-based approach allows

knowledge based decisions to be created specific to the deployment in relation to its

potential impact on operation of the wider Cloud. Such knowledge influences the

deployment to enhance execution via factors such as reducing the need for the

application on the Cloud to transform (i.e. Cloud Burst). In the case where a

transformation occurs the platform plans to reduce resource consumption through the

knowledge-based deployment to nodes closer to typical transformation targets. For

example, PaaSage utilises knowledge of previous deployments of specific application

types such as resource consumption and activity. By using this data PaaSage makes

optimal deployments to ensure faster transfer time of images via simple means such as

network placement.

In summary, PaaSage provides model-based application support to the Cloud. The platform

provides an intuitive way of adapting user requirements when managing applications in the

Cloud. The model-driven approach enables a finer grained description of the deployment

constraints allowing the platform greater flexibility to manage automatically the application

during changes in the Cloud Infrastructure. In the current market as of 2016, many end users

particularly business users who still wish to port applications to the Cloud still require

support in moving their applications to the Cloud and efforts such as Amazon Loft can be

seen to reflect this [44]. PaaSage opens up the opportunity for an alternative community to

build like the AWS community but around a Cloud Agnostic and requirements centric

method of Cloud adoption. This is a significant step in the future development of Cloud

computing and the challenge of Europe toward established largely US players in the sector.

D1.6.2 – Final Architecture Design Page 24

PAASAGE LIFECYCLE & STORYBOARD

Lifecycle Overview

This chapter aims to give a lifecycle summary of the PaaSage architecture. The approach

taken is from the perspective of stakeholders at phases before engagement with PaaSage,

during PaaSage deployment and when the application is at execution and remodelling

phase. This approach is further reflected with the inclusion of relevant storyboards for each

use case. A summary of the main components with respect to the lifecycle direction can be

seen in Figure 4.

Figure 4 Main PaaSage Components and Life Cycle Direction

The lifecycle is broken down into three main phases. These are modelling, deployment and

execution. The modelling phase is concerned largely with characterising as models the

application, user, data and available Cloud infrastructure(s). This modelling is used in the

deployment phase to select (Reasoner) target infrastructure(s) that satisfy criteria in the

Constraint Problem Models to create Deployment Models. Finally, during the execution

phase the Deployment Model is executed and can be rolled back (adapter) in case of

redeployments due to execution errors or changes in infrastructure.

Storyboard Overview

The PaaSage work plan defines seven main use cases. They are grouped into f storyboards

that are presented to help explain the main lifecycle phases supported by the PaaSage

architecture.

D1.6.2 – Final Architecture Design Page 25

Financial use case: Looks to provide the ability for private Clouds to burst into public cloud

at the time of heavy resource load and to satisfy the diverse requirements of the clients in

terms of application deployment (i.e., public, private, hybrid). PaaSage is expected to

provide the means by which can be both automated and optimised. This use case crosses

over in functionality with the data privacy and customer data sensitivity concerns

demonstrated in the eGovernment use case.

eScience use case: Is concerned with the support of complex and large scale workflow

based cloud (high performance) computing applications. PaaSage is expected to aid the

application design and deployment process to the Cloud.

ERP (Enterprise Resource Planning) use case: The ERP use case is concerned with the

delivery of the Cloud on multiple Client devices and the separation of local / remote

processing in order to optimise the application. The application is expected to be highly

mobile allow technicians to work when they are not connected to the internet.

eGovernment use case: The eGovernment use case presents the problem of how a hybrid

Cloud can be both managed and constructed in PaaSage. The requirements from the use

case include strict data processing rules alongside the ability for the Cloud to transform to

meet demand connecting local services to processes running in the Cloud.

Airline Scheduling use case: At the heart of the airline scheduling use case is the problem

of to transform a client-server application with a centralised database and fat client UI, into

a cloud application that also supports mobile computing and multiple devices. In this

scenario rapid saleability is needed while maintaining integrity of both the application and

data. The use case is focused in the airline industry in the case when an incident occurs and

planes / passengers have to be rapidly re-routed.

SCALARM & Hyperflow use cases both provide specific simulation capabilities to support

eScience storyboard.

IDE

IDE Design Storyboard

In terms of the storyboard the modelling phase is pre-dated by a pre-PaaSage engagement

design phase that starts with the individual users in our five use cases of Finance, eScience,

ERP, eGovernment and Airline Scheduling. As Figure 4 illustrates our users have different

demands.

D1.6.2 – Final Architecture Design Page 26

Figure 5 Storyboard Design Phase

The eScience user during application modelling sets requirements related to the

platform that the application will run on and the levels of quality of service (QoS)

needed to support successful execution.

The ERP use case at this phase could contain specific deployment characteristics that

are reflected in the business process and policies of the organisation. For example

the platform is important but also support for mobile devices.

The Public Sector Milk Bank Portal design could specify a hybrid Cloud model where

services in Private Clouds can communicate with services in Public Clouds; same

requirement applies to the financial use case. Sensitive data will have to be stored in

Private Clouds and Authentication plus digital signature services are used to secure

the application and guarantee end-to-end security. The application must also be

scalable in both public and Private Clouds and be portable between data centres

The Airline Scheduling design also includes the need to distribute data depending on

its sensitivity. Of great importance is the ability for the application to scale quickly in

order to react to demand.

IDE Functionality

Specification using PaaSage IDE

Stakeholder: multiple, broken down below

During this phase, all information needed to steer execution is specified. This

involves aspects such as (1) the business goals, (2) security policies, (3) company

policies & contractual constraints, (4) technical constraints. These requirements are

used to start the PaaSage modelling phase in the next section. Depending on the

type of company and application, this may also include end user conditions

(customisation), though they may also emerge at run-time, leading to remodelling.

D1.6.2 – Final Architecture Design Page 27

Modelling Phase Using the IDE

The modelling phase is the process by which the main stakeholders in the

application specify their application execution requirements with associated user

and data characteristics. For example, the constraints leading to the choice of the

required service model (IaaS, PaaS, SaaS), the required Deployment Model (private,

hybrid, public, partner), and also specify a list of cloud providers, e.g. Amazon, Azure

and RackSpace especially if there are organisational policies on this. In parallel the

characteristics of Cloud platforms / infrastructures are updated as a model. These

requirements are captured either by using supported standards and imported into

PaaSage or via the use of PaaSage tools via the IDE.

During this phase the user / application designer must describe the application to be

deployed. This description must state the optimisation goals and constraints of the

deployment. An example of optimisation is to minimise cost and maximise

performance while maintaining the data in a Private Cloud. The units of deployment

and the communication links of the application to be deployed must be described. It

must be possible to describe the elasticity rules that describe for each deployment

unit how that unit scales up and down with respect to monitored variables such as

response time or queue length. It must be possible to specify constraints on

availability, performance, cost, security and privacy of the application. This

Constraint Problem Model is then used to transfer the requirements expressed as

rules to the deployment phase in the lifecycle.

Modelling

PaaSage Modelling Storyboard

In the formation of the Constraint Problem Model the main component used is the

Profiler. The user takes a back seat and is able to monitor the platform’s progress as

illustrated in Figure 6.

Figure 6 Storyboard Modelling Phase

D1.6.2 – Final Architecture Design Page 28

During the eScience modelling the dependencies in the workflow are checked by the

Profiler to ensure that the application is suited for deployment on the Cloud. In

particular focus is given to non-functional characteristics such as performance and

security policy which have a strong influence on how the deployment is configured.

ERP modelling is dictated by which dependencies exist between the workflow

components upon deployment. In addition to this client side applications capable of

processing data off-line will be identified.

The eGovernment use case during modelling is driven by data security and the need

to identify and separate potential data for public or private Cloud processing. This is

complicated by the data processing rules also affecting location of service

deployment either on Public or Private Clouds; public and/or private cloud

deployment can also satisfy such a data security constraint for the financial use case.

Airline Scheduling is again concerned with data dependencies during modelling. As

the key function is to support rapid scalability the data and service dependencies

have to be supported in the modelling to enable this.

Modelling Functionality

Specification of application outside PaaSage IDE

Stakeholder: Developer, mostly

The programmer develops his/her code in a normal fashion, yet basing on modular /

service-oriented principles. He/she uses a standard tool (UML, BPEL etc.) to generate

the software architecture and generate the code. The developer follows some

guidelines using the PaaSage supporting documentation on how to develop

applications that can be deployed on multiple Clouds (cross -Cloud deployments).

Once the code specification is complete the software architecture following UML

standards can be imported into the PaaSage IDE, with clear linkage between UML and

code objects; furthermore there should be a strict classification of software artefacts

that will define the execution environment they require (Java applications demand for
a JVM; servlet applications require a Servlet container; more specific Servlets may

require a dedicated Servlet container; links to databases may be generic (any SQL-

capable database) or very specific (e.g., Oracle 12c).

If the application is a legacy application the process is slightly different. In this case

the code for the application may not use common standards or be based on

common service orientated / modular principles. In this case the application will be

treated as a black box and UML will be used to describe dependencies needed for

deployment and execution. Of course CAMEL will be used to describe how the black

box may be optimised for Cloud deployment using PaaSage.

D1.6.2 – Final Architecture Design Page 29

Specification of business goals

Stakeholder: Business owner or CIO

The main commercial stakeholder specifies what kind of business goals he wants

to pursue with the execution of the application. This will most likely not be on a

technical level, but instead include considerations, such as “serving 1000 users

without notable delay” and “costing less than 1000€ per day”. PaaSage tools will

assist in specifying these constraints via methods such as rules.

Generic Cloud business knowledge may help in generating these rules, along the line

of particular guidelines, such as “response times less than 1ms are not feasible”,

“you should specify maximum number of users”, and “response time means

interaction time with a GUI”. This knowledge could also be supported by the

PaaSage Reasoner’s knowledge of previous executions. Such knowledge helps the

commercial stakeholder in specifying all information needed and will assist the

system in decoding it. This information can either be specified by the stakeholder

him/herself or by any other external expert in the general knowledge base (see

below).

Specification of application processing policies

Stakeholder: policy makers in the company

Policies are not necessarily strongly connected to the application in question, but

may instead generally apply to the company, such as contractual arrangements or

wider legal constraints. Accordingly, similar to the business goal transformation

rules, these policies may be defined once and reused multiple times. Since it is to be

expected that these goals are highly company specific, they have to be either

strongly associated with the company (and used for none other) or selected by the

policy makers anew every time. Since these policies will most likely be confidential,

they also have to be hosted in highly secure environments.

Specification of Technical Constraints

Stakeholders: IT administrator, developer, similar

Here concrete constraints are put forward to describe how the application is hosted.

These may derive from the software architecture as well as other policies and may

be implicit knowledge by the software / infrastructure engineers, but they may also

incorporate concrete technical constraints in the way the application is configured

for this use case. Note that some technical constraints are directly given by the

application (see step I).

For example, a technical modelling choice may be that, since the application is

configured to use a file system instead of a database, a file system is needed in the

hosting environment, even though the application did not necessarily declare that.

D1.6.2 – Final Architecture Design Page 30

Other

Stakeholders: external experts

As described in more detail in the context of the Reasoner, a set of “ground rules”

must exist that define the essential expertise. This includes decomposition rules,

interpretation rules, Cloud scaling rules etc. etc. They will partially be defined by the

Cloud hosts (Cloud providers), but also by general business and technical experts all

over the community (“network”). For example, the eScience application may have

specialised data processing needs requiring certain levels (performance, latency) of

network connectivity between processing nodes. In order to ensure this specific

knowledge of node location and bandwidth is needed.

Deployment

PaaSage Deployment Phase

Regarding the distribution of application data, it must be possible to optimise the

deployment of the application data in the Cloud with respect to the specified

optimisation goals and constraints. This implies specifying a data partitioning model

that describes what partitioning is permitted by the application. Similarly, to specify

a data consistency model that describes how much inconsistency the application can

tolerate. It should also specify the data flow and workflow models for the

application.

The deployment specification must also describe the required target Cloud

infrastructure. It must be permitted to specify by name potential Cloud providers,

e.g. by specifying that a given deployment unit may be deployed on Amazon,

Rackspace or ElasticHosts. Specification of constraints on the location of the Cloud

provider - for example to respect legal constraints on the location of data – is

required. Similarly, the specification of requirements on the security and privacy of

the Cloud provider infrastructure is needed. Required resource types are specified

independently from the specifics of each Cloud provider, such as requesting Cloud

storage resources in the form of a file system or a database.

The PaaSage architecture will find potential Cloud providers by matching

deployment requirements with a list of Cloud provider models. Cloud provider data

will include its location, cost models, resource types, security/privacy model, and

other important attributes such as availability or performance of resources.

Deployment Storyboard

D1.6.2 – Final Architecture Design Page 31

During application deployment the main component in action is the Reasoner. For

the end user the component maintains a link with their requirements passed in as

part of the Constraint Problem Model that was formed in the previous step

Figure 7 Storyboard Deployment Phase

In the eScience scenario at the deployment phase the metadata database is

prepared to structure the deployment of the large scale application. Using data and

knowledge in the metadata database, checks of Cloud Providers related to the

workflow and access to data will be made.

For the ERP scenario at deployment the main concern is the communication links

and data processing balance between the Cloud and the mobile clients. The

deployment of nodes could be made to ensure specific effort is made with the

synchronisation of online / offline mobile clients.

Central to the eGovernment deployment is management of how data is partitioned

along with services in a Hybrid cloud. The Reasoner will ensure that QoS is respected

in selected cloud infrastructures to the extent that the more essential data to the

application is positioned on infrastructure with greater reliability and QoS than non-

essential data / functionality.

Airline Scheduling at deployment has to ensure that the consistency of data is

maintained as the office based application is rapidly (re-)distributed across nodes in

the Cloud. Deployment Phase Functionality

Pre-selection of Constraints and Data Preparation for Reasoner

(“Profiling”)

Stakeholder / Component: Profiler

Although the Profiler belongs to the modelling phase it is worth noting that the

constraints, rules, policies etc. given already constrain the deployment possibilities

due to two reasons: (1) direct conflicts in the specification and (2) experience, along

the line of what consequences typically arose / did not apply. Effectively, this means

pruning the search tree for the Reasoner: whilst the Reasoner could principally

D1.6.2 – Final Architecture Design Page 32

perform all these operations itself, it would take considerably longer time (as there

would be an exponential search tree explosion).

In effect, the Profiler thus generates (and maintains, see execution phase) a set of

models describing all execution relevant information that the Reasoner has to

optimise over. The Profiler thereby incorporates expertise from software & model

analysis to interpret the data obtained and cross-references it against the rules and

constraints given.

Concretely, each Deployment Model maintains the following set of specific

requirements:

· Application requirements
Describes all information necessary to execute an application instance according

to the intentions by the developer and host. This means that it includes the

following information:

o The individual software components of the application;
o The software architecture (work- and dataflow);
o The execution behaviour in the sense of when which component

created which load on resources;

o The basic machine readable scaling rules according to execution

expertise and software architecture (such as that scaling out helps to

increase performance in module A if number of users are larger than

X);

o The application specific constraints related to deployment in the case of

PaaS (such as needs SQL database, needs license X, can only run on

Azure);

o The general application constraints related to offering / selling the

application (including maximum total cost, total latency, maximum

number of users.);

Quality of service / deployment constraints;

The constraints and conditions of the individual application

instance such as typical execution speed, typical load, TREC;

Module specific behaviour rules, such as under which load to

scale out etc.
· Host requirements

Describes the specific conditions and constraints set by the Cloud provider. It

also includes, next to the basic set up of the infrastructure and hosting

capabilities, monitored information and their logical consequence for the specific

Cloud provider:

o The types (storage such as file system, devices and databases

computation capabilities such as VMs) and amount of resources

available as well as the types of the resource instances;
o Monitoring Services, what access and data do they provide.

D1.6.2 – Final Architecture Design Page 33

o The quality requirements, such as the effective bandwidth and latency

during execution, the typical resource load. This can be matched to

application requirements to allow better searching;

o The general rules and constraints, including the license and cost

requirements;

o Typical behavioural constraints and rules, such as how long it takes to

perform a scale out, when scale out should be typically performed. etc.
· Data requirements

Describes the structure of the data being consumed / produced in the

application in the widest sense. This may well be an inherent part of the

application requirements.

o Size;

o Consumption / production pattern (data flow);

o “Type” (structured, unstructured);

o Security/Privacy/Affinity Policy/Constraints;
· User requirements

All information related to a specific (class of) user(s), such as typical

requirements, preferences and typical usage behaviour e.g. types of devices

and mobility.

The requirements are used by the Profiler to create a set of constraints, rules

and policies in a “Reasoner-readable” format that effectively span the

minimal search tree, i.e. with all conflicts eradicated. Notably, conflict-

resolution may require feedback from the user. These are presented to the

Reasoner in the Constraint Problem Model.

Optimisation and decomposition

Stakeholder / component: Reasoner

The Reasoner takes all rules / functions from the Constraint Problem Model as

generated by the preceding steps and tries to find a deployment modelling fulfilling

the constraints and ideally optimising them. The Reasoner will generate a

deployment modelling (graph) building up from the workflow / software model,

which identifies all deployment boundaries and low level scaling rules that can be

enacted by the execution engine.

The Reasoner does thereby NOT generate rules “out of the blue”. This means that an

according set of rules and functions must be pre-generated. This includes next to the

input by user or developer also “common ground rule s”. The Reasoner resolves

unknown parameter values for these rules, and select the set of rules appropriate

for the current modelling. Examples: "Scale out if more than X users by adding a new

VM" will see a numerical value for X, and all rules applicable for Azure will be

removed if the Amazon offering is chosen for the deployment.

The Reasoner creates the Deployment Model which contains a collection of possible

D1.6.2 – Final Architecture Design Page 34

deployment modelling (options), possibly ranked, and linked to real time monitored

data and historical execution data from current and previous related deployments.

Execution

The PaaSage platform aims to optimise Cross-Cloud deployments with respect to

deployment goals and constraints. The PaaSage architecture optimises performance and

cost of Cross-Cloud deployments. Support the deployments of the five case studies and

be general enough to be widely applicable supporting the deployment of multi-tier

applications as well as workflows. It must also allow applications to scale up and down

in the Cloud within the confines of constraints set in the PaaSage models using functions

of the Cloud providers such as Elastic Hosts [22]. For the optimisation of deployments it

also learns from past deployments by mining execution history in the metadata

database and by running complex queries on the history of runs. The aim of the learning

is to find which executions gave the best results as well as the underlying reasons for

those results.

The PaaSage platform supports optimisation of data partitioning and replication.

Finding the optimal data partitioning and replication deployment that meets the

data consistency constraints. The optimisation will use the data partitioning, data

flow, workflow and data consistency models from the deployment specification.

The PaaSage platform provides – in addition - trusted, secure and privacy aware

Cross-Cloud deployments. A Cross-Cloud monitoring system supports monitoring

Cross-Cloud deployments. The PaaSage platform has been evaluated with a few

selected Cloud providers such as Amazon, Azure and Rackspace.

Execution Storyboard

At execution time the PaaSage platform supports all the use cases by automatically

monitoring of the engaged Cloud Infrastructures in line with user requirements

passed in from the Deployment Model.

 Figure 8 Storyboard during the Execution Phase

D1.6.2 – Final Architecture Design Page 35

During the execution phase in the eScience application the performance and behaviour

of the application and Cloud Infrastructure is monitored closely by the PaaSage

platform. If a fault occurs the platform can create new instances of the workflow.

The ERP application is also monitored in a similar way and effort is made to ensure

mobile devices are synchronised as they come on and off line. Possible adaptations

in the case of large volumes of offline devices can be the creation of more services

to increase availability for online technicians.

Application execution in the eGovernment scenario is focused on scalability to serve

all municipalities and monitoring to ensure data integrity and security. Adaptation

takes place to ensure the balance between public and private data processing is

balance to ensure the scalability of the Cloud.

The Airline Scheduling use case during execution has a focus on the collection of

distributed data and its processing to create composite views. Monitoring is of great

importance to maintain the integrity of data and the application as demands are put

on the Cloud scalability. Adaptation to maintain access to remote datasets and

security of data is integral to the platforms management of the Cloud in this

scenario.

Execution Functionality

Adaptation towards the host

Stakeholder: Adapter (Upperware and Executionware)

The role of the adapter is to transform the currently running modelling into the target

modelling received from the Reasoner. In the case of a first time deployment, the

currently running modelling is empty. The adapter is then responsible for generating the

proper commands to the Deployer which is responsible to correctly enact this modelling

on the chosen provider offerings. It also provides the Deployer with instructions about

the parameters to monitor, and rules to adjust the running system within the

boundaries of the target modelling. For instance, if the modelling says that up to 10 VMs

can be used, then the execution engine can safely scale up to 10 VMs using whatever

scalability rules a for the chosen provider.

Continuing the above example, the addition of another VM can be made by the

execution engine every time another 100 users are using the system (this is

prompted by monitored data analysis by the execution engine). Yet, the adapter

does not need to know about each new user entering the system; it only needs to

know when the execution engine adds another VM to make sure that the number of

VMs stays within the deployment boundary of fewer than 10 VMs. In other words,

the adapter does not care about the specific adaptation process for a given Cloud

environment (see below), but cares specifically about all modelling steps needed for

the proper “orchestration” of the execution.

When it is detected that the current modelling is no longer valid, i.e., outside the

D1.6.2 – Final Architecture Design Page 36

constraints set by the Reasoner as implied by the monitored data, the adapter asks

the Reasoner to produce a new target modelling, and subsequently adapts the

running system to this target modelling.

The Adapter takes the Deployment Model and adds knowledge from sources such as

previous executions from the metadata database and Cloud monitoring framework.

The result is a set of individually deployable artefacts and a set of modelling scripts

to start each artefact on the given provider to which it has been allocated.

Deployment

Stakeholder: Deployer (Executionware)

The actual deployment according to the specific host characteristics and

requirements and the low-level execution environment (i.e. selection of the right

monitoring engine and the right interpreter etc.) is performed by the Deployer. The

Deployer is provider-specific and only deals with the components to be deployed in

the respective designated environment – it has no view on the total system.

The Deployer produces the initial deployment of the individual components and

their execution environment. Note that the according components / images may still

be inactive until actually triggered.

Execution

Stakeholder: Execution Engine & Interpreter

Execution is triggered with the first request from the business application end user

with whatever external trigger is required. This trigger is external to PaaSage, but

must be catered for in the sense that the destination must be reachable.

During execution, application requests triggered by the respective module are converted

from the PaaSage API into operations specific to the respective environment the

component is hosted on. These operations can range from storage access to actual

manipulation of instances.

Under best circumstances, the execution simply follows the work- / dataflow and

finalise its process. During execution monitored data about workflow / application

execution is created.

Monitoring

Stakeholder: Monitor (Executionware)

For getting information about the currently running VMs, PaaSage makes use of the

monitoring framework offered by the Cloud providers. This enables gathering status

information, such as network load, processor load. In order to execute rule-based

actions, the PaaSage monitor can principally query any further data source, including

D1.6.2 – Final Architecture Design Page 37

other monitors and/or the metadata database. Monitoring may thus also supervise

invocations performed on the component and actions taken by the execution

engine. What is actually monitored and where / how the monitoring data is

delivered is defined by the monitoring rules and their selection by the Reasoner.

The monitoring information is captured according to the specification (needs) of (a) the

Profiler (stored in the metadata database and passed in encoded form to the Reasoner),

(b) the execution engine, and (c) the adapter (stored in the metadata database)

Local Adaptation (remodelling)

Stakeholder: Execution Engine / Interpreter

Given certain conditions as registered by the monitor, such as that the network is

overloaded, the execution engine can take adaptation actions in order to

compensate for these conditions. The engine thereby follows no intelligence, other

than the one explicitly provided by a set of behavioural rules provided with the

deployment Constraint Problem Model. These rules include actions such as when to

scale out, when to scale up etc.

As a consequence of such actions, consistency needs to be maintained depending on

the (lack of) support by the respective infrastructure.

The execution engine only takes actions within the respective environment, i.e. does

not directly contribute to Cloud-bursting or Cross-Cloud deployment of a single

component. Such adaptations necessitate a global remodelling of the deployment.

Global Adaptation (remodelling)

Stakeholder: Adapter, Reasoner, metadata-database

Not all remodelling takes place only within the Cloud environment local to the

component. We can identify the following situations (among others) where more

global adaptation is required by the PaaSage platform:

· The local resources become insufficient, meaning either

that: o More additional resources are needed

(bursting);
· o A different host is needed (relocation);

· Multiple connected components need to be adapted at the same time

(Note that this can potentially be achieved using local execution rules);

· The information gathered so far indicates that the system is seriously

misbehaving (e.g. missing critical constraints) and the local

adaptation does not seem to compensate it;

· The Reasoner has found a better deployment.

Such conditions should be detected by the Adapter through complex event

processing on monitoring data available in the monitoring infrastructure (the

D1.6.2 – Final Architecture Design Page 38

metadata database provides summaries and pointers to the raw data). When the

Adapter detects that the running system is outside the current modelling once

obtained from the Reasoner, it invokes the Reasoner to produce a new modelling. If

this new modelling is deployable under the application invariants (checked by the

simulator in the Reasoner and Adapter), a set of modelling scripts, one for each used

platform, is generated and passed on to a platform-specific Deployer. The operation

of the adapter is shown in Figure 9.

Figure 9 The global adaptation loop

Adaptation cannot just consist of a new deployment modelling without further

details. Instead it must be an adaptation script (containing un-deploy and redeploy

instructions) in order to specify exactly how the adaptation takes place. This involves

aspects such as:

· Graceful shutdown;
· Smooth transition;

· Which modelling change;
· Which new instance is required (for which Cloud);
· Which instances to be destroyed.

D1.6.2 – Final Architecture Design Page 39

The Adapter produces an incremental deployment that starts with the current

deployment and changes it. Once the new modelling (and the way of achieving it) is

specified, the new deployment modelling is fed to the Deployer.

D1.6.2 – Final Architecture Design Page 40

COMPONENT DESCRIPTIONS

The previous section of the document has explained the main functionalities, in high

level view, of the PaaSage project. We have looked at the main functionality and how

it relates to our Use Case needs via the Storyboards. In this next section we shift the

focus onto a more detailed view of the individual components that make up the

PaaSage platform.

IDE

The IDE group of components are the start point at which the user / application designer

engages with PaaSage. These components largely relate to the creation of CAMEL

models but also include the Dashboard which ties in CAMEL model creation tools with

monitoring and model discovery tools within the Social Network.

CAMEL Editors

CAMEL is a modelling standard developed by the PaaSage project. It is the point at

which application requirements and also supporting requirements are captured. This

is done via the use of CAMEL editors. PaaSage presents the CAMEL textual and also

the tree based editor. Both are Eclipse based.

At design-time, the Cloud application developers use a CAMEL to specify the

provisioning and Deployment Models with additional input from system

administrators and data administrators. These models encompass the topology of

the nodes of the Cloud infrastructure, as well as the topology of the software

artefacts deployed on these nodes.

CAMEL utilises the DSL CloudML to consider the provisioning and Deployment

Models at two levels of abstraction, namely Cloud Provider-Independent Model

(CPIM), and Cloud Provider-Specific Model (CPSM).

A CPIM represents a generic provisioning and Deployment Model that is

independent of the Cloud provider. This model consists of two main kinds of

elements, namely the node types and the artefacts types. A node type represents a

generic virtual machine (e.g., a virtual machine running GNU/Linux). This element

can be parameterised by provisioning requirements (e.g., 2 cores _ compute _ 4

cores, 2 GiB _ memory _ 4 GiB, storage _ 10 GiB, location = Europe).

An artefact type represents a generic component of the application (e.g., a Java

servlet of an application for document collaboration, a Jetty container, and a

MongoDB database). This element can be annotated with deployment commands

(e.g., retrieve the Java servlet from http://www.paasage.eu/, configure it, and run it),

D1.6.2 – Final Architecture Design Page 41

deployment dependencies (e.g., the Jetty container and the MongoDB database

have to be deployed before the Java servlet), and communication channels (e.g., a

Java servlet communicates with another Java servlet through Hypertext Transfer

Protocol Secure (HTTPS) on port 443.

The CPIM can be serialised using two formats, namely the JavaScript Object Notation

(JSON) and the XML Metadata Interchange (XMI).

Dashboard

The Dashboard component provides an entry point to the main design and

monitoring interfaces of the PaaSage platform. It is integrated within the Social

Network and enables business users to check on the key performance indicators of

deployed applications currently being executed. It also provides reports on previous

deployments and also a point by which other interfaces can be accessed such as the

CAMEL editing components.

Cloudiator

Execution of Models and production of Metrics in the platform is provided by a platform

called Cloudiator. This is a stand-alone project that has been developed within PaaSage in

collaboration with other projects such as CloudSocket (www.cloudsocket.eu). A key element

of the component is the ability to monitor deployment and the source code for the project is

open and available here (https://cloudiator.github.io).

Profiler

The main objective of the Profiler is to look into the list of goals and preferences

(which are set by various users in the CAMEL model), and come up with a list of

potential candidate providers that satisfy the aforementioned inputs and other

additional constraints like SLA and elasticity rules. An example of goals set by the

organisation and defined by the business user is minimizing the response time and

total cost, whereas a list of preferences could be running the user application on

Amazon in Europe instead of in Asia / USA and deploy the database on the Private

Cloud.

D1.6.2 – Final Architecture Design Page 42

Figure 10 Architecture of the Profiler

As shown in Figure 10, the Profiler interacts with the IDE in getting a list of models to

be processed by the Constraint Programming (CP) Generator. Then, the CP Generator

is responsible for producing a CP Description that defines a list of input constraints

for future deployments. Finally, the Rule Processor takes this description along with

other inputs, such as SLA, elasticity rules, goals, and real-time information from the

Metadata Database, to generate a list of possible and feasible deployments (defined

in a new CP Description) that is used by the Reasoner.

CP Generator

The CP Generator looks into several application and resource models that are

defined in the IDE and produces a CP Description that contains a list of deployment

variables, domains and constraints. It is also the responsibility of the CP Generator to

prioritize the constraints and variables, and resolve any conflicting parameters from

the models.

The CP Generator identifies variables, domains and constraints by analysing the input

application and resource models, and the deployment specification. The CP

Generator produces a CP Description that lists variables and their domains

constraints derived from the input models and deployment specification.

Rule Processor

The Rule Processor is responsible in generating a list of possible and feasible

deployments (defined in a new CP Description) that satisfy all the given constraints

and inputs. The Rule Processor works by processing of additional information related

to the application to complete the CP Description. It also verifies the CP Description

(e.g. remove redundant constraints, detect variables without domain, etc.)

D1.6.2 – Final Architecture Design Page 43

The Rule Processor receives as an input the CP Description from the CP Generator

that defines a list of input constraints for the future deployment. These include

Elasticity Rules, preferences, goals, and SLA, along with initial values of monitored

resources (e.g. response time, memory usage, etc.)

The Rule Processor produces a CP Description that a list of possible and feasible

deployments wrapped into the Deployment Model expressed in CloudML. Moreover,

it contains resource parameters to be monitored (e.g., memory and disk usage).

Reasoner

In a nutshell the Reasoner receives application and context models (from the

Profiler) in CAMEL format and outputs Deployment Models in CAMEL. This process

relies on the Reasoner extracting requirements from the CAMEL and using the

current state of Cloud Infrastructure and knowledge from the metadata data base to

conduct reasoning. The component architecture can be seen in Figure 11.

Figure 11 Components that make up the Reasoner

Central to the Reasoner is the concept of Solvers. The Solvers sit at the centre of the

component and conduct the main functions in the Reasoner.

Solvers Overview

The role of a solver is to assign a value to a variable from the variable's domain so

that all constraints of the problem are satisfied. A set of values assigned to all

D1.6.2 – Final Architecture Design Page 44

variables of a problem is called a modelg, and a the output from creating a model

that satisfies all the constraints is called feasible model.

There will typically be many feasible models, and the number of feasible models grows

exponentially with the number of variables of the problem. One would normally not be

satisfied with any feasible modelling, but rather try to find the feasible modelling that is

“best” according to some quality criteria, e.g. system perceived utility. It should be

noted that the utility could be returned as measured “goodness” of the deployed

system; it could come as a result of a simulated deployment; or from the evaluation of a

functional expression. In other words, the term utility function is understood

indiscriminately of all these three ways. Its value can be obtained as an abstract

mapping that takes as input a model and returns a value that describes the quality of

the deployment according to the given model.

Meta solver

There are many different algorithms, or solvers, that can be used to assign values to

the problem variables depending on the relation among the variables as being linear

or non-linear, and the domains of the variables as intervals over the real numbers or

as integers, including binary decision variables. The meta solver will select one or

more solvers appropriate for the problem, and dispatch to these the problem or part

of the problem. It also receives feedback from the modelling constructed by the set

of solvers chosen, and may use this to change the solvers used for building the next

modelling in the subsequent iteration.

Finding the optimal modelling is normally only possible for certain restricted

problems, and in general one will have to evaluate every possible feasible modelling

in order to assess a posteriori the best modelling. This is impractical for all but the

smallest problems. In reality, one will therefore need to run the solvers for as many

iterations as allowed by the time budget available for finding a modelling. It is a task

of the meta solver to control the execution of the individual solvers, and stop or

pause them when a solution must be returned.

It is anticipated that the search for an improved solution can continue in the

background even after one has decided to go for deployment of a particular

modelling. In this way one could have one or more optimal modelling ready, should

there be necessary to adapt globally the running modelling for some reason.

CP Solvers

Constraint programming (CP) simply refers to a set of variable domains and their

associated variables whose relations are defined in terms of a set of constraints. It does

not specify how and in which order these variables are assigned values, and what

algorithms to use for finding these values. If the domains are intervals of real numbers,

and the constraints and the utility function are all linear, it is a linear programming

problem. Non-linear programming problems do not require linearity [23].

D1.6.2 – Final Architecture Design Page 45

There is a plethora of CP solvers available, both commercial ones and open-source.

However, they are generally not able to operate with stochastic variables, which are

output as a result of the variance platforms / application performance

measurements. They can therefore most likely only be deployed for the sub-problem

consisting of real valued variable domains and deterministic variables. On the

positive side, they are normally capable of finding optimal modellings for quite large

problems in polynomial time. For deterministic variables that are discrete, special

solvers from the domain of combinatorial optimisation must be applied [24].

Learning Automata (LA) based allocator

When the variables become stochastic, the problem gets worse. If one had statistical

data with samples of utility function values for a large number of runs, one could use

statistical interference to estimate and test hypotheses about deployment outcomes

for each modelling [25], [26], [27]. One will normally not have the luxury of a huge

database of previous deployments, and it is therefore necessary to resort to

methods that are able to learn the better variable values, as new observations of the

utility function becomes available. Given that the variance of the mean value

decreases with 1/sqrt(N) for N observations, we get better and better estimates for

the mean characteristics as we get more observations. This leaves us with two

options: We can defer making any decision until we have a large number of

observations, or we can use methods that are able to learn better and better as new

observations come along. If the domains of the variables are continuous, one could

use parameter identification techniques to assign variable values [28]. However, in

the case of discrete variables selecting the right value for a variable becomes a

Markovian Decision Problem [29], for which reinforcement learning algorithms [30]

can be deployed.

A special sub-set of reinforcement learning algorithms called Learning Automata (LA)

[31] is used in PaaSage. LA are characterised by having a firm mathematical foundation

allowing core properties like scalability and convergence to be rigorously analysed.

Furthermore, when many values are assigned to many variables of the same problem,

one automation can be given the task of assigning one value. One would thereby exploit

the concept of an automata game [32], in order to converge to a feasible modelling, and

a proposal for an LA based solver for PaaSage can be found in [33].

Heuristics (search algorithms): Given that the solver can be any algorithm that is able

to assign values to the variables from their domains, while respecting the constraints

of the problem, one can deploy as a solver any method capable of doing this

assignment in a stochastic environment, as stated by the No Free Lunch theorem

[34]: “For all possible performance measures, no search algorithm is better than

another when its performance is averaged over all possible discrete functions”.

There are many different search algorithms available in the literature, and they can

broadly be classified in two groups: Those algorithms aiming at finding the globally

best modelling [35], versus the algorithms starting with a rough first guess of a

solution and then trying iteratively to refine the solution [36]. The latter class of

D1.6.2 – Final Architecture Design Page 46

stochastic local search algorithms are preferred in PaaSage because they at any time

are able to return the best modelling found until that point.

Utility Function Generator

The utility function generator will use the information about goals and preferences

distilled by the Profiler into the Constraint Programme Description. The role of the

utility function is to provide a quick alternative to simulating the deployment, or to

make the actual deployment, in order to have feedback on the “goodness” of a

particular modelling. The different solvers are all, in one way or the other, iterative

and for each iteration towards a feasible solution feedback on the usefulness of the

current modelling is needed. A utility function is traditionally the way to assess a

proposed deployment in self-adapting software systems [37].

Experiences [38] show that it is very hard for the system designer to formulate a

good utility function, and one often has to resort to a weighted sum of the different

measurable goals and preferences [39] as it is easier for a human operator to tune

the preferences and priorities of the different goals, and thereby implicitly adjusting

the weights of the utility function sum.

One will therefore necessarily need to try capturing the imprecise goals and

preferences in the utility function, and the purpose of utility function generator sub

activity in PaaSage is to investigate more sophisticated ways of doing this than just a

weighted sum. Given that fuzzy reasoning [40] has proven useful in making decisions

under uncertainty, fuzzy methods will be the point of departure for the

investigations on a more representative utility function.

Bearing in mind that the main task of the utility function is to guide the search for

solution, one has the added benefit in PaaSage that the same modelling can be

subjected to an evaluation by the utility function as well as by the deployment

simulator. In this way it is also possible to obtain feedback from the simulator on the

quality of the utility function itself and adjust the utility function accordingly. Hence,

PaaSage may in this way iteratively improve the utility function making it more and

more trustworthy as a quick way to evaluate a candidate modelling.

Solution Evaluator

The Solution Evaluator module aims at offering a standardized function evaluation

interface to all solvers. It forwards the function to evaluate to the Utility Function

Generator, the Simulation Wrapper, or the Metadata Database (MDDB) depending

of the function to evaluate. The parameters are of course different depending of the

actual evaluator. For example, the Simulation Wrapper needs a lot of metadata to

describe the cloud to be simulated. If fuzzy methods are unable to capture

adequately the user’s goals and preferences, we have looked at other methods like

statistical regression to construct the utility function as a weighted combination of

the problem's variables based on past execution history. An invocation to the MDDB

can be triggered for example to retrieve some historical data; hence, metadata to

D1.6.2 – Final Architecture Design Page 47

describe how to evaluate the historical data are needed (mean, average, duration of

data to take into account, etc.).

Simulator Wrapper

Simulator wrapper is a way to hide the mechanism used to obtain a feedback on a

particular modelling. The wrapper can either start a simulation, or it can evaluate

the utility function. The feedback provided by the wrapper to the solver is supposed

to be consistent in the sense that a better modelling receives a better feedback

value.

Thus the module aims at wrapping a Cloud simulator such as SimGrid [41]. It

converts application and resource descriptions of PaaSage into a Cloud simulator

specific format. It also converts the results of a simulation into the needed PaaSage

model. The simulator may be able to interact with the Solver to test resource

allocation decisions, i.e. mapping but also What-If questions.

The simulator generates traces that have to be translated as simulation feedbacks to

the Solver. The traces contain the life-cycle of all the resources used and the cost per

unit of time of running the application. The traces must log all the requests arrival. It

must also contain the time to process a request at each tier and the Round Trip Time

for each request.

The simulator needs a simulation request for a given application on the whole (or a

part of the) platform composed of possibly multiple Clouds. Accordingly, it must be

able to interact with the meta-data database for retrieving information about the

platform such as the description of the resources, i.e. Physical Machines and their

inter-connections, the different billing schemes, monitoring information about

different resources, availability of instance types, virtual storage and network

resources, etc. This interconnection will take the form of a translator between the

platform model used by the meta-data database and the one used by the simulator.

Another interconnection is between the application model and the simulator. A

translator transforms the application model to the simulator one. Furthermore, the

application model may be enriched with information contained in the metadata

database. Indeed, the simulator needs to have access to this information to run

accurate simulations based on real-world observation and developer provided

models.

Constraint Logic Programming

An alternative way of determining suitable Deployment Models, given an application

model and several Cloud resource models, is to follow a logic-based matchmaking

and optimization process. In this approach, Cloud infrastructure descriptions are

translated into logic-based knowledge in the form of predicate facts. Similarly, the

application model (along with any other deployment requirements and goals) is

expressed in the form of predicate or constraint goals. Then, matchmaking between

D1.6.2 – Final Architecture Design Page 48

application requirements and infrastructure offerings is performed based on a set of

constraint satisfaction rules and optimization objectives leading to a set of ranked

deployment modellings/solutions.

Rules can either be resource-related (low-level) or referring to application characteristics

(high-level). For instance, a low-level rule could provision a virtual machine with low disk

throughput to an application with low storage requirements. A high-level rule, on the

other hand, could satisfy a constraint that two tasks be deployed geographically close to

each other by deploying them on VMs offered by the same Cloud provider. Rules can

also be used to transform high-level requirements to low-level ones to enable their

direct matching with respective low-level (Cloud resource) capabilities, leading to more

accurate matchmaking and optimization results.

Rules can be expressed by deployment experts or derived from learning processes based

on deployment history. The deployment history can also be inspected and processed so

as to produce new facts, e.g., providing some performance insights from previous

practical experience. Thus, an important characteristic of the rule base, as well as the

fact base, is that they should both be dynamic, quickly adapting to any changes

implemented by infrastructure providers or new deployment-related knowledge that

may be acquired.

The above described matchmaking and optimization process can be implemented

using a constraint logic programming (CLP) approach, realized using Prolog and

Constraint Handling Rules (CHR). The approach can simultaneously consider multiple

optimization objectives, even under over-constrained requirements. It also has the

ability to simultaneously support more complex requirements and preferences

provided in the form of disjunctions of sets of constraints. In the general case,

matchmaking can yield multiple deployment solutions, which can be ranked by

exploiting the Analytic Hierarchy Process (AHP) to prioritize optimization criteria and

normalize their values based on particular utility functions that can allow the slight

violation of particular optimization objectives to cater for solution feasibility.

MILP Solver

The MILP solver performs an optimization of given CP problem using mixed integer linear

solver. Only subset of CP is supported. The data solver that is used is fetched from and

stored in Metadata Database.

Solver to Deployer

This module translates the output of a solver into the Deployment Model

representation. It also participates to lowering the dependencies of solver to the

remaining of PaaSage. This module is strongly linked to the Model-to-Solver module.

Adapter

D1.6.2 – Final Architecture Design Page 49

The adapter has two main responsibilities. First, it is responsible for transforming the

currently running application modelling into the target modelling in an efficient and

consistent way. Second, it is responsible for performing high-level application

management, which involves monitoring and adapting components deployed on

multiple cloud providers. The adapter is composed of three components: the plan

generator, the adaptation manager and the application controller.

Figure 12 Architecture of the Adaptor

The Adapter receives information on the target application modelling of the

Deployment model expressed in CAMEL. The Adaptor processes this model to

produce a CAMEL Execution model that contains deployment descriptions, including

software artefacts and rules.

Plan Generator

The plan generator compares the target modelling (Deployment Model) which it

receives from the Reasoner with the running modelling and generates an efficient

and correct remodelling plan, containing an ordered set of remodelling commands.

This is expressed in CAMEL and associated domain specific languages and known as

the Execution Model.

The Plan Generator sends the Execution Model to the Adaptation Manager for

further checking. If any inconsistencies are present in this model it is sent back to the

Plan Generator for re-modelling, taking into account the feedback. During its

operation the Plan Generator uses knowledge / policy from the MDB in the

construction of its models.

Adaptation Manager

The adaptation manager is responsible for driving the remodelling process across

one to many Clouds. First, it validates the remodelling plan by estimating and

D1.6.2 – Final Architecture Design Page 50

comparing remodelling costs and benefits. If the plan is valid, the manager applies

the plan by sending deployment descriptions to the Deployer and global rules to the

application controller. The manager also minimises inconsistencies in the presence of

remodelling failures. If the plan is not valid, the manager asks the Reasoner for a new

target application modelling. After applying the plan, the manager updates the

running modelling.

Application Controller

The application controller implements high-level management policies that need

global knowledge or involve multiple cloud providers, such as policies involving

cross-cloud migrations. The controller collects information on the application

execution, evaluates global rules, and triggers remodelling commands.

Metadata Database

The metadata database (MDDB) follows the architecture depicted in Figure 13. The

MDDB layer comprises the metadata model and the implementation of the

distributed physical store (which includes federation capabilities); the Analytics layer,

providing support for a variety of analytics over historical metadata; and interfaces

to the Profiler, Reasoner, Executionware, and Social network infrastructure

components. The MDDB is meant for long-term preservation of information. It is

designed to associate mutations with a wall-clock timestamp and to trace the

identity of the sources of mutations. It thus shares principles with archival systems,

temporal databases, and provenance systems.

Figure 13 Metadata database architecture

D1.6.2 – Final Architecture Design Page 51

Metadata database layer

The MDDB model describes the applications and their deployment adopting

principles from specifications such as CloudML, PIM4Cloud, and TOSCA and

extending them for the unique needs of PaaSage. In more detail, the meta-model is

meant to capture

· The description of an application;

· Application requirements and goals;

· Runtime aspects of its execution histories such as monitoring information at

different levels, invocations of rules and policies, and quality of service

assessments;

· Rules and policies;

· Provisioned resources;

· Cloud provider characteristics;

· Users, roles, and organizations.

Application descriptions

The MDDB stores application descriptions expressed in CloudML. It additionally

extends those descriptions to express lifecycle management concepts such as the

evolution of the application and its deployments over time. A version of an

application is rooted at an APPLICATION object and comprises software ARTIFACT and

ARTIFACT INSTANCE objects, which correspond to generic and specific software component

descriptions respectively. An ARTIFACT INSTANCE can be deployed either on another ARTIFACT

INSTANCE or on a NODE INSTANCE representing a VM resource. The deployment relationship

is a temporal association represented by a DEPLOYMENT ASSOCIATION object (with a start and

end time). In addition to descriptions of software components, the data used by them

and their characteristics (replication, partitioning, consistency) are expressed in DATA

OBJECT classes. Data objects are connected to software artefacts via temporal OBJECT

ASSOCIATION classes (a data object is typically connected to its producer and consumer

components). Object associations model data flow within application descriptions.

Application requirements and goals

Application requirements and goals are expressed as service-level objectives (SLOs)

or other types of constraints on the deployment and/or behaviour of applications. In

the MDDB schema, requirements and goals are represented by SLA (service-level

agreement), IT SLO, and AFFINITY GOAL classes. SLA expresses non-IT (business level)

constraints such as targeted overall cost, location preferences/restrictions, etc. SLA

expresses the fact that a top-level constraint implies an agreement to support the

required constraints in addition to expressing an objective. IT SLO expresses

D1.6.2 – Final Architecture Design Page 52

requirements on an IT metric, such as throughput and response time. The IT SLO class

describes the metric and its units, as well as the desired threshold. It is connected to

the software artefact on whose operations the objective applies. An IT SLO may or

may not be translated into a service level agreement during deployment (for

example, the expressed objectives may be taken into account but no hard

guarantees provided on them). AFFINITY GOAL expresses dependencies between

artefacts, such as the requirement to place two software components physically or

logically nearby or far apart (e.g., place components so that they fail independently –

i.e., in different availability zones- and/or so that their communication path is

optimized –i.e., within the same communication domain).

Runtime aspects and application execution histories

The application requirements are connected to monitoring information represented

by APPLICATION MONITOR, ARTIFACT MONITOR, RESOURCE MONITOR, and RESOURCE
COUPLING MONITOR. Each monitor relates to the metric specified in the corresponding

service-level objective and to the type of object to be monitored (i.e., application,

artefact, resource). It is important to note that the MDDB monitoring objects contain

highly aggregated information rather than raw monitoring data; the latter is managed

separately by a time-series database. All monitoring information related to a specific

execution of an application is connected to an EXECUTION CONTEXT object (featuring a start

and end time of the execution as well as other aggregated information such as cost of

the run). The EXECUTION CONTEXT is also connected to one or more SLO ASSESSMENT objects

(evaluations of the degree to which an SLO was achieved) and deployment information

for the application indicating which artefact instances were deployed on which artefact

or node instances and what was their modelling. Note that the validity intervals (i.e.,

time duration from start to end time) of an execution and a deployment association can

differ—in other words, a particular deployment may participate in several executions.

Rules and policies

The MDDB meta-model expresses rules and policies, an example of which is the

ELASTICITY RULE that dictates an adaptation action in response to a violation of an IT SLO to

which the rule applies. Rules are associated with a specific event, which comprises a

condition (e.g., a metric violating a set threshold) and an action. Event and action

manifestations during execution are expressed as EVENT INSTANCE and RULE TRIGGER objects

connected to the corresponding execution context of an application. More general rules

relating to the occurrence of any type of event can cover general cases of application

adaptation. Additionally, the MDDB supports the definition of event relations

(represented by the EVENT RELATION class) constructed as expressions connecting events or

relations to other events or other relations via logic operators. An event pattern is

defined as an event relation that is responsible for triggering a rule. The MDDB is

planned to adopt and interoperate with established standards in this space, such as the

Esper event-condition-action (ECA) rule and event processing language.

D1.6.2 – Final Architecture Design Page 53

Provisioned resources

Each NODE INSTANCE (a CloudML concept referring to a deployment container) is of a

particular CD VM TYPE and CI VM TYPE, where CD stands for Cloud dependent and CI for

Cloud independent. A CD VM TYPE describes a real-world VM type offered by a Cloud

provider (such as for example Amazon EC2 m1.small or a specifically configured

Flexiant FCO VM). CI VM TYPEs are the result of (periodic) classifications of Cloud-

specific VM types into Cloud agnostic resource classes, performed by the MDDB

runtime Classification is based on a systematic benchmark-driven methodology to

produce a vector of performance metrics (CPU, memory, and I/O) that characterize

each supported VM, followed by statistical clustering (using for example the k-means

algorithm) to categorize VM into Cloud-agnostic class such as SMALL, MEDIUM, and
LARGE.

Cloud provider characteristics

Cloud providers are described in CLOUD PROVIDER objects, including information such as

datacenter locations and whether the Cloud provider is of private or public type.

Organizational information about Cloud providers is modelled separately (as

described below). Their offered higher-level programming platforms (such as Java 2

Enterprise Edition, etc.) are described in PLATFORM AS SERVICE objects; modelling of such

platforms is expected to draw information from related projects in this space, such

as Cloud4SOA. To model Private Clouds, where PaaSage can have visibility in the

underlying physical infrastructure, the PHYSICAL NODE and VM-TO-PM ASSOCIATION classes

describe characteristics of physical machines (e.g., CPU architecture, number of

cores, etc.) and temporal mappings between physical machines and the VMs

deployed on them over time.

Users, roles, organizations

The users, roles, and organizations associated with the rest of the modelled entities

describe information on the users and other stakeholders of particular applications,

the roles that they play, the organization to which they belong, and the organization

Cloud providers correspond to. This information is expressed in the USERS,

ORGANIZATION, and ROLES classes (designed along the lines of the ideas developed in the

development of the CERIF data model [48]).

The physical MDDB store is designed for scalability and high availability through the

use of parallel database technologies and principles such as horizontal data

partitioning across distributed server nodes. Extensive use of the Eclipse Modelling

Framework (EMF) is an incentive to leverage Eclipse Connected Data Objects (CDO)

technology for its support for disconnected operation and a variety of distribution

mechanisms depending on the connectivity level between the distributed CDO stores

(where, e.g., some might be close to the partner/project component locations to

allow for fast interconnection and transferring of information). The size of the MDDB

depends on how it is deployed into or across organisations and what application

domain it belongs too. For example, the MDDB for a collaborative eScience set of

D1.6.2 – Final Architecture Design Page 54

active applications would contain more history and data than a single instance used

less frequently with fewer users in a private organization.

An important concern to address is the integration of PaaSage metadata databases

originating from different installations of the PaaSage system. We expect that cases

where the metadata databases to be integrated do not conform to exactly the same DB

schema (due to variations in the version of PaaSage used in different installations), will

be common. A solution that we intend to exploit in such cases is the use of Ontology as a

common schema to bridge the gap between the two databases. In particular, we first

define a common Ontology to cover the concepts and relationships involved in the

databases to be integrated. Then, we map each database model/schema to that of

the Ontology. In this way, any DB-specific schema discrepancies are resolved by the

mapping and hidden to the PaaSage user. The user will need to know only the

Ontology schema in order to pose (SPARQL assuming the ontology is encoded in RDF)

queries to the system and thus any information that is differently represented in the

databases are presented to the user in a unique, uniform way. The mechanisms

supporting this mapping guarantee that the relational data of the database cannot

only be transformed to semantic data but also updates on the relational data are

propagated to the respective semantic knowledge base. The architecture of the

envisioned model (with all the components involved, including the Analytics

Manager) is visualized in Figure 14.

In terms of technology support, we propose the use of the standardized RDB2RDF

language proposed by W3C, called R2RML (http://www.w3.org/TR/r2rml/), a

powerful and expressive language already supported by several Semantic Knowledge

Bases / Triple Stores (along with the required synchronization functionality), such as

Virtuoso, D2RQ and Oracle’s Spatial and Graph RDF Semantic Graph. The above

process additionally covers the case where databases are heterogeneous with

completely different schemas (such as for example when an external contributor

collects data that is modelled differently). This can happen for instance, when a user

of the Social Network desires to offer his/her data to the PaaSage community

Figure 14 Integration of PaaSage metadata database

D1.6.2 – Final Architecture Design Page 55

Analytics Layer

The analytics layer is responsible for performing various types of analytics (e.g.,

computing statistical measures over existing metrics) over historical metadata for the

whole application or its components through exploiting the Analytics Manager

component. Apart from exploiting the monitored data stored in the MDDB (in the form

of the values obtained for some metrics), this component also interfaces with the

Monitoring Engine of the Executionware in order to obtain additional information,

such as raw measurement data as well as aggregated information.

The analytics layer also comprises a Reasoning Engine that is able to derive new

knowledge by exploiting the content of MDDB via the execution of rules. The new

knowledge is stored in a structured way (complying with an Ontology schema) within a

knowledge base (KB) and be continuously informed through the execution of the rules

over the MDDB and the KB itself. Through the derivation of new knowledge, the PaaSage

system is able to: (a) perform simple queries over the KB, answerable in a shorter time

compared to direct complex querying of the MDDB; and (b) exploit the knowledge

derived in order to provide extended (e.g., always suggest trustful cloud providers) or

added-value functionality (e.g., use rules to enable the automated matching of

application components/artefacts to Cloud services). Figure 15 depicts the architecture

of the MDDB with the KB accompanying one or more MDDB physical stores. Here,

knowledge, whether generated by the Reasoning Engine or by the Analytics Manager, is

stored in the Knowledge Base.

 Figure 15 PaaSage knowledge base and reasoning engine

Social network infrastructure

The PaaSage social network engages the open-source community (both users and

developers) into the PaaSage model-based platform-independent code development

model. The open source community will benefit by leveraging previously-captured

historical knowledge (such as, which module / combination of modules achieves the

desired results on which platform(s)), via cost / benefit feedback at development time,

deployment suggestions, best practices, etc. The social networking platform also

D1.6.2 – Final Architecture Design Page 56

motivates the open-source community to contribute knowledge from independent

experience, complementing the information discovered by the PaaSage Upperware.

The social network offers various features to its users, such as a forum through which

users can communicate and exchange information and a graphical user interface

through which various user tasks can be performed like connecting with other similar

users, posing questions to the MDDB, and contributing knowledge and metadata from

personal experience. To this end, the infrastructure supporting this social network and

its goals should be able to store information, such as PaaSage models, user information

in models, statistics on user needs and submitted contributions as well as support the

proper functioning of the forum and the graphical user interface.

The architecture of the Social Network infrastructure is depicted in Figure 16. A

standard user can: (a) contribute to the social network by describing his/her

expertise and areas of interest (applications, Clouds, etc.) and providing his/her own

metadata database contents, and (b) participate and learn by joining groups of like-

minded users, participating in discussions and posing questions. A user should be

allowed to specify a number of keywords of interest (e.g., “applications involving a

JEE application server an d a SQL database”, “anything over the Flexiant Cloud”,

“anything using the Amazon Elastic Java Beans platform”) and receive notification

when a contribution comes in that relates to any of them.

Other users can engage in discussions with a standard user. An expert user is

enlisted to translate a standard user’s questions to database queries (possibly after a

number of direct queries) or to validate his/her contributions to the knowledge base.

An expert user also is able to guide standard users through the content contribution

process (there should be an auditing phase involved to ensure the validity of the

data). A special type of user, the GitHub/devops user, is particularly targeted due to

bringing together the well-established GitHub developer community with the Cloud

deployment and service engineering communities. With increasing credit, a standard

user can be elected an expert user and be allowed to join the ranks of super users.

Figure 16 The architecture of the Social Network infrastructure

D1.6.2 – Final Architecture Design Page 57

Trust and Identity Management

Central to the integration of the PaaSage metadata with third party data is the need to

authenticate and authorise contributors. PaaSage support of an Identification,

Authentication and Authorisation mechanism for contributors is linked to the

establishment of an Identity Management mechanism. By using identity information, we

plan to associate data with specific contributors which enables the establishment of

identity rooted reputation and trust models around contributed data in PaaSage.

Figure 17 Identity Management in PaaSage

Figure 17 illustrates the design for the identity management in PaaSage. It is

expected that users both platform users and third parties authenticate through a

PaaSage portal. This could be a web service interface for automated calls or a specific

web front end for users.

Here the participants can login via a federated ID. For example, users could use

SAML2 tokens from other federated PaaSage platforms or present OpenID

credentials for checking by the portal. Once authenticated by the portal the user is

issued a PaaSage identity token for the session that they are authenticated for. This

token specifies the user’s privileges in PaaSage.

As data is sent for storage or retrieval from the MDDB checks on the identity token

of the user is performed at the Policy Enforcement Point (PEP). The PEP checks policy

associated with the data in the MDDB against privileges in the user token. The

checking is performed by the Policy Decision Point (PDP), which then issues an

accept or deny response to the PEP. Based on the response the action on the MDDB

is either permitted or rejected.

The security policies in the framework are to be defined and could directly relate to

the reputation / trust model of identities in the platform. Policy would be applied to

restrict access to specific data for certain groups of users or ensure that specific

D1.6.2 – Final Architecture Design Page 58

users are prevented from adding types of data to the MDDB.

Executionware

The main purpose of the modules and artefacts provided by the Executionware are

to enable the execution of the individual components (services) of the PaaSage

application in a fashion that the overarching goals and constraints are met. The

Executionware thereby forms the lowest level of support in the PaaSage system,

meaning that it has no understanding of the whole application – both in terms of the

application description, and the constraints / requirements. Instead, the

Executionware concentrates primarily on the individual components and how they

need to be adapted in order to meet their part of the requirements and boundary

conditions.

The Executionware directly builds on functionality offered by the various Cloud

platforms and by intermediate software layers such as middleware frameworks. In

particular, the Executionware utlilises the Cloudify (http://www.cloudifysource.org)

and jClouds (http://jclouds.incubator.apache.org/) frameworks.

The Executionware gets low level deployment rules from the Upperware. These rules

enable the Executionware to (a) (re)deploy the various application components

across diverse cloud platforms and (b) to perform low-level adaptation operations

depending on the current execution conditions. In order to perform such adaptation

operations, the Executionware relies on monitoring information gathered from the

run-time system of the application components. It further may make use of events

issued by other components when they perform their individual adaptations.

Summarising, the Executionware only gathers the specified information from (local)

monitoring and assesses it against a set of given rules to perform an according

operation. It is thereby the task of the Upperware to ensure that the application

components (services) are chosen to be deployed in an environment that supports

the necessary actions in terms of (1) communication, (2) adaptation operations, and

(3) monitoring. The operations that the Executionware principally has to support and

to realise relate to the primary concepts of Clouds. This means that the

Executionware has to enact operations as listed in the following. The operations are

triggered by sequences of events matching rules. Again, the respective rules must

come from a higher-level instance, in particular, the Upperware:

· Moving (relocating) the VM;

· Creating new instances of a service (scale out);

· Replicating status / data;

· Destroying instances (scale in);

· Scaling an instance up and down (e.g. increasing size of the database);

The Executionware has to reside close to the component that it supervises in order

D1.6.2 – Final Architecture Design Page 59

to ensure that the necessary information is available and that the necessary actions

can be performed. “Close” thereby meaning that it should a t least reside within the

same host environment (same Cloud infrastructure) and potentially even on the

same resource. For instance, monitoring has to be co-located with the

Executionware, as only the Executionware is aware of the actual mechanisms

provided by the platform running a particular component instance.

Figure 18 Architecture of the Executionware and its interfaces

The overall architecture of the components of the Executionware is shown in Figure

18. We discuss them in the succeeding sections.

Component Instance

The component instance is the code part (application component/artefact/instance)

that is treated as a single (black) box by the PaaSage system. This is an individual part

of an entire workflow application. Even though it may be split up or a composition

itself, once deployed, it is considered a single instance.

As the component instance is treated as a black box, the interfaces it provides to

users or other parts of the application can vary and are generally unknown to the

Executionware.

D1.6.2 – Final Architecture Design Page 60

Component Wrapper/Message Interceptor

When the interface of the Component Instance is known, the Component Wrapper

exposes a virtual interface to the Component Instance, so that the invocations and

messages calls reach the Component Wrapper before being relayed to the Component

Instance. This way, the Executionware can get full control over the Component Instance

even when the environment does not allow such fine-grained control. Wrapping

Component Instances also allows retrieving more fine-grained monitoring

information. The Component Wrapper may perform any actions on the message

(including measuring, routing, extending etc.) prior to relaying it. Even though the

Component Wrapper is generally deployed together with the Component Wrapper

this is not absolutely necessary. In case only information about messages is required,

the Component Wrapper may be realised as a message proxy.

The interface of the Wrapper is identical to the interface provided by the Component

Instance. In addition, the Wrapper may contain a management interface to retrieve

monitoring data and to configure its functionality dynamically. The Component

Wrapper is by far the most sophisticated component in the Executionware.

utes the necessary steps to deploy the component instance(s) along with its/their

execution environment and configure the rules according to the specification of the

Deployment Model. The Deployer is specific for a dedicated cloud environment, i.e.

there is different implementation of a Deployer for each cloud environment as long as

the differences cannot be abstracted by some cloud middleware such as

cloudify/jgroups. The Deployer ensures that the correct number of component instances

is deployed and further enables the monitoring of system parameters for these

instances as requested by the deployment modelling. In addition to the component

instances, the Deployer further configures and deploys an Enforcement Engine that is

responsible for micro-managing the set component instances it has deployed.

The Deployer receives from the Adapter deployment information for one specific

application component targeting on specific cloud platform. Beside the component

code, the deployment information further specifies the number of instances to start,

security modellings, as well as routing modelling, if required. It also contains

information about which data to monitor for all deployed component instances.

Enforcement Engine

The Enforcement Engine is the management entity of the Executionware. It captures

the monitoring stream from all instances and matches it against the specification of

the local scalability rules. When a rule matches, the Enforcement Engine delegates

the action further to the Interpreter. The rules engine used in the Enforcement

Engine is similar to a policy engine and effectively only evaluates a set of event-

condition-action triples. The engine has no intelligence beyond the rules provided

with deployment of the module instance/artefact and the execution components. It

may contain a set of hard-coded rules that “always” apply, though – such as “general

knowledge”. In this case, these rules should principally be capable of being over-

D1.6.2 – Final Architecture Design Page 61

written. Apart from processing the log stream itself, the Execution Engine may relay

the monitoring information to the meta-data database and to the Adapter, if

necessary. In that case, it ensures a normalisation of the monitored data so that data

from different cloud systems has the same format and scale when stored and

processed outside the Executionware. If further evolution of PaaSage requires

compression or pre-processing of monitoring data, the Execution Engine is the right

place to add it.

The Enforcement Engine receives a set of scalability rules from the Deployer that

contain a set of event-condition-action triples to be evaluated against the monitoring

stream.

Monitor(s) / Metrics Collector

Monitors gather the relevant data directly at the component instances and relay the

data further to the Enforcement Engine (and from there to the meta-data database).

The monitoring data serves for taking decisions on the overall application

deployment as required by Adapter and Reasoner. In general, the module is a slim

wrapper around the monitoring capabilities provided by the cloud platform and

cloud infrastructure. Accordingly, every infrastructure may have its own

implementation(s) of the monitor. In the remainder of this section we describe a

distributed monitoring architecture for multi-tier applications deployed on multi-

clouds.

The monitor does not receive any input. It outputs monitored data in a platform-

specific format.

Figure 19 depicts a framework for multi-cloud monitoring and adaptation of service-

based applications (see [53] for a more detailed exposition). The framework focuses

on monitoring infrastructures that operate in a cross-layer manner.

Figure 19 Multi-Cloud monitoring and adaptation of Service-based Applications

D1.6.2 – Final Architecture Design Page 62

In a multi-cloud setting, service-based applications are deployed on various Clouds based

on the capabilities of the respective Cloud platforms. By considering that various layers

are involved in the deployment and execution of a cloud-based application, monitoring

should be performed at all layers, i.e., the SaaS, PaaS, and IaaS. The main monitoring

functionality is encapsulated by the Monitoring which retrieves monitoring information,

stores it a time-series database (TSDB), and reports events of interest (such as

detected service-level violations) via a publish/subscribe mechanism to Adaptation

Engine instances.

Per-Cloud, federated TSDBs are used to provide persistent event storage of time-

stamped events. They additionally perform rollups (e.g., aggregated metrics such as

average, max, min) for user-specified intervals. A variety of commercial and open

source TSDBs can be used to handle time stamped events. In terms of possible

technological realisations of the framework, a TSDB especially designed for

distributed systems with high scalability requirements would be a suitable candidate

among possible choices (the open source OpenTSDB [49] a prominent candidate).

A publish/subscribe mechanism handles transferring raw monitored events and TSDB

rollups to an Adaptation Engine. Different adaptation-engine instances may be

deployed to distribute adaptation load across applications/Clouds, where each

engine is interested only in relevant events and rollups. One possibility for

communicating events and rollups between TSDB and an Adaptation Engine is to use

a pub/sub event notification service. In terms of promising technologies in that front,

Siena [50] is one choice that is expressive enough to capture all appropriate event

information via an extensible data model without sacrificing scalability and

performance during event delivery.

Monitored events from within each Cloud are directed to a local TSDB instance,

which can use distributed non-relational key-value store technology (such as Apache

HBase [51]) to organize the event time-series. HDFS [52], a distributed file system

replicating data across all Cloud providers, handles time series storage. To achieve

high performance during event collection, each Cloud's local replica is updated

eagerly; remote replicas are updated in a relaxed (asynchronous) manner. Reads are

performed from local copies when available. The monitor manager includes the

synchronization and publishing mechanisms on top of TSDB.

Interpreter

The Interpreter is the interface to operations and behaviour modification on a per-

component-per-cloud platform basis. Its task is performing the actions triggered by

the small-scale scalability rules. Since the rule language may differ from the API of

the infrastructure, this means that the respective action needs to be interpreted

(translated) into a set of host-specific invocations. Generally, the Interpreter is tightly

integrated with the Enforcement Engine, but multiple Execution Engines may share a

single Interpreter. The interpreter is triggered by the Enforcement Engine with the

action that is to be executed and it in turn transforms it into a sequence of

D1.6.2 – Final Architecture Design Page 63

operations that can actually be executed by the hosting environment. Accordingly,

like the Monitor and the Execution Engine, every platform/infrastructure may have

to have its own implementation of the interpreter.

The Interpreter receives an action to execute such as ‘scale up component X’

together with all data and modelling information required to execute the action. This

may include the component code, required monitoring information and wiring data.

FUTURE WORK

Source code from the PaaSage platform has been made freely available as an Open

Source project on the OW2 portal https://www.ow2.org. CAMEL is currently being

extended beyond PaaSage in the CloudSocket and Cactos projects and new to

emerge MELODY project led by PaaSage partner UiO. The standard is also

represented by academics from the PaaSage project within TOSCA technical

workgroups.

In terms of technical development, the PaaSage platform in its entirety can be

separated in to specific chunks. This enables parts of the platform to be applied to

specific problems facing the Cloud Community such as reasoning between Cloud

providers. In order to separate components from the PaaSage architecture the

process is a matter of technical integration of open source software.

Future development of the platform as a whole is promising and likely to follow the

industrial adoption of PaaSage by the use case providers in the project. Such

adoption requires specific decisions to be made about the level of integration the

platform has in an organisation. On a simple level the platform can be run stand

alone and applications modelled for PaaSage with the results of the execution

integrated back into the business.

Deeper integration of PaaSage is possible around the social network with security

policy around both users and resources being expressed in the PaaSage platform

using standards such as XACML and CERIF. This deeper integration enables the

platform to run alongside existing systems and enable seamless integration of users

and resources (such as local compute as an option for deployment).

Supported by ongoing projects, technical standardisation efforts and the growing

user community we expect future work in the development of techniques, tools and

further documentation around the platform to aid its adoption either as a whole or

in specific components.

CONCLUSION

D1.6.2 – Final Architecture Design Page 64

The Expert Group on Clouds formed by the EU [54] still identifies vendor lock in, lack

of support for user driven requirements across the Cloud lifecycle and poor

monitoring and control as key challenges in the delivery of Cloud Computing

technology. PaaSage is a significant step to address these challenges, by the

provision and application of a model standard to capture requirements and a

platform to sustain them through the Cloud lifecycle from specification, deployment

and execution.

The PaaSage architecture covers this lifecycle from a technical perspective and is

vital for the further use of the technology to make Clouds both more accessible and

transparent. Exploitation effort is covered in other deliverables such as the future

exploitation plans. However, it is worth noting that the PaaSage architecture is

unique as it is the first practical manifestation of a Cloud agnostic approach to user

driven Clouds.

A key challenge for the adaptation of the architecture within organisations is the

provisions of tools to support users in the learning process of how to create and use

CAMEL models. The knowledge base in the form of the MDDB and supporting Social

Network is the cornerstone in the architecture in which these efforts can be based.

Recent developments by AWS in terms of pop-up lofts signify that building

communities around Cloud technology to aid adoption is now recognised as vital to

the technologies adoption, PaaSage recognised this first.

PaaSage as an open architecture and with support for open communities has also

laid foundations for the use of automation of resource selection to fit user driven

requirements. The ability to share and use execution history within solvers is to aid

cross community use of Clouds is another significant feature delivered in the

architecture and a key differentiator / engine for change in the current Cloud

Marketplace. Future development of this solver capacity beyond the project will

drive the development of the Cloud provider agnostic resource provision.

Thus, to summarise the architecture is a foundation that the project built technology

on during the project. The release of this technology to the open source community

and plans to further develop the platform will build on this base. This deliverables

review of the changing market and state of the art confirms the relevance of the

architectural approach of PaaSage and how it can support future innovation beyond

the project.

D1.6.2 – Final Architecture Design Page 65

ANNEX 1 GLOSSARY OF TERMS

Cloud Related Concepts

Advertising-based pricing model – A pricing model whereby services are offered to customers at low or no cost,

with the service provider being compensated by advertisers whose ads are delivered to the consumer along with

the service.

Amazon EC2 – Amazon’s Elastic Compute Cloud Web service, which provides resizable computing capacity in the

cloud so developers can enjoy great scalability for building applications.

Amazon S3 – Amazon Simple Storage Services — Amazon’s cloud sto rage service.

Billing and service usage metering – You can be billed for resources as you use them. This pay-as-you-go model

means usage is metered and you pay only for what you consume.

CDN – Content delivery network — A system consisting of mu ltiple computers that contain copies of data, which

are located in different places on the network so clients can access the copy closest to them.

Cloud – A metaphor for a global network, first used in reference to the telephone network and now commonly

used to represent the Internet.

Cloud Application – a software application that is never installed on a local machine — it’s always accessed over

the Internet. The “top” layer of the Cloud Pyramid w here “applications” are run and interacted with via a web-

browser. Cloud Applications are tightly controlled, leaving little room for modification. Examples include: Gmail

or SalesForce.com.

Cloud Arcs – short for cloud architectures. Designs for softw are applications that can be accessed and used over

the Internet. (Cloud-chitecture is just too hard to pronounce.)

Cloud as a service (CaaS) - a cloud computing service that has been opened up into a platform that others can build

upon.

Cloud Bridge – running an application in such a way that its co mponents are integrated within multiple cloud

environments (which could be any combination of internal/private and external/public clouds).

Cloud Broker – An entity that creates and maintains relationships with multiple cloud service providers. It acts as

a liaison between cloud services customers and cloud service providers, selecting the best provider for each

customer and monitoring the services.

Cloudburst - what happens when your cloud has an outage or security breach and your data is unavailable. The

term cloudburst is being use in two meanings, negative and positive:

Cloudburst (negative): The failure of a cloud computing environment due to the inability to handle a spike in

demand.

Cloudburst (positive): The dynamic deployment of a software application that runs on internal organizational

compute resources to a public cloud to address a spike in demand.

Cloudcenter – A datacenter in the “cloud” utilizing standards- based virtualized components as a datacenter-like

D1.6.2 – Final Architecture Design Page 66

infrastructure; example: a large company, such as Amazon, that rents its infrastructure.

Cloud client – computing device for cloud computing. Updated version of thin client.

Cloud Computing – A computing capability that provides an abstract ion between the computing resource and its

underlying technical architecture (e.g., servers, storage, networks), enabling convenient, on-demand network access to

a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal

management effort or service provider interaction.” This definition states that clouds have five essential

characteristics: on-demand self-service, broad network access, resource pooling, rapid elasticity, and measured

service. Narrowly speaking, cloud computing is client-server computing that abstract the details of the server

away; one requests a service (resource), not a specific server (machine). Cloud computing enables Infrastructure

as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). Cloud computing means that

infrastructure, applications, and business processes can be delivered to you as a service, over the Internet (or

your own network).

Cloud Enabler – A general term that refers to organizations (typ ically vendors) who are not cloud providers per

se, but make available technology, such as cloudware, that enables cloud computing. Vendor that provides

technology or service that enables a client or other vendor to take advantage of cloud computing.

Cloud envy – used to describe a vendor who jumps on the cloud computing bandwagon by rebranding existing

services.

Cloud governance and compliance – Governance defines who’s responsible for what and the policies and

procedures that your people or groups need to follow. Cloud governance requires governing your own

infrastructure as well as infrastructure that you don’t totally control. Cloud governance has two key components:

understanding compliance and risk and business performance goals.

Cloud Hosting – A type of internet hosting where the client leas es virtualized, dynamically scalable

infrastructure on an as-needed basis. Users frequently have the choice of operating system and other

infrastructure components. Typically cloud hosting is self-service, billed hourly or monthly, and controlled via a

web interface or API.

Cloud Infrastructure – The “bottom” layer–or foundation–of the Cloud Pyr amid is the delivery of computer

infrastructure through paravirtualization. This includes servers, networks and other hardware appliances

delivered as either Infrastructure Web Services or “cloudcent ers”. Full control of the infrastructure is provided

at this level. Examples include GoGrid or Amazon Web Services.

Cloud Manageability - You need a consistent view across both on-premises and cloud-based environments. This

includes managing the assets provisioning as well as the quality of service (QOS) you’re receiving from your

service provider.

Cloud OS - also known as platform-as-a-service (PaaS). Think Google Chrome.

Cloud Operating System – A computer operating system that is specially designed to run in a provider’s datacenter and

be delivered to the user over the Internet or another network. Windows Azure is an example of a cloud operating

system or “cloud layer” that runs on Windows Server 2008. The term is also sometimes used to refer to cloud-

based client operating systems such as Google’s Chrome OS.

D1.6.2 – Final Architecture Design Page 67

Cloud-Oriented Architecture (COA) – A term coined by Jeff Barr at Amazon Web Services to describe an

architecture where applications act as services in the cloud and serve other applications in the cloud

environment. An architecture for IT infrastructure and software applications that is optimized for use in cloud

computing environments. The term is not yet in wide use, and as is the case for the term “cloud computing”

itself, there is no common or generally accepted definition or specific description of a cloud-oriented

architecture.

Cloud Platform – The “middle” layer of the Cloud Pyramid which provides a computing platform or framework (e.g.,

.NET, Ruby on Rails, or Python) as a service or stack. Control is limited to that of the platform or framework, but not at a

lower level (server infrastructure). Examples include: Google AppEngine or Microsoft Azure.

Cloud Portability – The ability to move applications (and often their associated data) across cloud computing

environments from different cloud providers, as well as across private or internal cloud and public or external

clouds.

Cloud provider – A company that provides cloud-based platform, infrastructure, application, or storage services

to other organizations and/or individuals, usually for a fee.

Cloud Providers – Computing service providers whose product/platform is based on virtualization of computing

resources and a utility-based payment model.

Cloud Pyramid – A visual representation of Cloud Computing layers where differing segments are broken out by

functionality. Simplified version includes: Infrastructure, Platform and Application layers.

Cloud Security - The same security principles that apply to on-site computing apply to cloud computing security.

Cloud Servers – Virtualized servers running Windows or Linux operating systems that are instantiated via a web

interface or API. Cloud Servers behave in the same manner as physical ones and can be controlled at an

administrator or root level, depending on the server type and Cloud Hosting provider.

Cloud Service Architecture (CSA) - A term coined by Jeff Barr, chief evangelist at Amazon Web Services. The term

describes an architecture in which applications and application components act as services on the cloud, which serve

other applications within the same cloud environment.

Cloud Sourcing – outsourcing storage or taking advantage of some other type of cloud service.

Cloud Standards - A standard is an agreed-upon approach for doing something. Cloud standards ensure

interoperability, so you can take tools, applications, virtual images, and more, and use them in another cloud

environment without having to do any rework. Portability lets you take one application or instance running on

one vendor’s implementation and deploy it on another vendor’s implementation.

Cloud Storage – A service that allows customers to save data by transferring it over the Internet or another

network to an offsite storage system maintained by a third party.

Cloud Storm – connecting multiple cloud computing environments. Also called cloud network.

Cloudstorming – The act of connecting multiple cloud computing environments.

Cloudware – A general term referring to a variety of software, typically at the infrastructure level, that enables

building, deploying, running or managing applications in a cloud computing environment.

Cloudwashing – slapping the word “cloud” on products and services you already have.

D1.6.2 – Final Architecture Design Page 68

Cluster – A group of linked computers that work together as if they were a single computer, for high availability and/or

load balancing.

Consumption-based pricing model – A pricing model whereby the service provider charges its customers based on the

amount of the service the customer consumes, rather than a time-based fee. For example, a cloud storage provider

might charge per gigabyte of information stored. See also Subscription-based pricing model.

Customer self-service – A feature that allows customers to provision, manage, and terminate services

themselves, without involving the service provider, via a Web interface or programmatic calls to service APIs.

Data in the cloud - Managing data in the cloud requires data security and privacy, including controls for moving data

from point A to point B. It also includes managing data storage and the resources for large-scale data processing.

Detection and forensics - Separating legitimate from illegitimate activity.

Disruptive technology – A term used in the business world to describe innovations that improve products or services in

unexpected ways and change both the way things are done and the market. Cloud computing is often referred to

as a disruptive technology because it has the potential to completely change the way IT services are procured,

deployed, and maintained.

Elasticity and scalability – The cloud is elastic, meaning that resource allocation can get bigger or smaller

depending on demand. Elasticity enables scalability, which means that the cloud can scale upward for peak

demand and downward for lighter demand. Scalability also means that an application can scale when adding

users and when application requirements change.

Elastic computing – The ability to dynamically provision and de-provision processing, memory, and storage resources to

meet demands of peak usage without worrying about capacity planning and engineering for peak usage.

Encryption - Coding to protect your information assets.

External cloud – Public or private cloud services that are provided by a third party outside the organization. A

cloud computing environment that is external to the boundaries of the organization.

Funnel cloud – discussion about cloud computing that goes round and round but never turns into action (never

“touches the ground”)

Google App Engine – A service that enables developers to create and run Web applications on Google’s

infrastructure and share their applications via a pay-as-you-go, consumption-based plan with no setup costs or

recurring fees.

Google Apps – Google’s SaaS offering that includes an office productivity suite, email, and document sharing, as

well as Gmail, Google Talk for instant messaging, Google Calendar and Google Docs, spreadsheets, and

presentations.

HaaS – Hardware as a service; see IaaS.

Hosted application – An Internet-based or Web-based application software program that runs on a remote

server and can be accessed via an Internet-connected PC or thin client. See also SaaS.

Hybrid cloud – A networking environment that includes multiple integrated internal and/or external providers.

Hybrid clouds combine aspects of both public and private clouds.

IBM Smart Business – IBM’s cloud solutions, which include IBM Smart Business Test Cloud, IBM Smart Analytics

D1.6.2 – Final Architecture Design Page 69

Cloud, IBM Smart Business Storage Cloud, IBM Information Archive, IBM Lotus Live, and IBM LotusLive iNotes.

Identity management - Managing personal identity information so that access to computer resources,

applications, data, and services is controlled properly.

Infrastructure as a Service (IaaS) – Cloud infrastructure services or “Infrastructure as a Service (IaaS)” delivers computer

infrastructure, typically a platform virtualization environment, as a service. Rather than purchasing servers, software,

datacenter space or network equipment, clients instead buy those resources as a fully outsourced service. The service is

typically billed on a utility computing basis and amount of resources consumed (and therefore the cost) typically

reflects the level of activity. It is an evolution of web hosting and virtual private server offerings.

Internal cloud – A type of private cloud whose services are provided by an IT department to those in its own

organization.

Mashup – A Web-based application that combines data and/or functionality from multiple sources.

Microsoft Azure – Microsoft cloud services that provide the platform as a service (see PaaS), allowing developers

to create cloud applications and services.

Middleware – Software that sits between applications and operating systems, consisting of a set of services that enable

interoperability in support of distributed architectures by passing data between applications. So, for example, the data

in one database can be accessed through another database.

On-demand service – A model by which a customer can purchase cloud services as needed; for instance, if customers

need to utilize additional servers for the duration of a project, they can do so and then drop back to the previous level

after the project is completed.

Pay as you go – A cost model for cloud services that encompasses both subscription-based and consumption-based

models, in contrast to traditional IT cost model that requires up-front capital expenditures for hardware and software.

Personal cloud – synonymous with something called MiFi, a persona l wireless router. It takes a mobile wireless

data signal and translates it to Wi-Fi. It’s pronounced ME-fi, as in “the personal cloud belongs to m e — but if

you’re nice I’ll let you connect.”

Platform as a Service (PaaS) – Platform as a service — Cloud platform services, whereby the computing platform

(operating system and associated services) is delivered as a service over the Internet by the provider. The PaaS

layer offers black-box services with which developers can build applications on top of the compute

infrastructure. This might include developer tools that are offered as a service to build services, or data access

and database services, or billing services.

Private clouds –virtualized cloud datacenters inside your company’s firewall. It may also be a private space

dedicated to your company within a cloud provider’s datacenter. An internal cloud behind the organization’s

firewall. The company’s IT department provides softwares and hardware as a service to its customers — the

people who work for the company. Vendors love the words “private cloud.”

Public cloud – Services offered over the public Internet and available to anyone who wants to purchase the service.

Roaming workloads - the backend product of cloud centers.

SaaS Software as a Service - Cloud application services, whereby applications are delivered over the Internet by

the provider, so that the applications don’t have to be purchased, installed, and run on the customer’s

D1.6.2 – Final Architecture Design Page 70

computers. SaaS providers were previously referred to as ASP (application service providers). In the SaaS layer,

the service provider hosts the software so you don’t need to install it, manage it, or buy hardware for it. All you

have to do is connect and use it. SaaS Examples include customer relationship management as a service.

Salesforce.com – An online SaaS company that is best known for delivering customer relationship management

(CRM) software to organisations over the Internet.

Self-service provisioning – Cloud customers can provision cloud services without going through a lengthy

process. You request an amount of computing, storage, software, process, or more from the service provider.

After you use these resources, they can be automatically deprovisioned.

Service migration – The act of moving from one cloud service or vendor to another.

Service provider – The company or organization that provides a public or private cloud service.

Service level agreement SLA - A contractual agreement by which a service provider defines the level of service,

responsibilities, priorities, and guarantees regarding availability, performance, and other aspects of the service.

Standardized interfaces – Cloud services should have standardized APIs, which provide instructions on how two

application or data sources can communicate with each other. A standardized interface lets the customer more

easily link cloud services together.

Subscription-based pricing model – A pricing model that lets customers pay a fee to use the service for a

particular time period, often used for SaaS services. See also Consumption-based pricing model.

Use Case - In software and systems engineering, a use case [...] is a list of steps, typically defining interactions

between a role (known in UML as an "actor") and a system, to achieve a goal. The actor can be a human or an

external system. In systems engineering, use cases are used at a higher level than within software engineering,

often representing missions or stakeholder goals. The detailed requirements may then be captured in SysML or

as contractual statements.' http://en.wikipedia.org/wiki/Usecase

Utility computing – Online computing or storage sold as a metered commercial service in a way similar to a public

utility

Vendor lock-in – Dependency on the particular cloud vendor and difficulty moving from one cloud vendor to

another due to lack of standardized protocols, APIs, data structures (schema), and service models.

Vertical cloud – A cloud computing environment that is optimized for use in a particular industry, such as health

care or financial services.

Virtual Private Cloud (VPC) – A term coined by Reuven Cohen, CEO and founder of Enomaly. The term describes a

concept that is similar to, and derived from, the familiar concept of a Virtual Private Network (VPN), but applied to

cloud computing. It is the notion of turning a public cloud into a virtual private cloud, particularly in terms of security

and the ability to create a VPC across components that are both within the cloud and external to it. e.g., the

Amazon VPC that allows Amazon EC2 to connect to legacy infrastructure on an IPsec VPN.

Virtual private data center – Resources grouped according to specific business objectives.

Windows Live Services – Microsoft’s cloud-based consumer applications, which include Windows Live Mail,

Windows Live Photo Gallery, Windows Live Calendar, Windows Live Events, Windows Live Skydrive, Windows

Live Spaces, Windows Live Messenger, Windows Live Writer, and Windows Live for Mobile.

D1.6.2 – Final Architecture Design Page 71

Note: Most terms taken from http://cloudtimes.org/glossary/

PaaSage Concepts

Adapter - The Adapter deploys the candidate to one or more platforms. If it is

predicted that the SLA will not be met and there are sufficient resources, it deploys

the next candidate. If possible within available resources, it should trigger the

Reasoner to generate new candidates within parameter constraints.

Application Controller - The application controller implements high-level

management policies that need global knowledge or involve multiple cloud

providers, such as policies involving cross-cloud migrations

Application Designer / Developer User– The Application designer / developer is a

user who engages with the IDE to deploy an application to the Cloud.

Business Application User – The business application user is the domain expert who

engages with the Cloud to fulfil business goals. Such an example is a Flight Scheduler

who uses PaaSage to better route flights.

Component Instance - The component instance is the code part (application

component/artefact/instance) that is treated as a single (black) box by the PaaSage

system.

Component Wrapper - Invocations and messages calls reach the Component Wrapper

before being relayed to the Component Instance. This way, the Executionware can get

full control over the Component Instance even when the environment does not

allow such fine-grained control.

Cloud Modelling Language (Cloud ML) – A domain specific language used to

describe Cloud topologies.

Execution Engine - The Enforcement Engine is the management entity of the

Executionware. It captures the monitoring stream from all instances and matches it

against the specification of the local scalability rules

Executionware - The Executionware manages the execution of deployment to

platforms within encoded a) local platform ruleset and b) constraints from the

Reasoner. The Executionware also monitors the execution and triggers the adapter

(and hence Reasoner) if necessary.

Integrated Development Environment (IDE) - The IDE is the user point of contact in

PaaSage presenting the main Cloud Modelling tools linked to the Profiler

components.

Metadata Database(MDDB) - The MDDB comprises the metadata model and the

implementation of the distributed physical store (which includes federation

capabilities); the Analytics layer, providing support for a variety of analytics over

historical metadata; and interfaces to the Profiler, Reasoner, Executionware, and

Social network infrastructure components. The MDDB is meant for long-term

preservation of information. It is designed to associate mutations with a wall-clock

D1.6.2 – Final Architecture Design Page 72

timestamp and to trace the identity of the sources of mutations.

Monitors - Monitors gather the relevant data directly at the component instances

and relay the data further to the Enforcement Engine (and from there to the meta-

data database).

Organisational User – Sets policies such as data protection that the business user

and application designer/developer must abide by when using PaaSage.

Cloud Application Modelling Execution Language (CAMEL) - A language used to group

domain specific languages in PaaSage into Models used to link lifecycle phases and

express requirements during Cloud Modelling, Deployment and Execution.

Profiler - The Profiler characterises the application, via analysis of source code if

available and with some input from developer/sysadmin.

-It will need a module to characterise the platforms, incl. querying platforms to

update PaaSage database and further input from developer/sysadmin.

-Also requires a module to characterise data characteristics/dependencies.

-As well as some module to characterise user preferences, permissions and

responsibilities.

Reasoner - The Reasoner provides ranked deployment candidates for >=1 platform.

This is based on:

- Application profile

-SLA parameters from this instantiation of the application supplied by the end user

-Platform characterisation

-User profile

-Data profile

Upperware - Upperware is a collection of tools and components to assist the porting

of models at design-time.

D1.6.2 – Final Architecture Design Page 73

BIBLIOGRAPHY

[1] N. Ferry and et al, “Towards model- driven provisioning, deployment,

monitoring, and adaptation of multi-cloud systems.,” in CLOUD 2013: IEEE 6th

International Conference on Cloud Computing, 2013.

[2] N. Ferry, F. Chauvel, A. Rossini, B. Morin and A. Solberg, “Managing multi-cloud

systems with CloudMF,” in 2nd Symposium on Cloud Computing and
Internet Technologies, Oslo, 2013.

[3] W. W. Rocye, “Managing the development of large sof tware systems,” in IEEE

WESCON, 1970.

[4] MODAClouds, “Project homepage,” [Online]. Available : http://modaclouds.eu.

[Accessed August 2016].

[5] A. e. A. Ferrer, “OPTIMIS: A holistic approach to c loud service provisioning,”

Future Generation Computer Systems, pp. 66-77, 2012.

[6] “Cloud4SOA project homepage,” [Online]. Available: www.cloud4soa.eu.

[Accessed 01 09 2016].

[7] “Contrail Homepage,” [Online]. Available: contrail- project.eu. [Accessed 1 09

2016].

[8] “cloudTM project homepage,” [Online]. Available: ww w.cloudtm.eu. [Accessed

01 09 2016].

[9] “Artist Project Homepage,” [Online]. Available: www .artist-project.eu.

[Accessed 13 09 2016].

[10] “Mosaic Cloud Project homepage,” [Online]. Availabl e: www.mosaic-cloud.eu.

[Accessed 01 09 2016].

[11] Microsoft, “Windows Azure,” [Online]. Available:

http://www.windowsazure.com. [Accessed August 2016].

[12] Microsoft, “Windows Azure Service Level Agreements, ” [Online]. Available:

http://www.windowsazure.com/en-us/support/legal/sla/. [Accessed August

2016].

[13] Google, “Google App Engine,” [Online]. Available:

https://developers.google.com/appengine/. [Accessed August 2016].

[14] Google, “Google App Engine SLA,” [Online]. Availabl e:

https://developers.google.com/appengine/sla. [Accessed August 2016].

D1.6.2 – Final Architecture Design Page 74

[15] CloudBees., “CloudBees Api. Developer Resources.,” [Online]. Available:

http://wiki.cloudbees.com/bin/view/RUN/API. [Accessed August 2013].

[16] GoPivotal, “Cloud Foundry Website,” [Online]. Available:

http://cloudfoundry.com. [Accessed August 2016].

[17] Heroku, “Heroku Dev Centre Platform API,” [Online]. Available:

https://devcentre.heroku.com/categories/platform-api. [Accessed August

2016].

[18] Jelastic, “Welcome to the Jelastic Documentation,” [Online]. Available:

http://jelastic.com/docs. [Accessed August 2016].

[19] “Mosaic Project Homepage,” [Online]. Available: htt p://www.mosaic-

cloud.eu/. [Accessed 01 09 2016].

[20] Armstrong D and K. Djemame, “Armst Perfor mance issues in clouds: an

evaluation of virtual image propagation and I/O paravirtualization,” The

Computer Journal, vol. 54 , no. 6, pp. 836-849., 2011.

[21] E. Council, “DIRECTIVE 95/46/EC OF THE EUROPEAN PAR LIAMENT AND OF THE

COUNCIL,” 24-05-95. [Online]. Available: http://eur-

lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:EN:HTML

. [Accessed 11 09 2016].

[22] “ElasticHosts,” [Online]. Available: www.elastichos ts.com. [Accessed 13 09

2016].

[23] D. Luenberger and Y. Yinyu, Linear and Nonlinear Programming, Springer 2008.

[24] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms,

Springer 2008.

[25] F. Graybill, Theory and application of the linear model, Duxbury Press , 1976.

[26] W. J. Conver, Practical nonparametric statistics, John Wiley and Sons, 1999.

[27] T. W. Anderson, An introduction to multivariate statistical analysis, Wiley-

Interscience, 2003.

[28] L. Ljung, System identification: theory for the user, Prentics-Hall, 1998.

[29] R. E. Bellman, “A {Markovian} decision process,” J, Math. Mech, vol. 6, no. 5,

1957.

[30] R. Sutton and A. Barto, Reinforcement Learning, MIT Press, 1998.

[31] K. S. Narendra and M. A. Thathachar, Learning Automata, Prentice Hall 1989.

[32] M. A. Thathachar and P. S. Sastry, Networks of Learning Automata: Techniques

D1.6.2 – Final Architecture Design Page 75

for Online Stochastic Optimization, Kluwer Academic, 2004.

[33] G. Horn, “A vision for stochastic reasoner for auto nomic cloud deployment,” in
Proc Second Nordic Symposium on Cloud Computing and Internet Technologies,

NY, NY, 2013.

[34] D. Wolpert and W. Macready, “No free lunch theorems for optimization,” IEEE

Trans on Evol Comput, vol. 1, no. 1, 1997.

[35] E. K. Burke and G. Kendall, Search Methodologies - Introductory Tutorials in

Optimization and Decision Support Techniques, Springer , 2005.

[36] H. H. Hoos and T. Stutzle, Stochastic local search foundations and applications,

San Francisco: Morgan Kaufmann, 2005.

[37] K. Geihs, P. Barone, F. Eliassen and e. al, “A comp rehensive solution for

application-level adaptation,” oftw. Pr. Exp., vol. 39, no. 4, pp. 385–422, 2009..

[38] J. Floch and et al, “Using architecture models for runtime adaptability,” IEEE

Softw., vol. 23, no. 2, pp. 62–70, 2006..

[39] F. Fleurey and A. Solberg, “A Domain Specific Model ing Language Supporting

Specification, Simulation and Execution of Dynamic Adaptive Systems,” in
Model Driven Engineering Languages and Systems: Proceedings of the 12

International conference (MODELS 2009), .

[40] C. Pappis and C. Siettos, “Fuzzy Reasoning’, in Sea rch Methodologies,” no.

Sprniger 2005.

[41] INRIA, “SimGrid,” [Online]. Available: http://simgr id.gforge.inria.fr/. [Accessed

11 09 2016].

[42] “Engage Project Homepage,” [Online]. Available: htt p://www.engagedata.eu/.

[Accessed 01 09 2016].

[43] OPTIMIS, “OPTIMIS Homepage,” [Online]. Available: h ttp://www.optimis-

project.eu/. [Accessed August 2016].

[44] Amazon Pop-up lofts [Online] [Accessed August 2016]
https://aws.amazon.com/start-ups/loft/

[45] IBM BlueMix [Online] [Accessed August 2016] http://www.ibm.com/cloud-
computing/bluemix/

[46] Amaxon Web Services [Online] [Accessed August 2016]
https://aws.amazon.com/

[47] CloudTM [Online] [Accessed August 2016] http://www.cloudtm.eu/

[48] CERIF Standard [Online] [Accessed August 2016)

http://eurocris.org/Index.php?page=CERIFreleases&t=1

D1.6.2 – Final Architecture Design Page 76

[49] OPENTSDB project homepage [Online] [Accessed August 2016]

http://opentsdb.net/

[50] SIENA project homepage [Online] [Accessed August 2016]

http://www.inf.usi.ch/carzaniga/siena

[51] HBASE project homepage [Online] [Accessed August 2016]

http://hbase.apache.org

[52] Hadoop project homepage [Online] [Accessed August 2016]

http://hadoop.apache.org

[53] Zeginis, C., Konsolaki, K., Kritikos, K., & Plexousakis, D. (2012, November).
Towards proactive cross-layer service adaptation. In International Conference on Web
Information Systems Engineering (pp. 704-711). Springer Berlin Heidelberg.

[54] Cloud Expert Group EU [Online] [Accessed August 2016]

http://ec.europa.eu/justice/contract/cloud-computing/expert-group/index_en.htm

