
D5.1.2—Product.Executionware. . Page.1.of.62.

....................... .

!
!
!
!
!
!

PaaSage!
.
.

Model!Based!Cloud!Platform!Upperware!
.
.
.
.

Deliverables!D5.1.2!
.

Product!Executionware.
.
.
.

Version:.1.0.

D5.1.2—Product.Executionware. . Page.2.of.62.

D5.1.2!
Name,!title!and!organisation!of!the!scientific!representative!of!the!project's!coordinator:!!
Mr!Philippe!Rohou!!!Tel:!+33!(0)4!97!15!53!06!!Fax:!+33!(0)4!92!387822!!!EUmail:!philippe.rohou@ercim.eu!
Project!website!address:.http://www.paasage.eu.
!
Project

Grant Agreement number 317715

Project acronym: PaaSage

Project title: Model Based Cloud Platform Upperware

Funding Scheme: Integrated Project

Date of latest version of Annex I against which the
assessment will be made:

03th July 2014

Document

Period covered:

Deliverable number: D5.1.2

Deliverable title Product Executionware/

Contractual Date of Delivery: 30th September 2015 (M36)

Actual Date of Delivery: 30st September 2015

Editor (s): Jörg Domaschka (UULM)

Author (s): Dennis Hoppe (USTUTT), Kyriakos Kritikos (FORTH),
Craig Sheridan (FLEX), Edwin Yaqub (GWDG), Jörg
Domaschka (UULM), Daniel Baur (UULM), Frank
Griesinger (UULM), Daniel Seybold (UULM), Bartosz
Balis (AGH), Dariusz Król (AGH), Maciej Malawski
(AGH), Ahmed Zarioh (be.wan)

Reviewer (s): Kamil Figiela (AGH), Kyriakos Kritikos (FORTH)

Participant(s): Same as authors

Work package no.: 5

Work package title: Executionware

Work package leader: Jörg Domaschka (UULM)

Distribution: PU

Version/Revision: 1.0

Draft/Final: Final

Total number of pages (including cover): 62

D5.1.2—Product.Executionware. . Page.3.of.62.

DISCLAIMER!
.

This.document.contains.description.of.the.PaaSage.project.work.and.findings..

The.authors.of.this.document.have.taken.any.available.measure.in.order.for.its.content.to.be.accurate,.consistent.and.
lawful.. However,. neither. the. project. consortium. as. a. whole. nor. the. individual. partners. that. implicitly. or. explicitly.
participated.in.the.creation.and.publication.of.this.document.hold.any.responsibility.for.actions.that.might.occur.as.a.
result.of.using.its.content..

This.publication.has.been.produced.with.the.assistance.of.the.European.Union..The.content.of.this.publication. is.the.
sole.responsibility.of.the.PaaSage.consortium.and.can.in.no.way.be.taken.to.reflect.the.views.of.the.European.Union..

.

The.European.Union. is.established. in.accordance.with. the.
Treaty.on.European.Union.(Maastricht)..There.are.currently.
28.Member.States.of.the.Union..It.is.based.on.the.European.
Communities. and. the. member. states. cooperation. in. the.
fields. of. Common. Foreign. and. Security. Policy. and. Justice.
and. Home. Affairs.. The. five. main. institutions. of. the.
European.Union.are. the.European.Parliament,. the.Council.
of.Ministers,.the.European.Commission,.the.Court.of.Justice.
and.the.Court.of.Auditors..(http://europa.eu).

!
!

PaaSage!is!a!project!funded!in!part!by!the!European!Union.!

D5.1.2—Product Executionware Page 4 of 62

Executive Summary
The Executionware constitutes a fundamental part of the entire PaaSage sys-
tem and its architecture. The primary purposes of the Executionware are (i) to
enact interacting with the cloud providers through their respective and largely
inhomogeneous APIs, in order to support the creation, configuration as well as
tear down of virtual machines and virtual networks; (ii) to enact the deployment
of application components such as load balancers, databases, and application
servers across the created virtual machines; (iii) to support the monitoring of
both virtual machines and application component instances by provisioning of
appropriate sensors/probes and by supporting a reporting interface for applica-
tions; (iv) to support the aggregation of raw metrics coming from the probes
to higher-level composite metrics, and the evaluation of any of these metrics
according to conditions and thresholds; (v) to report back metric values to the
Upperware and to store them in the Metadata-Database (MDDB).

Throughout the PaaSage project, the Executionware has been designed and
developed in order to fulfill these tasks. Following the concept of divide et im-
pera this has led to a set of components that all support a sub set of the requested
features, but whose interplay emerges to the desired functionality. Most compo-
nents are collected in the CLOUDIATOR suite: COLOSSEUM runs in the domain
of the PaaSage operator and represents the central access point for any clients
through a REST API as well as a Web UI. SWORD is a library that provides
an abstraction layer for the various cloud providers. In particular, it encapsu-
lates the differences between them with respect to terminology and technology.
LANCE runs in the cloud domain. In particular, COLOSSEUM will deploy one
instance of LANCE on each virtual machine it creates. LANCE is responsible for
executing the life-cycle of the component instances to be installed on the virtual
machine. Just as LANCE, VISOR runs in the cloud domain and is responsible
for collecting monitoring data from virtual machines and component instances.
In particular, COLOSSEUM will install an instance of VISOR in any virtual ma-
chine it creates. Whenever COLOSSEUM is requested to monitor certain aspects
of an application and/or virtual machine, it will connect to the VISOR instance
running on that virtual machine and request the installation of a sensor together
with an interval.

AXE is a two-purpose component that runs partially in the home and par-
tially in the cloud domain. Its first task is to post-process the monitoring data
collected by the visor component. In particular, AXE is capable of executing
aggregation functions on the monitored data such as computing amongst other
statistical functions like averages, medians, and quantiles. It may relay selected
metrics to third party components including the Upperware.

D5.1.2—Product Executionware Page 5 of 62

The MetricsCollector component constitutes another multi-purpose
component. The respective software runs as a daemon that can be operated
either in local or global mode. In local mode, it operates in specific virtual
machines and replaces parts of the functionality of CLOUDIATOR’s AXE; hence,
MetricsCollector instances running in local mode are optional and depen-
dent on the configuration of the Executionware. In contrast, in global mode, the
MetricsCollector component provides a publish/subscribe mechanism to
interested components of the Upperware and enables registering for metric data
as well as violations of metric conditions, i.e., events in the meta-data database
(CDO server [3]).

D5.1.2—Product Executionware Page 6 of 62

Intended Audience
This deliverable is a public document intended for readers with some experience
with cloud computing and cloud middleware. It presumes that the reader is fa-
miliar with the overall PaaSage architecture as described in deliverable D1.6.1 [2].

For the external reader, this deliverable provides an insight into the Execu-
tionware sub-system of PaaSage, its architecture and its various entities.

For the research and industrial partners in PaaSage, this deliverable provides
an understanding of the basic design and architecture of the Executionware, its
capabilities, but also its limitations.

D5.1.2—Product Executionware Page 7 of 62

Contents

1 Introduction and Overview 13
1.1 The Executionware in PaaSage 13
1.2 The Executionware Architecture 15

1.2.1 CLOUDIATOR and its Tools 16
1.2.2 The MetricsCollector Component 17
1.2.3 Third Party Components 19

1.3 List of Changes from Initial Prototype 19
1.4 Structure of This Document . 20

2 CLOUDIATOR 21
2.1 COLOSSEUM . 21

2.1.1 Registries . 22
2.1.2 Usage and APIs . 22
2.1.3 Further Features . 26

2.2 SWORD . 27
2.3 LANCE . 27

3 Monitoring and Auto-scaling 29
3.1 VISOR . 30

3.1.1 Available Sensors and Probes 31
3.1.2 Application-specific Probes 33
3.1.3 Application specific probes for Scalarm and HyperFlow

engines . 35
3.1.4 Client libraries for Visor 36

3.2 TSDB Selection . 36
3.2.1 Requirements . 36
3.2.2 KairosDB . 37
3.2.3 OpenTSDB . 38
3.2.4 InfluxDB . 39

D5.1.2—Product Executionware Page 8 of 62

3.2.5 Selection of TSDB . 40
3.2.6 Time-series Database Installation 41

3.3 AXE . 42
3.3.1 Aggregation . 42
3.3.2 Scalability Rules Language 43
3.3.3 Auto-Scaling . 44

3.4 MetricsCollector . 44
3.4.1 MetricsCollector Modes of Operation 45
3.4.2 Main Assumptions . 46
3.4.3 Architecture . 46
3.4.4 Modes of Interaction 51
3.4.5 Integration with AXE 51

4 Further Aspects 53
4.1 Testbeds . 53

4.1.1 GWDG’s OpenStack Testbed 53
4.1.2 Flexiant Testbed (FLEX) 54

4.2 Deployment Controller . 57

5 Conclusion and Future Work 59

Bibliography 61

D5.1.2—Product Executionware Page 9 of 62

Terminology
Throughout this document we use a set of terms with an overloaded meaning.
Therefore, this section aims at defining these terms for this document in a brief
and concise manner. Throughout this deliverable, all of the terms defined here
are exclusively used according to our definition and not in any other way.

Cloud Terminology

Cloud platform A cloud platform refers to a software stack and accordingly to
the API offered by that stack. As the platform is something completely passive
and not a concrete offer (cf. cloud) it does, however, not define contact endpoints
(e.g. URIs). The OpenStack software suite and Flexiant Cloud Orchestrator
(FCO) are examples of cloud platforms.

Cloud provider A cloud provider is an organizational entitiy or some other
kind of actor that runs a cloud platform under a dedicated endpoint/URL (e.g.
RedStack). This means, it defines the access points (i.e. URIs) to access the
services offered. In addition to that, legal aspects are tied to the cloud provider.
Amazon EC2 is an example of a cloud provider. Within the PaaSage consortium
examples include GWDG running an OpenStack cloud platform and Flexiant
running a FCO cloud platform.

Cloud A cloud refers to a cloud platform offered by a cloud provider as seen
by a tenant. That is, besides the endpoint of the provider, a cloud (in contrast to
the Cloud) is also linked to log-in credentials such as username and password.

Application Terminology

(Cloud) application A (cloud) application is a possibly distributed application
consisting of one or multiple interlinked application components. As such, an
application is solely a description and does not represent anything enacted.

(Application) component An (application) component for short is the small-
est divisible element of an application. It is the unit of scale and the unit of
failure. For illustration consider a blog application that may consist of the
three components load balancer, application server together with a servlet, and a
database. A component is composed of multiple software artefacts.

D5.1.2—Product Executionware Page 10 of 62

(Software) artefact A software artefact is any entity that is required for the
execution of a component. This may be a binary, a shared library, an operating
system package installed through the package manager, a software container, a
jar file or anything the like.

Lifecycle handler The lifecycle handlers of a component are software pro-
grammes or scripts that define the basic life cycle actions of a component such
as install, configure, and run the application component, but also health check-
ing.

Application instance The deployment of an application results in an applica-
tion instance. An application instance for application A is linked to at least one
component instance for each component that belongs to A.

Component instance A component instance is an enacted component. Com-
ponent instances are created through the lifecycle handlers associated with the
respective component. Each component instance is run on a particular virtual
machine VMk and multiple component instances can be mapped to the same
virtual machine.

Channel Components may be connected with each other using directed chan-
nels. Connecting two components with a channel imposes that at least one
component instance from the source component will interact with at least one
instance from the target component in the context of the same application in-
stance. The concrete wiring between the source and target instances is subject to
both the deployment and the scaling.

D5.1.2—Product Executionware Page 11 of 62

1

Introduction and Overview

The Executionware constitutes a fundamental part of the entire PaaSage sys-
tem and its architecture. The primary purposes of the Executionware are (i) to
enact interacting with the cloud providers through their respective and largely
inhomogeneous APIs, in order to support the creation, configuration as well as
tear down of virtual machines and virtual networks; (ii) to enact the deployment
of application components such as load balancers, databases, and application
servers across the created virtual machines; (iii) to support the monitoring of
both virtual machines and application component instances by provisioning of
appropriate sensors/probes and by supporting a reporting interface for applica-
tions; (iv) to support the aggregation of raw metrics coming from the probes
to higher-level composite metrics, and the evaluation of any of these metrics
according to conditions and thresholds; (v) to report back metric values to the
Upperware and to store them in the Metadata-Database (MDDB).

This document presents an overview and documentation for the product re-
lease version of the PaaSage Executionware implementation. This chapter pro-
vides an overview on the Executionware and particularly presents its purposes
and tasks within PaaSage (cf. Section 1.1), its overall mechanisms and architec-
ture (cf. Section 1.2), while also introducing the software components. After-
wards, this chapter presents the changes that have been made compared to the
initial prototype [6] (cf. Section 1.3). Finally, we present the structure of the
remainder of this document in Section 1.4.

1.1 The Executionware in PaaSage
The Executionware constitutes a fundamental part of the entire PaaSage sys-
tem and its architecture. The PaaSage architecture as described in deliverable
D1.6.1 [2] defines the role of the Executionware in the PaaSage application life-
cycle. Together with the user requirements as defined in deliverable D6.1.1 [7]
these define the overall functionality provided by the Executionware.

13

Provisioning) and)
deployment
modelling

Quality)of)
service)

modelling

Provisioning) and)
deployment)
requirements

Service8level)
objectives Scalability)rules

Organisation)
modelling

Provider)
modelling

Organisation)models Provider) models

CAMEL
Cloud) provider8

independent) model Profiler Constraint) problem Reasoner

CAMEL
Cloud) provider8
specific)model

Adapter

Deployment)plansExecutionwareInfrastructures)
/)Platforms

Historical) data

Modelling
phase

Deployment
phase

Execution
phase

Figure 1.1: Main PaaSage components and life-cycle direction including data
and model flow as deliverable D1.6.1 [2].

Summarising, the focus of the Executionware is three-fold: First, it is respon-
sible for bringing applications to execution that have been modelled in CAMEL
and whose deployment has been configured by PaaSage’s Upperware compo-
nent. Second, the Executionware is responsible for monitoring the execution of
each individual component instance which leads to the monitoring of the overall
application instance using defined aggregation methods. Third, the PaaSage ar-
chitecture enables the Executionware to autonomously change the deployment of
an application within certain boundaries and according to the application model.
These changes comprise e.g., adding new or removing existing component in-
stances and virtual machines.

The initial PaaSage architecture has been specified in deliverable D1.6.1 to-
gether with a sketch of the Executionware architecture. The latter has then be
refined in deliverable D5.1.1 [6] that also presented the initial prototype of the
Executionware.

Figure 1.1 sketches the data flow and model flow between the individual
PaaSage components at configuration, deployment, and execution phase. It
points out that the application model is created in CAMEL [3]. Then, the de-
ployment workflow ripples through the Upperware [4] and finally reaches the
Executioware through the adapter. The adapter orchestrates the creation of vir-
tual machines and the deployment of component instances over these virtual
machines which is then executed by the Executionware.

Figure 1.1 also shows that selected data flows back to the Upperware. This is
achieved using the monitoring and aggregation infrastructure of the Execution-
ware. In addition, selected data is also stored in the metadata database. Again, it
is the Upperware’s adapter that defines the monitoring and aggregation to be used
by the Executionware. In addition to that, the adapter configures the low-level

D5.1.2—Product Executionware Page 14 of 62

domain of PaaSage operator

metadata database

executionware

colosseum
(API and
business
logic)

upperware

sword
deploy-
ment library

domain of cloud operator (e.g. Flexiant)

Provider
API

virtual machine

component
instance

Lance

sensors

CDO server

global
Metrics
Collector Axe

Axe

Visor

TSDB
TSDB

other
virtual machineTSDB

driverdriverdriverdriver

model/logic flow
(monitoring) data flow

Figure 1.2: Architecture of the Executionware together with input to and output
from other PaaSage components.

adaptation mechanisms (e.g. component scaling) and boundaries the Execution-
ware is allowed to apply on an application instance.

1.2 The Executionware Architecture
Summarising Section 1.1 the Executionware needs to fulfil the following six
tasks within PaaSage: (i) management (e.g., creation) of virtual machines on
different cloud providers; (ii) instantiation of components on those virtual ma-
chines and linking those component instances that belong to the same application
instance on network level; (iii) collect monitoring data (iv) aggregate monitoring
data, (v) evaluate monitoring data and apply adaptation rules, as well as (vi) relay
monitoring data and information about scaling events to the Upperware.

Figure 1.2 shows the architecture derived for the Executionware. Much of
the functionality (i)–(vi) is captured by components of the CLOUDIATOR tool
set and some third party components. The MetricsCollector component
is also able to realise the functionality ((iii)–(iv)), thus being an alternative to the
respective CLOUDIATOR components, as well as complement the CLOUDIATOR
tool with the capability to relay monitoring and event information to the Upper-
ware module and the metadata database. In the following, we briefly introduce
both the CLOUDIATOR tool in Section 1.2.1) as well as the MetricsCol-
lector component in Section 1.2.2. Third-party tools are briefly described in
Section 1.2.3.

D5.1.2—Product Executionware Page 15 of 62

1.2.1 CLOUDIATOR and its Tools
CLOUDIATOR1 is a cross-cloud, multi-tenant tool that has been developed with
the PaaSage project. In addition to cross-cloud deployment, it supports the
model@runtime paradigm [16] and also comes with redeployment capabili-
ties to support automatic as well as manual adaptations. Regarding auto-scaling
support, CLOUDIATOR goes beyond basic threshold-based approaches and sup-
ports the full capabilities provided by the scalability rules language contained in
PaaSage’s CAMEL.

As presented in Figure 1.2, the functionality of CLOUDIATOR is split across
a so-called home domain and possible multiple cloud domains. The components
of the home domain form the static part of the infrastructure that is hosted by the
PaaSage operator and is not necessarily executed in a cloud environment. The
second group of CLOUDIATOR entities is brought out in the field together with
application component instances. Their main purpose is the provisioning of a
run-time environment for these component instances and to collect and store
monitoring data. The following paragraphs briefly summarise the respective
components and explain their features. Also, they reference the sections where
the individual components are discussed in more detail. Apart from the com-
ponents shown in Figure 1.2, the Executionware (in particular COLOSSEUM)
comes with an extension that allows the user to trigger a full PaaSage workflow
for a CAMEL model. This feature is sketched in Section 4.2.

Colosseum The COLOSSEUM component runs in the home domain and repre-
sents the central access point for any clients through a REST as well as a Web
UI-based interface (cf. Section 2.1.2). Clients may either be human operators
or third party tools including the components of the Upperware. COLOSSEUM
contains a set of registries that store information about cloud providers, created
virtual machines, components, and component instances. Colosseum and its API
is presented in detail in Section 2.1.

Sword SWORD is a library that provides an abstraction layer for the various
cloud providers. In particular, it encapsulates the differences between them with
respect to terminology and technology such as the provisioning of floating IPs,
passwords, and access to virtual machines. Sword is introduced in more detail
in Section 2.2.

Lance LANCE runs in the cloud domain. In particular, Colosseum will deploy
one instance of Lance on each virtual machine it creates. Lance is responsible

1https://github.com/cloudiator/

D5.1.2—Product Executionware Page 16 of 62

https://github.com/cloudiator/

for executing the life-cycle of the component instances to be installed on the
virtual machine. Hence, Lance executes the scripts to download, install, config-
ure, and start instances, as well as those for stoping the component and those for
updating the configuration when the set-up of the application instance changes,
for instance, because a new downstream component has been added. Lance is
depicted in detail in Section 2.3.

Visor VISOR runs in the cloud domain and is responsible for collecting moni-
toring data from virtual machines and component instances. In particular, Colos-
seum will install an instance of Visor in any virtual machine it creates. Whenever
Colosseum is requested to monitor certain aspects of an application and/or vir-
tual machine, it will connect to the Visor of that virtual machine and request the
installation of a sensor at Visor together with a time interval. Visor will then
invoke the sensor at the requested interval and send the data to the configured
time-series database (TSDB) (cf. Section 1.2.3). In addition to that, component
instances can connect to Visor and report application-specific metrics. Visor, its
default set of sensors, as well as its API are discussed in Section 3.1.

Axe AXE is a two-purpose component that runs partially in the home and par-
tially in the cloud domain. Its first task is to post-process the data collected by the
visor component. In particular, Axe is capable of executing aggregation func-
tions on the monitored data such as computing amongst other averages, medians,
and quantiles. It reports selected metrics to the Upperware via the Metrics-
Collector (cf. Section 1.2.2). In addition to that, Axe is concerned with
evaluating conditions on the measured and aggregated data. It will then report
violations of these conditions to the Upperware via the MetricsCollector
or even trigger changes in the application instance, e.g., by adding new virtual
machines and component instances (scale out). Section 3.3 presents AXE in
detail.

1.2.2 The MetricsCollector Component
The MetricsCollector component is a multi-purpose component. The re-
spective software runs as a daemon that can be operated either in local or global
mode. In local mode it replaces parts of the functionality of CLOUDIATOR’s
AXE; hence, MetricsCollector instances running in local mode are op-
tional and dependent on the configuration of the Executionware. In contrast, in
global mode, the MetricsCollector component provides a link to the Up-
perware components and enables registering metric data as well as violations of
metric conditions, i.e., events in the meta-data database (CDO server [3]). The

D5.1.2—Product Executionware Page 17 of 62

domain of PaaSage operator

metadata database

executionware

colosseum
(API and
business
logic)

upperware

sword
deploy-
ment library

domain of cloud operator (e.g. Flexiant)

Provider
API

virtual machine

component
instance

Lance

sensors

CDO server

global
Metrics
Collector

Visor

TSDB
TSDB

other
virtual machine

driverdriverdriverdriver

local
Metrics
Collector

model/logic flow
(monitoring) data flow

Figure 1.3: Architecture of the Executionware with MetricsCollector op-
erating in global and local mode.

MetricsCollector is subject to Section 3.4. Figure 1.3 sketches the alter-
native architecture with MetricsCollector running in both local and global
mode.

Local mode When MetricsCollector local mode is enabled in the Ex-
ecutionware, Colosseum will install and start one MetricsCollector in-
stance at each virtual machine it creates. Just as AXE, it will read data from
the TSDB (cf. Section 1.2.3) and perform aggregations on the measured data.
In contrast to AXE, however, it will directly write the results to the meta-data
database. As such, each MetricsCollector instance will connect to the
CDO server of the system to report the aggregated metric values.

Global mode The usage of a MetricsCollector in global mode is two-
fold. When AXE is used, AXE uses the MetricsCollector instance to
report the configured metrics (as well as respective events) to the Upperware
and the meta-data database. If local MetricsCollectors are used instead,
the global MetricsCollector will listen to new measurements added to the
CDO server by the local MetricsCollector instances. It will then apply the
necessary aggregation functions and write the results back to the CDO server,
but also relay them to the Upperware through a pub/sub mechanism based on
ZeroMQ2.

2http://zeromq.org/

D5.1.2—Product Executionware Page 18 of 62

http://zeromq.org/

1.2.3 Third Party Components
Beside the components described above that have been developed in the scope
of the project, the Executionware relies on two components that are provided by
third parties: the TSDB as well as the registry service.

TSDB The time-series database is used by VISOR to buffer measured data and
by AXE and MetricsCollector (in local mode) respectively to retrieve data
necessary for their aggregations. AXE also uses the TSDB for buffering interme-
diate results. Currently, the Executionware supports KairosDB 3 as TSDB, but
other implementations have been considered. The selection process is detailed
in Section 3.2.

Registry service For being able to track the status of the installed and started
component instances and their wiring, LANCE relies on a registry service where
it puts status information and network configurations. Currently, LANCE sup-
ports two implementations for this service: a Colosseum-internal one with vola-
tile state and a persistent one based on the external directory server etcd4. The
registry’s usage is detailed with the description of Colosseum (cf. Section 2.1)
and LANCE (cf. Section 2.3) respectively.

1.3 List of Changes from Initial Prototype
Compared to the initial prototype presented in M18 in D5.1.1 [6], several things
have changed. The most noticeable is the fact that the Executionware has aban-
doned the use of Cloudify v2.7 and replaced the deployment engine with a cus-
tom implementation, CLOUDIATOR, that has been released as an open source
software library5. The reason for that move was two-fold: First, with the release
of the M18 prototype, GigaSpaces—the maintainer of Cloudify—released ver-
sion 3 of Cloudify and discontinued support for version 2.7 that the prototype
had been using. Second, the new release contained concepts that were incom-
patible with the PaaSage architecture. Also multiple required features such as
the user interface were only available in the commercial version. We decided
to implement CLOUDIATOR from scratch in order to overcome limitations that
existing tools have and to avoid their vendor lock-in as well as the instabilities
of many open source tools such as Apache Stratos6 and Apache Brooklyn7.

3https://github.com/kairosdb/kairosdb
4https://github.com/coreos/etcd
5https://github.com/cloudiator
6http://stratos.apache.org/
7https://brooklyn.incubator.apache.org/

D5.1.2—Product Executionware Page 19 of 62

https://github.com/kairosdb/kairosdb
https://github.com/coreos/etcd
https://github.com/cloudiator
http://stratos.apache.org/
https://brooklyn.incubator.apache.org/

In addition to that, the feature completion has advanced beyond what was
presented in M18. While almost all desired features have been integrated and
implemented, some of them such as the Windows support are in a very early
stage and will have to be finalised and hardened in the upcoming Year 4 of the
project.

1.4 Structure of This Document
The structure of this document has been widely introduced while describing the
individual components. Hence, the following Chapter 2 introduces Colosseum,
SWORD, LANCE, whereas Chapter 3 presents monitoring-related aspects such
as VISOR, the TSDB selection, AXE, as well as the MetricsCollector in
detail. The remaining parts of the document address further aspects of the Exe-
cutionware in Chapter 4 such as the operation of testbeds and the provisioning of
an access point for users such as the social network [5]. Finally, Chapter 5 con-
cludes the document with an overview of the components, and their download
location.

D5.1.2—Product Executionware Page 20 of 62

2

CLOUDIATOR

Overall, CLOUDIATOR is a multi-tenant-capable Web-based software service.
Its features can be separated into registries, deployment functionality, automatic
adaptation, and the specification of monitoring requirements. This chapter gives
a more extended description on three of the CLOUDIATOR tools that have already
been introduced in Section 1.2.1: COLOSSEUM as the entry point to the system;
SWORD providing the resource allocation functionality; and LANCE for the life-
cycle handling of component instances. The overall CLOUDIATOR component
layout is also summarised in Figure 2.1.

Colosseum
registries

sword
deployment engine

Time-series database
(TSDB)

Axe
cross-cloud aggregators
cloud aggregators

domain of
paasage operator

Axe
SRL-
engine

Axe
monitoring and adapt
adation orchestration

dataflow
API call

Figure 2.1: Detailed CLOUDIATOR components running in the domain of the
PaaSage operator.

2.1 COLOSSEUM

COLOSSEUM is the central access point to interact with CLOUDIATOR and hence,
the Executionware. In consequence, it offers APIs that clients as well as higher-
level components such as the Upperware can use. Moreover, COLOSSEUM con-
tains several registries that contain intermediate data necessary to control and
surveil actual deployments. The following sections first introduce the various

21

registries (cf. Section 2.1.1) and then present the REST-based as well as the
browser-based API in Section 2.1.2.

2.1.1 Registries
The data stored in the registries lay the ground for the management, access to,
and comparison of cloud providers. They are essential for the deployment (cf.
Section 2.2) and monitoring features (cf. Chapter 3). So far, CLOUDIATOR and
with it COLOSSEUM contains four different registries: (i) The cloud registry
stores offerings of cloud providers. This includes the type of cloud platform of-
fered, the data centres and availability zones offered by that provider, the virtual
machine types (flavours) and operating system images available at each of these
system levels. Additional geographical location information can be attached
to each data centre. (ii) The specification registry stores abstract properties of
cloud providers. This includes generic virtual machine specifications consisting
of number of cores and amount of RAM. This registry, also supports an operating
systems hierarchy that for instance states that Ubuntu 14.04 belongs to the
Ubuntu family which in turn belongs to the class of Linux operating systems.
The entries of the specification registry are linked to these of the cloud registries
where applicable. (iii) The credential registry holds cloud access credentials for
each user of CLOUDIATOR needed for SWORD to access the cloud providers.
The kind of credentials stored vastly depend on the underlying cloud platform.
(iv) The component registry contains components and their description (e.g. life-
cycle management information) which can be assembled to applications. These
applications can then be instantiated (cf. Section 2.3). Each of the registries is
multi-tenant capable, meaning that any entry is bound to a CLOUDIATOR tenant.

2.1.2 Usage and APIs
CLOUDIATOR can be used in two ways by the end users. First, abstract require-
ments regarding the virtual machines can be specified in a cloud-independent
way relying on CLOUDIATOR’s simple reasoning functionality.

The second approach is to specify in a fine-grained way which concrete vir-
tual machine flavours shall be used on what cloud and with what image. In this
case, it is necessary to combine CLOUDIATOR with a more powerful reason-
ing mechanism and a modelling approach. Obviously, this is the approach the
platform is used within a PaaSage setting. Here, the modelling is done through a
CAMEL model followed by a multi-step reasoning process that eventually yields
a deployment plan including monitoring, aggregation and scalability rules.

The following sections briefly introduce the REST-ful API offered by COLOS-
SEUM as well as the Web-based user interface.

D5.1.2—Product Executionware Page 22 of 62

GET /api/hardwareOffer/2
{
"numberOfCores":4,
"mbOfRam":4096,
"localDiskSpace":20000

}

(a) Sample REST response of a call to retrieve details about a cloud-
operator independent hardware description
GET /api/hardware/2
{

"cloud":1,
"hardwareOffer":2,
"remoteId":"939c4993-8562-42af-a80c-d8829863d433",
"locations": [1, 2],
"cloudCredentials": [1]

}

(b) Sample REST response of a call to retrieve details about a
cloud-operator specific hardware description referencing the operator-
independent description
POST /api/virtualMachine
{

"name":"scalarm_vm_1",
"cloud":1,
"image":4,
"hardware":2,
"location":1

}

(c) Sample REST call to start a virtual machine with a dedicated image,
at a dedicated cloud provider, and with a specific operating system
image.

Figure 2.2: Three sample calls to the COLOSSEUM API in order to retrieve hard-
ware offers, hardware types, and eventually create a new virtual machine.

REST API

COLOSSEUM provides a RESTful API that ranges from storing cloud providers,
their offers and locations over the handling of hardware specifications to the
deployment and monitoring of applications, components and their respective in-
stances. This is the API that is used by the adapter of the Upperware. Figure 2.2
shows three example calls to the REST API. These are only supposed to give a

D5.1.2—Product Executionware Page 23 of 62

Figure 2.3: Screenshot of the ExecutionwareUI showing an application configu-
ration

brief overview on the API and how it is supposed to be used. The full API is
documented in COLOSSEUM’s GitHub page1

In addition to specifying monitoring information that is collected and eval-
uated for the adaptation functionality, a user can specify further monitoring re-
quirements. Here, he defines sensors that collect the necessary data and instruc-
tions that define how these raw metrics shall be aggregated to higher-level met-
rics. This data is provided to the clients of CLOUDIATOR through the COLOS-
SEUM API. The monitoring interface is further discussed in Chapter 3.

User Interface

The ExecutionwareUI provides a RESTFul, browser-based client for the COLOS-
SEUM API (cf. Figure 2.3). The main goal is to provide users with human-
readable information from this API such that it is possible to help developers
and testers of the platform to tightly follow the steps the Executionware per-
forms during debugging and execution.

1https://github.com/cloudiator/colosseum/blob/master/
documentation/api/README.md

D5.1.2—Product Executionware Page 24 of 62

https://github.com/cloudiator/colosseum/blob/master/documentation/api/README.md
https://github.com/cloudiator/colosseum/blob/master/documentation/api/README.md

Figure 2.4: Screenshot of the ExecutionwareUI showing monitoring data for a
deployed virtual machine

While the ExecutionwareUI is in general capable of modifying the entries
of the system, this use case is currently not exploited within PaaSage, as man-
ual intervention could lead to inconsistencies between the Executionware’s and
the Upperware’s state. This functionality is therefore mainly used for testing
purposes.

A particular feature of the ExecutionwareUI is that it provides access to mon-
itoring that is shown as a graph (cf. Figure 2.4).

Technical background The ExecutionwareUI runs in a browser and is widely
based on angular.js2. The web site rendered by angular.js displays information
provided through AJAX request. In order to display graphs, the client imple-
mentation uses the Flot library3.

2https://angularjs.org/
3http://www.flotcharts.org/

D5.1.2—Product Executionware Page 25 of 62

https://angularjs.org/
http://www.flotcharts.org/

"api" :{
"api" :"colloseumapi",
"crud" :["list", "get", "put"],
"form" :{

"name" :"string",
"internalProviderName" :"string"

},
"list" :["id", "name"],
"details" :["id", "name", "internalProviderName"],
"tostring" :"name"

}

Figure 2.5: Sample configuration of the ExecutionwareUI that enables listing,
retrieval, and putting entities to the colosseumapi, but would not allow the
creation or deletion of entities.

In order to cope with the distributed implementation and the fast changing
interfaces of an ongoing research project such as PaaSage, the ExecutionwareUI
does not directly rely on the COLOSSEUM API, but uses a configurable interme-
diate proxy that receives requests from the browser implementation and relays
respective messages to COLOSSEUM. This architecture supports to host all static
content outside COLOSSEUM and is also capable of realise caching.

Configuration The flexibility for coping with changing conditions and inter-
faces is reflected in the configuration capabilities of the PHP-based forwarding
proxy component. This feature targets the ability to change the structure of some
apiObject (representing entities like images or virtual machines) and to (tem-
porary) enable (disable) particular actions such as editing and deleting entities
of apiObject. Figure 2.5 presents a sample configuration statement. Here,
the entities shall be shown and can be modified; yet, they cannot be created or
deleted. Furthermore, the list view filters out internalProvider field.

2.1.3 Further Features
For CLOUDIATOR can also be used outside PaaSage, as COLOSSEUM supports
further features. In particular, it contains a built-in discovery mechanism that
enables providing the data for the registries (cf. Section 2.1.1) in an automated
way: Whenever a user registers credentials for a cloud provider the COLOS-
SEUM discovery mechanism will fill the cloud registry for that cloud provider.
In addition, it will connect this information to the specification registry with the
abstract cloud properties.

As it may not be possible to retrieve all information via the providers’ APIs,
the COLOSSEUM API allows the manual completion of entries. In the future,

D5.1.2—Product Executionware Page 26 of 62

we plan to rely on using meta-information providers, such as CloudHarmony4.
These provide additional information such as the actual geographical location of
the cloud provider-specific location (either region or availability zone).

2.2 SWORD

SWORD comprises an abstraction layer over the APIs of the various cloud pro-
viders. Its implementation is widely based on the OpenSource Apache jclouds
library. Yet, in addition, it comes with a custom implementation for the Flexiant
FCO platform including the latest FCO v5 release.

Based on the information received at the virtual machine creation, SWORD
selects the right cloud provider and contacts his API through jclouds to issue
a start command. The necessary cloud-specific image and hardware flavour
identifiers are retrieved from COLOSSEUM’s registries. After a successful boot,
SWORD will assign a public IP address to the virtual machine.

Once this has been done, SWORD logs in to the virtual machine using SSH
(for Linux machines) and WinRM (for Windows machines) using the XebiaL-
abs Overthere Library5. Afterwards, it starts installing system components. At
the time being, these comprise VISOR, an instance of the TSDB, and LANCE.
Furthermore, an aggregator of AXE or a MetricsCollector are installed on
the virtual machine. The installation of the application itself, and hence the ex-
ecution of LANCE actions, is triggered by deployment requests to COLOSSEUM
and is not the task of SWORD.

2.3 LANCE

LANCE is CLOUDIATOR’s life-cycle agent who is responsible for executing
the life-cycle actions of all component instances running on that virtual ma-
chine. This task comprises the execution of installation and configuration scripts
provided by the users through CAMEL and hence COLOSSEUM, but also the
start and surveillance of the component instances; again through user-specified
scripts. When the application set-up changes, e.g., because a new application
server had been added to the system, then other components linked to that com-
ponent instance (e.g., the load balancer) are notified and user-provided update
scripts will be executed.

It is important to note that LANCE does not execute any magic, but solely
performs the tasks provided in the application model. Hence, a missing commu-
nication link in the application model may lead to failures during deployment

4https://cloudharmony.com/
5https://github.com/xebialabs/overthere

D5.1.2—Product Executionware Page 27 of 62

https://cloudharmony.com/
https://github.com/xebialabs/overthere

as the necessary network ports are not open. Also, determining the number of
component instances and on which virtual machine to place them is not the re-
sponsibility of LANCE or any other CLOUDIATOR component. Instead, those
decisions have to be taken outside CLOUDIATOR. In PaaSage, this is the task of
the Upperware.

Hence, LANCE has the primary task to read a component specification, re-
serve a separate space for it on the virtual machine, and to start the component by
running the lifecycle handlers. Currently, two different mechanisms are available
in order to isolate component instances running on the same virtual machine: the
first approach solely relies on the file system and provides each instance an own
directory on the file system. This is the approach used for virtual machines run-
ning Windows. For Linux-based virtual machines, by default Docker6 containers
are used in order to isolate component instances from each other.

6https://www.docker.com/

D5.1.2—Product Executionware Page 28 of 62

https://www.docker.com/

3

Monitoring and Auto-scaling

For supporting in-depth analysis of existing deployments, several requirements
have to be considered: (a) The fact that on the one hand, the monitoring of
large-scale applications does generate huge amounts of data and on the other
hand cloud providers usually charge for network traffic that leaves their data
centre gives motivation that as much of data processing shall happen within the
domain of individual cloud providers. (b) In order to avoid single points of fail-
ures, the architecture of a monitoring solution should not rely on a centralised
approach, but rather favour distributed approaches with no central entity. (c) For
the amount of monitoring data usually increases with the number of allocated
virtual machines (VMs), the resources assigned to monitoring shall increase with
the size of the application. (d) The operators of a cloud application may discover
that they have to monitor further high-level or even low-level metrics or need
monitoring to happen at a higher resolution. Hence, it is necessary that monitor-
ing properties can be changed also after an application has been deployed. (e)
The same considerations that hold for monitoring, have to hold for scaling rules.
In addition, it is necessary that rules can be defined in a generic way without
having to know the exact number of instances per component in advance. (f)
The monitoring platform has to be able to capture application-specific metrics.

With respect to PaaSage, these considerations hold as well, but in addition to
that, the monitoring data has to be relayed to the Upperware such that it can take
decisions and adapt the deployment as needed. In this chapter, we introduce the
entities of the Executionware that are related to monitoring. These include the
CLOUDIATOR components VISOR (cf. Section 3.1) and AXE (cf. Section 3.3),
but also the MetricsCollector component (cf. Section 3.4). Furthermore,
Section 3.2 discusses various TSDBs and presents the discussion we applied for
the Executionware at the time being.

29

3.1 VISOR

In order to be able to gather the raw monitoring data from the VMs and compo-
nent instances, we introduce VISOR as a monitoring agent to the remote cloud
domain. Just as LANCE, VISOR is deployed on every VM and provides a remote
interface COLOSSEUM uses in order to configure a particular VISOR instance.
This allows VISOR to be adopted to the application and to only collect the met-
rics actually required, thus saving space and bandwidth. VISOR supports the
capturing of monitoring data on a per component instance basis as well as on
a per-VM basis. The former is done by exploiting the fact that, at least for
Linux applications, all component instances are run inside a Docker container
and the resource consumption can be retrieved on a per-container basis. The lat-
ter is achieved by sensors monitoring basic system properties on virtual machine
level, e.g. by accessing system properties such as CPU load.

VISOR produces raw monitoring data through a set of installed sensors. A
user or the Upperware can install sensors by defining monitoring requirements or
scalability rules through the COLOSSEUM interface (cf. Section 2.1). COLOS-
SEUM will then forward the installation request to the VISOR running on the
specific virtual machine or to all virtual machines in case multiple of them are
affected from a single interface access. VISOR contains a set of well-known sen-
sors for measuring system parameters such as CPU and RAM utilisation as well
as I/O rate. The sensors available by default are subject to Section 3.1.1. Each
sensor can be configured to have a dedicated interval for which the data shall be
collected as well as a measurement context that defines whether the monitoring
shall capture the entire virtual machine or only a particular component instance
on that virtual machine. In order to support custom metrics, VISOR supports
the implementation of custom sensors, by providing an easy-to-implement Java
interface. It exploits the dynamic class loading properties of Java in order to be
able to add those implementations at runtime.

For supporting application-specific metrics that can only be retrieved from
within an application such as the length of queues or the degree to which buffers
have been filled, VISOR offers a text-based interface over a network socket with
a well defined port number. Applications can push their metrics data to an inter-
face which is compatible with the carbon daemon of graphite1, thus allowing an
easy migration to VISOR. An example thereof is subject to Section 3.1.2.

Finally, VISOR forwards all measured monitoring data to the aggregation and
rule processing sub-system. This version of the Executionware uses a TSDB to
store the data. The core part of VISOR, however, is not dependent on the data

1http://graphite.readthedocs.org/en/latest/carbon-daemons.
html

D5.1.2—Product Executionware Page 30 of 62

http://graphite.readthedocs.org/en/latest/carbon-daemons.html
http://graphite.readthedocs.org/en/latest/carbon-daemons.html

Table 3.1: Table of default sensors implemented for VISOR and their context
parameters

Sensor Class Context Parameter Description Example Value

CpuUsageSensor N/A

MemoryUsageSensor N/A

DiskIoReadSensor fs_device Mounting point of a disk sda
unit Unit of measurement, e.g. MBytes/s mb

DiskIoWriteSensor fs_device Mounting point of a disk sda
unit Unit of measurement, e.g. MBytes/s mb

DownloadBandwidthSensor net_device Network interface eth0
unit Unit of measurement, e.g. KBytes/s kb

FreeDiskSpaceSensor fs_root File system root path /
unit Unit of measurement, e.g. GBytes gb

NetworkLatencySensor host Hostname www.google.com
port Port number 80
loops Number of measurements 3

NfsAccessSensor nfs_root NFS mounting point /media/nfs

RxBytesSensor net_device Network interface wlan0
unit Unit of measurement, e.g. MBytes mb

RxPacketsSensor net_device Network interface eth0

TxBytesSensor net_device Network interface wlan0
unit Unit of measurement, e.g. MBytes mb

TxPacketsSensor net_device Network interface eth0

UploadBandwidthSensor net_device Network interface eth0
unit Unit of measurement, e.g. KBytes/s kb

sink so that other approaches such as the use of data streams are thinkable as
well.

3.1.1 Available Sensors and Probes
VISOR comes with a set of pre-defined sensors that can be grouped into system
sensors, network sensors, and others. Most sensors rely on the System Infor-
mation Gatherer and Reporter (Sigar) library and API2. SIGAR provides unified
access to operating system metrics [15], but at the same time abstracts from
the concrete operating system. The following three paragraphs overview sys-
tem sensors, network sensors, and file system sensors. Table 3.1 summarizes all

2https://github.com/hyperic/sigar

D5.1.2—Product Executionware Page 31 of 62

https://github.com/hyperic/sigar

implemented sensors and shows their configuration by documenting the context
parameters and depicting example values.

System Sensors

Memory (RAM) Usage The memory usage sensor measures the current mem-
ory used by the system in percentage. For this task it uses the Java class Oper-
atingSystemMXBean3, allowing the measurement on all operating systems sup-
porting Java.

CPU Usage The CPU usage sensor measures the load of the CPU in percent-
age, by calculating the average load across all cores installed in the system. Just
as the memory usage sensor it therefore relies on the OperatingSystemMXBean,
allowing its measurement on various operating systems.

Network Sensors

Average Network Latency Network latency can be measured two-fold: La-
tency can be assessed either by the time a data packet requires to reach its des-
tination (i.e., one-way), or by additionally taking into account the time it takes
back from destination to source (i.e., round-trip). Intuitively, the ping utility is
one of the immediate choices to measure a round-trip based latency 4 through
the Internet Control Message Protocol (ICMP). Yet, the round-trip time mea-
sured by ICMP is not representative, as it is barely affected by host load. As
such, ping-based latency is not representative for real-world application latency.
For this reason, the network sensor bases on the common Transport Control Pro-
tocol (TCP) and relies on a simple socket connection established via native Java
methods to obtain the latency measurement. Users can set the following pa-
rameters in the configuration file: destination address, port number, and number
of measurements (cf. Table 1). The sensor then computes an average over all
measurements and reports this as a single measurement.

TxBytes and RxBytes This sensor implements logic to report on transmitted
and received bytes of a given network interface. A proxy to the class Net-
InterfaceStat of the Sigar API was implemented to monitor data. The
respective class provides accumulated data for transmitted (TxBytes) and re-
ceived (RxBytes) bytes, respectively. For example, the command-line utility
ifconfig is used on Linux platforms to monitor transferred bytes. Separate
sensors for transmitted and received data are provided.

3https://docs.oracle.com/javase/8/docs/jre/api/management/
extension/com/sun/management/OperatingSystemMXBean.html

4http://manpages.ubuntu.com/manpages/trusty/man8/ping.8.html

D5.1.2—Product Executionware Page 32 of 62

http://manpages.ubuntu.com/manpages/trusty/man8/ping.8.html

Bandwidth This sensor implements functionality to measure upload and down-
load data rates of a given network interface. We reuse the implementations for
the TxBytes and RxBytes sensors to compute the bandwidth. Those values are
then used to compute the bandwidth per second. For each connection type, i.e.
upload or download, an individual sensor is implemented.

TxPackets and RxPackets This sensor reports on transmitted and received
network packages of a given network interface. This information is again re-
trievable through the NetInterfaceStat class of the Sigar API. The sensor
follows the implementation of the TxBytes and RxBytes sensors, but instead of
monitoring transferred bytes, it is monitoring transferred packets.

File System Sensors

Free Disk Space This sensor reports on the available disk space for a given
file system. To achieve a unified monitoring solution, we rely again on the Sigar
API. The API implements the class FileSystemUsage, that offers a proxy to
native utilities such as df on Linux systems. The file system’s root path can be
configured via the user-defined context at run-time.

Disk I/O This sensor reports on the I/O performance of a given disk. The class
DiskUsage of the Sigar API is employed to assess relevant values for disk
reads and writes per second. For example, the command-line utility iostat
is used on Linux systems to obtain this data. The functionality is split into two
individual sensors that measure disk reads and writes, respectively. Users are
able to select the disk and unit of measurement (e.g., MBytes/s).

NFS Connection Status This sensor checks if a network file system (NFS) is
mounted and accessible. A client connection is established to network shares
using NFS clients provided by the Sigar API. Our implementation handles both
NFSv2 and NFSv3. Users have to set NFS mount point for checking via context
parameters.

3.1.2 Application-specific Probes
In order to demonstrate the capabilities of the Executionware and VISOR in par-
ticular to handle custom metrics, we briefly describe the custom monitoring in-
frastructure as shipped together with the LSY application [8]. While this mon-
itoring infrastructure duplicates some aspects of the Executionware monitoring
system, as it contains legacy components, it is also a striking demonstration of
the flexibility of the PaaSage monitoring infrastructure.

D5.1.2—Product Executionware Page 33 of 62

When implementing the LSY monitoring system, the goal was to implement
a configurable and extensible solution, which will run in a java virtual machine
(JVM). The requirements for such an approach include (i) an abstraction over
metrics sources—the implementation should allow the user to collect metrics
from any kind of source with any kind of data format. (ii) an abstraction over
metrics target—the implementation should allow the user to pass the metric to
any kind of database or external system. (iii) The implementation should allow
the user to process probes—push them through some logic e.g. filtering, aggre-
gating etc. (iv) The implementation should allow the user to apply a different
processing algorithm over the same probe. (v) The implementation should allow
the user to mock metrics, i.e., to change probe values at runtime

Concept and Components

The main idea of the LSY monitoring system is to to describe the processing
of the metric data flow with streams with a strong focus on the Reactive Mani-
festo5. This lead to the selection of Akka Streams6 which provides the end user
a solid API to implement the logic and internally relies on the Reactive Streams
interfaces.

At run-time, data is collected from all instances of all LSY system compo-
nents. All of them run with a JVM and metrics can be retrieved using JMX.
These data tuples are tagged and then relayed to further downstream processing
components where the data is aggregated.

The computations and aggregations on the data flow are realised by splitting
the data flow into sub flow(s) and then applying dedicated business logic for each
of these flows.

All data that is eventually collected and processed is afterwards stored in
InfluxDB (cf. Section 3.2). From there it is fetched and then shown using the
Grafana Dashboard7.

Integration in Executionware

Obviously, an integration of this monitoring mechanism into the Executionware
can happen on multiple levels. In an initial approach, we deploy the entire mon-
itoring framework as part of the LSY application. Then, instead of writing the
data into InfluxDB it is relayed to the Executionware’s TSDB using VISOR.

5http://www.reactivemanifesto.org
6http://doc.akka.io/docs/akka-stream-and-http-experimental/

1.0/scala/stream-introduction.html
7http://grafana.org

D5.1.2—Product Executionware Page 34 of 62

http://doc.akka.io/docs/akka-stream-and-http-experimental/1.0/scala/stream-introduction.html
http://doc.akka.io/docs/akka-stream-and-http-experimental/1.0/scala/stream-introduction.html
http://grafana.org

3.1.3 Application specific probes for Scalarm and
HyperFlow engines

Execution engines for eScience use case applications provide application spe-
cific probes and metrics that are used by classes of applications supported by
SCALARM and HyperFlow, i.e. data farming applications and large-scale sci-
entific workflows.

Scalarm Platform Sensors

System Simulations Throughput This sensor reports on the current through-
put - measured in completed simulations per second - of the currently running
data farming experiment. First, Scalarm calculates the throughput of individual
Workers (worker throughput) by taking into account the number of finished and
still running simulations on the particular worker, this value is divided by the
time of Worker activity. The total System Simulations Throughput is the sum of
all worker throughputs.

Response Time Of Experiment Manager This sensor reports on the average
response time - measured in milliseconds - of the Experiment Manager service.
The calculation of the average is performed by Scalarm and uses data measured
and stored internally by the Scalarm platform.

Information Service Response Time This sensor reports on the average re-
sponse time - measured in milliseconds - of the Information Service service. The
calculation of the average is performed by Scalarm and uses data measured and
stored internally by the Scalarm platform.

HyperFlow sensors

stage Workflow stage, as reported by the workflow engine. This metric in-
forms about the stage of the workflow that is currently processed. It can be
used to trigger autoscaling actions when a certain stage of workflow is reached
and a required number of VMs is known from the scheduling plan provided by
HyperFlow.

tasks, tasksProcessed and tasksLeft The number of tasks in the workflow:
total, processed and left, respectively. These metrics can be used together to
compute the composite metrics related to the progress of workflow execution.

outputsLeft The number of remaining outputs (results) in the workflow. Once
all outputs are completed, the workflow is considered as finished.

D5.1.2—Product Executionware Page 35 of 62

nConsumers Number of active workers that are connected to the AMQP (Ad-
vanced Message Queuing Protocol) queue. This allows to measure the actual
workers (executors) that have started and stressfully registered with the Rab-
bitMQ8 queue. This number may be different from the number of worker VMs,
since for some reasons not all worker processes on VMs may have started, or
there could be a failure during execution.

3.1.4 Client libraries for Visor
To facilitate development of application specific probes, we have developed
generic clients for Visor in .NET, Java and JavaScript. These small libraries
can be used to report metrics to Visor at configurable intervals.

All these libraries are available on GitHub repository9 and have been used
by the use cases of LSY and AGH.

3.2 TSDB Selection
A key element when computing higher-level metrics especially over larger time-
windows is the need to buffer raw monitoring data. TSDBs have been designed
to store timestamped data in an efficient way and also to provide quick access
to the stored data. Many TSDB implementations support applying functions on
stored data right out of the box, making them a perfect match not only for buffer-
ing, but also for aggregation (cf. Section 3.3). The following subsections first
introduce the requirements towards a TSDB in Section 3.2.1. The requirements
are based on the outlined monitoring and buffering strategy in COLOSSEUM.
Afterwards an overview on three popular TSDBs, KairosDB, OpenTSDB and
InfluxDB is presented. In Section 3.2.5 we argue why the current version of
CLOUDIATOR makes use of KairosDB, whereas Section 3.2.6 presents the in-
stallation process.

3.2.1 Requirements
With respect to our requirements the buffering and therefore the TSDB approach
needs to be able to work with limited resources, have no single point of failure
and increase available resources when more VMs are being used. In order to
cope with these requirements, we use the following approach: from each VM
acquired for an application, we reserve a configurable amount of memory and

8https://www.rabbitmq.com/
9 https://github.com/dbaur/monitoring-agent-telnet-client-java,

https://github.com/dice-cyfronet/monitoring-agent-telnet-client-js

D5.1.2—Product Executionware Page 36 of 62

https://www.rabbitmq.com/
https://github.com/dbaur/monitoring-agent-telnet-client-java
https://github.com/dice-cyfronet/monitoring-agent-telnet-client-js

storage (e.g. 10%) that we further split between a local storage area and a shared
storage area. Both storage areas are managed by a TSDB instance running on
the VM. The VISOR instance running on this VM will then feed all monitoring
data to the TSDB. The TSDB will store data from its local VISOR instance in
the local storage area and further relay the data to other TSDBs shared storage
area. This feature avoids that a TSDB becomes a single point of failure, but
still enables quick access to local data. In order to keep network traffic between
cloud providers low, any TSDB will only select other TSDBs running in the
same cloud to replicate its data. If not enough instances are available to reach
the desired replication degree, the maximum possible degree is used. Hence,
this concludes to a ring-like topology that has been introduced in peer-to-peer
systems [1] and is also used by distributed databases [14].

3.2.2 KairosDB
KairosDB10 is a widely used TSDB that has continuous development. It is ef-
ficient in the storage of huge amounts of timeseries (TS) data as well as their
respective querying via aggregation functions. It currently supports the follow-
ing aggregation functions: average, standard deviation, divisor (divides each TS
value with a specific constant), histogram (actually calculates a percentile for a
particular set of TS data), least_squares (returns two TS data/points which best
fit the line that characterizes a set of TS points), max and min, rate (calculates
the rate of change between two TS points), sum (calculates the sum of values for
a TS set).

While histogram is stated to be supported, it was impossible to actually use
it due to bugs in the client software.

The user needs to indicate the time interval in order to enable KairosDB to
generate the set of TS points that should be used for the aggregation. KairosDB
further supports grouping based on tags, time ranges or values as well as the
filtering based on tags. Other advantages of KairosDB are: (a) it provides a
REST interface for the publishing and querying of TS data; (b) it supports dis-
tributed configurations with configurable replication factors through the use of
the Cassandra store.

A basic graphical UI is also offered which enables the posing of queries and
the presentation of the results in a graph, while the query performed in a form-
based manner is transformed and represented in a JSON format which can then
be exploited for calling the respective method of the REST API offered. It is also
possible to replace the default dashboard by external dashboards like Grafana.

10https://github.com/kairosdb/kairosdb

D5.1.2—Product Executionware Page 37 of 62

https://github.com/kairosdb/kairosdb

KairosDB architecture offers the possibility to use different datastores. In
particular KairosDB supports three underlying stores: Cassandra, HBase and
H2, where the latter is the default.

The main disadvantage of KairosDB is that it does not support the automated
background generation of aggregations. This means that it is up to the user to
either create the code which will calculate the aggregated value for the particular
composite metric at hand and store it inside the KairosDB or that the user can
exploit an aggregated query to just calculate this aggregated value and report
it. The second way is of course only convenient when there is one aggregation
level. However, when more aggregation levels are involved, then only the first
way (or a mixture of first way for all aggregation levels apart from the top one to
be handled by the second way) is suitable as there is a need to at least store the
measurements produced for the intermediate aggregation levels.

3.2.3 OpenTSDB
The TSDB OpenTSDB11 was one of the first exponents of TSDBs. It still has
an ongoing development with the current version 2.1.0. The aforementioned
TSDB KairosDB is a fork of OpenTSDB version 1.0.0; yet both TSDBs focus
on different goals.

OpenTSDB provides a basic set of querying and aggregation features how-
ever in a less sophisticated way as KairosDB does. OpenTSDB TS data can be
accessed via telnet, REST API or a command-line client.

According to the presentation of TS data OpenTSDB differs considerably to
KairosDB. KairosDB aims to separate data and presentation while OpenTSDB
focuses on the presentation of server-side generated graphs. This approach im-
proves the representation of graphs by using, e.g. interpolation but it limits the
flexibility for processing the TS data. To display the TS data a built-in dashboard
is provided which can also be replaced by various third party dashboards.

OpenTSDB uses the distributed filesystem Hadoop with the Hbase database
on top as storage backend. This allows OpenTSDB to provide high performance
in writing and reading the TS data. Moreover by using Hadoop with Hbase as
storage backend OpenTSDB can provide replication and is able to scale the stor-
age backend. However it is not possible to change the storage backend because
OpenTSDB’s architecture is tightly coupled with Hadoop and Hbase. There-
fore the setup of an OpenTSDB instance is not a trivial task regarding the own
complexity of the heavyweight Hadoop and Hbase components.

Like KairosDB OpenTSDB does not offer the possibility to create aggre-
gations in an automated way. Moreover it is not possible to combine multiple
aggregators.

11https://github.com/OpenTSDB/opentsdb

D5.1.2—Product Executionware Page 38 of 62

https://github.com/OpenTSDB/opentsdb

3.2.4 InfluxDB
InfluxDB is an emerging TSDB which actually constitutes a TS, metrics and
analytics DB. It has been developed in Go with no other external dependencies.
It exhibits some interesting features which also overlap with respect to the ones
offered by KairosDB.

Similarly to KairosDB, InfluxDB offers a SQL like query language which
is however more powerful. This query language enables the filtering via time
and any other columns which have been associated to a TS, the selection of
multiple series either in a direct comma-based way or via a regular expression,
the grouping via time buckets, the filling of missing values for specific time
intervals, and the merging as well as the joining of TS. Apart from basic SQL-
like querying functionality, the offered language enables the listing of TS as well
as the deletion of some TS rows or whole TS. InfluxDB also offers an HTTP(s)
API, and offers retention policies for TS data.

Moreover, InfluxDB supports pre-aggregation of data in the form of continu-
ous queries. This is actually one of the most important features of InfluxDB as it
allows the aggregation of information in the background in an automated man-
ner without serious implications in the user code as in the case of KairosDB.
Through this feature, all required aggregation levels can be supported as each
composite metric instance can be considered to be mapped in one continuous
query. In this sense, the values of this metric instance are computed automat-
ically and the users just have to write queries based on the name of the metric
instance in order to retrieve the respective computations. The sole limitation
here is that aggregation is limited to two metrics (instances). This means that
if the aggregation over a greater number of metrics needs to be supported, then
depending on the aggregation formula, not only one but a set of intermediate
continuous queries needs to be generated based on which the final continuous
query can be generated and exploited.

Furthermore, InfluxDB supports the merging of time series which are identi-
fied via a pattern-based/regular expression, and can deal with distributed settings
through shard spaces. This enables the replication of TS data through the speci-
fication of a particular replication factor.

A web-based UI is offered by InfluxDB for exploration of the TS data and
the production of respective graphs. However, the main difference here is that
the InfluxDB UI offers in addition the execution of administration tasks. Also,
two dashboards can be integrated with InfluxDB, namely Grafana and Influga.

Older versions of InfluxDB did support multiple underlying storage engines
while the recently released, first production-ready version 0.9.0 only supports
the key-value store BoltDB.

Concerning the aggregation functions supported, a significantly greater va-
riety compared to OpenTSDB and even KairosDB is offered including: count

D5.1.2—Product Executionware Page 39 of 62

(counts the number of TS data indicated by the query), min and max, mean,
mode (it calculates the most frequent value in a specific subset of TS identified
by the query), median (it identifies the median value in a specific subset of TS
identified by the query), distinct (returns only the distinct value for a specific
subset of TS identified percentile), histogram (returns the histogram for a spe-
cific subset of TS identified which is output in the form of two columns: (a)
bucket start indicating the starting value in the bucket and (b) count indicating
the number of values in the bucket), derivative (calculates the derivative of a spe-
cific subset of TS), sum, standard deviation, first/last (outputs the first/last point
for a specific TS by interval), difference (outputs the difference between the last
and first value for a specific TS by interval) and top/bottom (the top/bottom N
results by interval for a specific TS).

3.2.5 Selection of TSDB

Table 3.2: Details of considered times series databases

Name KairosDB OpenTSDB InfluxDB

Version 1.0.0 2.1.0 0.9.0
Datastore H2/Cassandra HBase BoltDB
Distributed no/yes yes yes
InMemory yes/no no yes

Table 3.2 presents a basic comparison of established TSDB implementa-
tions [12] and their properties. The results are intermediate as our evaluation
is ongoing (cf. Section 3.2.6).

The relevant details of the TSDBs are its maturity, available datastores, sup-
port of distribution and in-memory storage. The TSDB should be in some mature
state in order to provide a stable version, client libraries and an available docu-
mentation. Following the strategy exposed in Section 3.2.1 the datastores shall
be lightweight and ideally support an in-memory mode. Also they have to offer
a distributed architecture to ensure horizontal scaling and replication.

OpenTSDB offers the best maturity regarding the version number. The un-
derlying datastore HBase supports distribution but regarding the architecture of
HBase [11] an in-memory mode is missing. Also, it is not a lightweight datas-
tore [12] and an automated set-up as required in our scenario is not a trivial task
and hard to script. Consequently, OpenTSDB is not an applicable solution.

D5.1.2—Product Executionware Page 40 of 62

From its capabilities InfluxDB seems suited for the outlined approach. Yet,
the recently released version 0.9.0 comes with extensive changes in the storage
architecture and API design compared to 0.8.012.

KairosDB also provides a mature version 1.0.0. It supports the single-site,
in-memory datastore H2 and the distributed Cassandra datastore supporting scal-
ability to a hundreds of instances [14]. While Cassandra’s resource usage can be
limited, in-memory storage is only supported in the commercial version13.

Following this comparison KairosDB is currently the most appropriate TSDB
to use in CLOUDIATOR and hence, the Executionware. The decision has been
based on maturity, distribution and the possibility to limit the resource consump-
tion of Cassandra. Nevertheless, the architecture has been designed such that the
decision for a TSDB is not tightly coupled to the rest of the system so that the
TSDB can be replaced without causing any further issues.

In overall, we state that InfluxDB seems more powerful than KairosDB with
additional functionality offered, a more expressive query languages and more
configurable ways to distribute and replicate the underlying stores. However,
the young age of InfluxDB with frequently changing APIs and feature sets con-
stitutes a too high risk for the success of the project.

3.2.6 Time-series Database Installation
The current version of CLOUDIATOR installs an instance of KairosDB with a
Cassandra datastore on each started virtual machine. Cassandra is configured to
use only a low portion of a VM’s resources to keep the impact on the components
running on that VM small.

Whenever possible, we reserve a small fraction of each virtual machine (e.g.
10%) for buffering monitoring data. This strategy assumes that the amount of
monitoring data increases linearly with the number of virtual machines. At the
same time using a cluster avoids that the TSDB becomes a bottleneck when
scaling the application. The reserved area is split into a local storage area and
a shared area for replicas of data items created on other virtual machines on the
same cloud.

In the long run, we envision that each data element added to KairosDB is
stored in a local Couchbase14 instance using the in-memory memcached option
representing the local area and in a distributed Cassandra datastore [14] repre-
senting the shared area. Figure 3.1 shows the set-up of the underlying storage
systems. It is noteworthy that each cloud uses its own distributed storage. This

12https://influxdb.com/docs/v0.9/introduction/overview.html
13http://www.datastax.com/
14http://www.couchbase.com/

D5.1.2—Product Executionware Page 41 of 62

https://influxdb.com/docs/v0.9/introduction/overview.html
http://www.datastax.com/
http://www.couchbase.com/

TSDBTSDB

TSDB

VM AWS_3

TSDB

VM AWS_2

TSDB

VM AWS_1

home domain

TSDB
clustering

calls

OpenStack cloud Amazon Web Services

TSDB

VM OS_3

VM OS_1 VM OS_2

calls

Figure 3.1: TSDB-based architecture of CLOUDIATOR with the local areas
marked orange

set-up avoids that the storage suffers from large latencies and that additional
costs incur for inter-cloud traffic.

3.3 AXE

From a CLOUDIATOR point of view, there are two scenarios where aggrega-
tion on monitoring data is needed: (i) A user has requested that monitoring data
be collected and aggregated such that it is available outside CLOUDIATOR. (ii)
Scalability rules require that data to be aggregated to build higher level metrics
on which rule conditions can be checked against. In both cases, the AXE compo-
nent uses the same chain of mechanisms to provision the requested information.
The expressiveness of the Scalability Rules Language provides an upper bound
on the complexity of queries, aggregation rules, and scaling actions that have to
be supported by AXE.

3.3.1 Aggregation
Section 3.1 clarified when and how monitoring data is collected by VISOR: (i)
ensure that all data needed for aggregation is available, (ii) define where the
aggregation is performed, and (iii) specify where to put the results. The basic
concept we use is that the monitor agent forwards the data to a TSDB instance
running on the same virtual machine. The latter is responsible for making the
monitoring data available to the aggregation functionality including relaying the
data to multiple locations if necessary. The aggregation functionality is imple-
mented by aggregation processors.

We distinguish between three scopes that define where the aggregator shall
be run: The host scope considers aggregation tasks that take into account only

D5.1.2—Product Executionware Page 42 of 62

measurements from a single virtual machine. In that case, the collector will
forward the data to a virtual machine-local aggregator to do the aggregation. Af-
terwards, the aggregator will relay the resulting data to the collector again. The
cloud scope deals with data from multiple component instances or virtual ma-
chines from within one cloud. Finally, the cross-cloud scope defines aggregation
on data from different clouds. For that scope, aggregation happens in the home
domain. We use a dedicated collector for each of the scopes.

Aggregations with a cloud scope are triggered from the home domain (i.e.,
they run within COLOSSEUM). Yet, as the aggregation takes place using the Cas-
sandra store, only the results are sent to the home domain. The results of such a
process are stored back to the cloud using any KairosDB instance and the shared
area. In case this data has to be made available to the user, a further aggregator
is running that pulls this data from any of the cloud’s KairosDB instances and
stores it in the KairosDB instance running in the home domain. Finally, aggre-
gations in the cross-cloud scope are also run through an aggregator in the home
domain, but then stored in the KairosDB of the home domain. Higher-level met-
rics working on this data will read from the home domains KairosDB and store
results back there.

(Aggregated) monitoring data whose collection was requested by the user is
always stored in a TSDB in the home domain. It is accessible via the COLOS-
SEUM API. Improvements on aggregator locations are subject to ongoing work.

3.3.2 Scalability Rules Language
Adaptation describes the capability of the application to autonomously evolve
under changing conditions such as varying system load. This may be needed
when more users access the application instance than anticipated by the appli-
cation owner. In a cloud environment, the most frequent reaction to such events
will be a scale out/in of individual components or groups of components or the
scale up/down of individual virtual machines or groups of virtual machines. For
that reason, AXE supports an auto-scaling functionality based on the Scalability
Rules Language (SRL) [10, 13]. In order to realise this functionality, AXE en-
ables the specification of (hierarchical) metrics, conditions on these metrics, and
actions to be executed when the metric conditions are fulfilled. It is important to
note that these rules do not have to be provided with the deployment description,
but can be added and changed while an application instance is running.

The SRL [10] is a provider-agnostic description language. It provides ex-
pressions to define the monitoring of raw metric values from VMs and compo-
nent instances and also mechanisms to compose higher-level metrics from raw
metrics. Moreover, it comprises mechanisms to express events and event patterns
on metrics and metric values. Finally, SRL captures thresholds on the events and

D5.1.2—Product Executionware Page 43 of 62

actions to be executed when thresholds are violated. A simple SRL rule in prose
may be: add a new instance (scale-out) of this distributed database if (i) all in-
stances have a 5 minute average CPU load > 60%, (ii) at least one instance has
a 1 minute average CPU load > 85%, and (iii) the total number of instances is
< 6.

3.3.3 Auto-Scaling
AXE’s auto-scaling capabilities for individual components of an application in-
stance require the aggregation of metrics and the evaluation of conditions on
these metrics. The generation of monitoring data and their aggregation has been
discussed earlier in this section.

In order to evaluate the conditions on the metrics, we apply the strategy to
consider conditions on metrics as binary metrics by themselves. These metrics
take values in {0, 1} and their value is computed as a function that compares the
values of the source metric against the threshold of the condition. Composite
conditions are computed from their source conditions.

The SRL-engine is an aggregator-like sub-component of AXE that runs in
the home domain. Its sole task is to check for all conditions that cause a SRL-
related action whether the conditions are satisfied. In case it is, the SRL-engine
triggers the actual actions at the Deployment Engine. In addition, it stores the
fact that this action has taken place as a separate metric value in the KairosDB in-
stance in the home domain so that it can be queried by higher-level components.
Whenever the application instance has changed either by manual intervention or
by running a scaling action, the SRL-engine adapts the scalability-related con-
figuration if necessary. This is for instance the case whenever the abstract rule
description requires conditions to take into account all instances of a particular
component.

3.4 MetricsCollector

This section clarifies the functionality provided by the MetricsCollector
component and how it can be exploited in order to realise a monitoring system
within PaaSage. It is organized into four main sub-sections which attempt to
highlight: (a) the two main modes of operation of the MetricsCollector;
(b) the main assumptions imposed by MetricsCollector on the environ-
ment in order to properly function as expected; (c) the main MetricsCol-
lector architecture along with the most important components; (d) the main
modes of interaction with the MetricsCollector.

D5.1.2—Product Executionware Page 44 of 62

Executionware
Engine

Global1Metric1
Collector

CDOServer

Publication1
Server

Other1PaaSage
Module1

/Component

Local1Metric1
Collector TSDB

Probe

PaaSage Domain

Cloud/Domain/– User/VM

Local1Metric1
Collector

TSDB

Probe

Cloud/Domain/– User/VM

Subscription1
Client

Figure 3.2: The external architecture of the monitoring system

3.4.1 MetricsCollector Modes of Operation
The MetricsCollector implementation provides two different run time
modes: global and local. These two modes of operation can be clearly seen in
the external architecture of the monitoring system depicted in Figure 3.2 which
also indicates the relation of both MetricsCollectortypes to other PaaSage
components.

The global MetricsCollector is deployed in the PaaSage operator do-
main and is responsible for the aggregation of global, non-single-cloud based
metrics based on values of cloud-specific metrics (produced by local Metrics-
Collectors) as well as their storage. The measurements produced are associ-
ated to the current execution context of the corresponding application instance.
Both the reading and the storage of metrics is performed via the CDO (meta-
data database) server. The global MetricsCollector is also responsible for
informing interested components for fresh metric measurements via a publish-
subscribe mechanism based on ZeroMQ.

On the other hand, a local MetricsCollector is deployed on each appli-
cation VM of the current application instance and is responsible for the measure-
ment of the respective cloud-specific composite metrics involved (i.e., resource
or software component metrics mapping to the VM or the components it hosts,
respectively). The aggregation relies on raw measurements produced by probes
and stored in the local TSDB. The generated measurements, apart from being
stored back in the local TSDB, may be also stored in the CDO Repository.

D5.1.2—Product Executionware Page 45 of 62

The decision on the latter depends on the following two cases: (a) we have a
top-level metric for which subscribers exist (including the Executionware which
has to detect violations of SLOs as well as generate events which might trigger
scalability rules) and (b) we have metrics which are children of a global metric,
i.e., these metrics are used to compute the global metric—in this latter case we
need to store their measurements in CDO such that the global MetricsCol-
lector can read them and perform the respective global metric aggregations.

3.4.2 Main Assumptions
The main assumptions of this software component is that Upperware compo-
nents have left a correct CAMEL (deployment, execution and metric) model in
the CDO server of the PaaSage platform. In particular, it assumes the existence
of an execution context, the specification of necessary metric instances to be
monitored, and the component instances to be measured. Furthermore, a Met-
ricsCollector instance operated in local mode assumes that a KairosDB is
running and that necessary location and log-in credentials have been provided
to it. The global MetricsCollector instance provides a publish-subscribe
interface through which aggregated measurements are propagated to interested
components (e.g., the Reasoner). Both types/modes of MetricsCollector
operation require an appropriate connection to a CDO server (which should con-
tain the CAMEL model of the application to be monitored) such that the nec-
essary information concerning the metric computations are fetched and that the
aggregated measurements produced are stored in this server.

3.4.3 Architecture
Both a local and a global MetricsCollector are instances of the same class,
named MetricCollector. This means that both the local and global mea-
surement functionality has been encapsulated in the same code in terms of the
same Java class. Figure 3.3 depicts the internal architectural of the Metrics-
Collector.

The core functionality of any MetricsCollector comprises an interface
with three main methods: (a) readMetrics – used for reading the specification of
the metric instances that the MetricsCollector is in charge of handing and
setting up the aggregation code, (b) updateMetrics – used for reading the spec-
ification of those metric instances that have been updated and then updating the
respective aggregation code and (c) deleteMetrics – used to delete all aggrega-
tion code for all metric instances pertaining to a specific execution context given
as input.

D5.1.2—Product Executionware Page 46 of 62

Metric'
Collector

MetricStorage StatisticsUtils

File
Watcher

Execution
Context
Handler

Metric
Handler

Publication
Server

CDO
Client

TSDB
Client

Metric
Handler

CDO
Client

TSDB
Client

Metric
Handler

CDO
Client

TSDB
Client

Metric
Handler

CDO
Client

TSDB
Client

CDO
Listener

Execution
Context
Handler

CDO
Listener

MetricCollector Sub-System

Figure 3.3: The internal architecture of the monitoring system

A global MetricsCollector comprises two optional components: the
CDOListener and the PublicationServer (currently realized based on the Ze-
roMQ framework). Through these two components and the respective Met-
ricsCollector aggregation code, the publication of top-level metric mea-
surements is supported to interested subscribers (e.g., PaaSage components).
The actual publication of a measurement is supported via calling the respec-
tive submitValue method of the PublicationServer. The CDOListener is respon-
sible for detecting measurements produced for particular (local/cloud-specific)
top-level metric instances and publishing them via the PublicationServer. The
publication responsibilities are completed through the MetricsCollector
aggregation code which generates measurements for global top-level metrics and
publishes them again via the PublicationServer. To receive values, an interested
component has to just customize the run method of the SubscriptionClient class
in order to be able to exploit the measurement retrieved for its own purposes.

Execution Context Handling

It must be highlighted here that metric instances to be handled are always asso-
ciated to a specific execution context. This not only makes their handling easier
(as they are grouped in a specific container) but also enables to create a separate
functionality in terms of a thread which will be responsible for the setting up
and management of the aggregation functionality for each metric in the group.
This thread is actually an instance of the class ExecutionContextHandler and has
similar functionality with respect to MetricsCollector but it is restrained
in the form of only a metric group. Apart from the metric group handed-over by
MetricsCollector to the ExecutionContextHandler, the latter component

D5.1.2—Product Executionware Page 47 of 62

enhances this group by retrieving the specification of other composite metrics at
lower levels which are needed for the computation of the metrics in the initial
input group. This is performed carefully such that when a component metric is
used for the computation of two original metrics, then this component metric
is included just once in the group. This enables to avoid having duplication of
measurement effort. In the end, after the final metric group is constructed, one
MetricHandler thread is created for each metric in the group.

Obviously, the careful updating of the initial group is addressed not only
in the initial case but also in the case where metric instances in the group are
updated as this can raise the need of removing or adding metric instances in the
ExecutionContextHandler’s metric group.

Metric Handling

A MetricHandler constitutes the basic, elementary piece of functionality in terms
of a thread devoted to the computation of measurements for a metric instance.
The frequency and window of computation is calculated based on the informa-
tion stored in the CDORepository for the metric instance handled. The Met-
ricHandler thread interfaces with a TSDB client or a CDOClient, depending on
whether it is launched in the context of a local or a global MetricsCollec-
tor, in order to perform the aggregations. In the former case, the TSDB client is
used in order to perform aggregated queries to produce the respective measure-
ments of the metric instance handled. In the latter case, the CDOClient is used to
either perform aggregated queries over measurements in the CDO Repository or
to collect the appropriate measurements and then perform the aggregation over
them (in case a particular aggregation function is missing from those supported
by CDO/Hibernate Query Language). In both cases, the same client is used to
store back the respective measurements with the sole exception that a local Met-
ricHandler might need to also store a measurement value in the CDO Reposi-
tory (for a local metric instance required for computing a global one). In case
of top-level global metrics, a global MetricHandler will also exploit the Publi-
cationServer in order to publish the respective measurements to the interested
subscribers.

Aggregation and Database Access

Database Access When measurements or respective generated (scalability rule-
based) single event instances need to be stored in the CDO Repository, then
the MetricStorage class can be utilized which provides an interface with
two respective methods: (a) storeMeasurement and (b) storeEvent. In the first
method, you need to provide the measurement value produced, the CDOIDs of

D5.1.2—Product Executionware Page 48 of 62

the corresponding metric instance, of the current execution context and of the
object measured (e.g., InternalComponentInstance or VMInstance) as well as
the MeasurementType mapping to the respective types of measurements that are
supported by PaaSage (application, component, resource and resource coupling
measurement types). Once this input is provided, the respective code stores the
measurement in the appropriate execution model as well as associates it to the
appropriate objects (also given as input – e.g., execution context).

For the second method, it is necessary to specify the event status, the CDOIDs
of the measurement and of the single event to be instantiated as well as option-
ally the layer on which the event/measurement applies. The respective code,
once the input is provided, takes care of generating the event instance, associ-
ating it to the respective objects as well as storing it in the appropriate model.
Additionally, it checks whether SLOs have been defined for the respective met-
ric condition. If this is the case, then it creates an SLOAssessment instance with
the appropriate assessment result which is stored in the current execution model
as well as associated to the current execution context.

Aggregation Concerning the aggregated measurement production, the Statis-
ticsUtils class encompasses methods which cover the missing aggregation func-
tionality of the selected TSDB or the CDO Repository. The aggregation methods
additionally supported are: (a) mode calculating the most frequent value of a set
of measurements, (b) median calculating the median value of a set of measure-
ments and (c) percentile which calculates the value for which a specific percent-
age of measurements from the given set is equal or less than it. Each method has
been realized to work for measurements produced both from TSDB queries or
CDO queries.

There are also two specialized classes which can be regarded as those which
drive the aggregation for a particular metric. The AggregationInfo class stores
important information which is needed for the aggregation of measurements of
a specific metric instance, including the metric function involved, its arity and
arguments as well as the main aggregation period to be considered. Such in-
formation is then exploited by extensions of the AggregationNode class which
serve as drivers to specific types of TSDBs. Currently, both the KairosDB and
the InfluxDB TSDBs are supported and the respective implementations of the
KairosAggregationNode and InfluxAggregationNode have been generated.

An AggregationNode comprises the aggregation info, the mode of aggre-
gation, a CDOClient and a specific value. The latter value is actually used to
represent constant values and not actual metrics, so in this case the aggregation
info is not given. Depending on the type of TSDB supported, the respective ex-
tension of AggregationNode comprises also the reference to a client which can
be used to store measurements as well as perform aggregated or normal queries

D5.1.2—Product Executionware Page 49 of 62

over the respective TSDB. Through all this information and internal component
references, the aggregation can then proceed based on the TSDB-type-specific-
logic encapsulated in the calculate method. This method, when called, returns
the aggregated measurement value to be stored in the respective places (TSDB,
CDO Repository) by the corresponding MetricHandler method.

Both an aggregation node as well as its encompassed aggregation informa-
tion is produced for a particular metric instance through calling the setupAggre-
gation method which again contains some TSDB-type-specific logic needed in
order to create specific parts of the required aggregated information. In the case
of KairosDB, this method creates the respective aggregator (instance of Aggre-
gator class) which has to be employed in order to execute an aggregated query
on KairosDB. In the case of InfluxDB, this method creates continuous queries
which map metric instance names to particular tables. In this way, the retrieval
of aggregation information in this latter case is based on simple queries which
retrieve the latest value of the respective table. Thus, there is no need to perform
an aggregated query as the results are produced in the background based on the
definition of the respective continuous query for the particular metric instance at
hand.

Other Utilities and Integration

The CDOUtils component provides assisting methods which can be exploited
to fulfill different types of functionality. In particular, the following methods
have been realized: (i) canPush: examines whether a particular metric in-
stance is a top-level one such that it has to be published to subscribers via the
PublicationServer; (ii) getTopMetrics: it is used to obtain all instances of
top-metric levels that have to be measured; (iii) getGlobalMetrics: from
a list of top-level metric instances, get those which are global and have to be
measured by a global MetricsCollector.

The last two methods could be used, for example, by AXE in order to del-
egate the measurement of metric instances to local and global MetricsCol-
lector. The global top-level metrics will be delegated to the global Met-
ricsCollector while the local top-level metrics will be delegated to the lo-
cal MetricsCollector on which they apply (e.g., based on the component
or VM instances for which they measure the respective particular property). Ob-
viously, some additional logic is included in the latter case but it is quite easy
to implement as each metric instance is associated to a specific object binding
which can be followed in order to discover the particular user VM for which the
metric instance must be delegated to the corresponding local MetricsCol-
lector.

D5.1.2—Product Executionware Page 50 of 62

3.4.4 Modes of Interaction
A MetricsCollector can be exploited either by directly calling its main
methods or indirectly by updating a particular file. In the second case, an in-
stance of the FileWatcher class can be used for indirectly interacting with Met-
ricsCollector in order to execute one of its methods. In particular, such
an instance monitors the content of a particular file and when updated, it reads it
and invokes the respective MetricsCollector method reflected by the file
content along with the respective input parameters also contained in this file.

3.4.5 Integration with AXE

AXE exploits the functionality of the MetricsCollector running in global
mode to relay its collected and aggregated metrics to the meta-data database
(CDO) and to inform other interested components. For this purposes it enhances
the metric collector by a remote interface (RMI) allowing remote access to its
functionality.

D5.1.2—Product Executionware Page 51 of 62

4

Further Aspects

This chapter captures aspects that so fare have not been presented. We start with
a description of the testbeds in Section 4.1.

4.1 Testbeds
For the development and testing of the current prototype, two testbeds are being
provided by the consortium. GWDG and FLEX run OpenStack and Flexiant
Cloud Orchestrator (FCO) respectively. The following paragraphs provide an
overview of the size and power of the respective testbeds.

4.1.1 GWDG’s OpenStack Testbed
GWDG provides its in-house GWDG Compute Cloud with virtual machine im-
ages including various Linux operating systems pre-configured for instant use.
To accommodate diverse requirements of its users, in Y3, GWDG extended its
VM flavour offerings to 17 and operating system selection to 13, which are regu-
larly updated to offer newer, safer and more stable releases. Using these images,
users can create virtual machines and perform operations on them including sus-
pending, pausing, rebooting, snapshotting, and deleting. The platform further
allows assigning public IP addresses to virtual machines and to define firewall
rules. The GWDG Cloud is based on the Grizzly release of OpenStack. This
can be accessed through the web interface of GWDG portal or directly using the
OpenStack API.

In Y3, GWDG extended the infrastructure underlying its compute cloud. The
hardware underlying GWDG Compute Cloud now includes 38 nodes, having
152 processors, 2432 cores, and 9728 GB of memory. The performance metrics
include an overall Linpack value of 18.039 GFLOPS, an overall STREAM value
of 4.505 G/s and energy efficiency of 533 GFLOPS/KW.

53

The GWDG Compute Cloud is used for development, testing and deploy-
ment purposes. In addition GWDG provides support for resolving any access or
deployment issues.

The LSY flight scheduling prototype features a Read-Write intensive, high
throughput and low latency application. The GWDG Compute Cloud satisfies
these requirements. Similarly, the ASCS application requires sharing of NFS
file system for coordinating simulation load among a growing number of VMs.
GWDG supports AGH, LSY, ASCS or other partners in meeting server side
requirements and resolving any network, storage or infrastructural issues faced.

So far, the Year-3 use of the GWDG cloud testbed by the consortium adds up
to 30 VMs, 134 vCPUS, 162 GB memory and 29 public IPs, with approximately
1420 GB disk space.

Further more, GWDG is aiming at providing a basic analytics component so
that future values of service level parameters may be foreseen to avoid potential
violations.

All machines are operated in the data centre of GWDG which is provided in
accordance with European data protection and privacy regulations.

4.1.2 Flexiant Testbed (FLEX)
Flexiant provides a constantly evolving cloud virtualisation environment for the
PaaSage consortium based on the Flexiant Cloud Orchestrator (FCO). An FCO
environment enables customers to deploy virtual machines (VMs).

This testbed has been extended since M18 [6] with respect to functionality,
scale, and performance. Here, we describe recent changes for improving both
the testbed itself and integration with PaaSage.

Integration Mechanism

A RESTful interface was developed in FCO and released to v4.2 of FCO. Also
support was added for FCO to interface with the DASEIN Cloud API aggrega-
tor1.

Triggers

A cost related FCO Trigger has been created for translating Flexiant Units to
CPU Hours to gauge the rate various assets being charged on Flexiant provided
PaaSage platform for both by usage or time. This is for use in PaaSage by the
use cases taking advantage of the Utility Function [4].

1https://github.com/greese/dasein-cloud-flexiant

D5.1.2—Product Executionware Page 54 of 62

https://github.com/greese/dasein-cloud-flexiant

Table 4.1: FCO Cluster 2 hardware resources

#nodes cpu/ram
1 8 * Dual-Core AMD Opetron Processor 8820 /RAM 64GB
2 4 * AMD Opetron Processor 6320 /RAM 32GB
2 8 * AMD Opetron Processor 6212 /RAM 64GB
1 16 * Quad-Core AMD Opetron Processor 8356 /RAM 64GB
2 16 * AMD Opteron Processor 6366 HE / RAM 128 GB

Table 4.2: FCO Cluster 1 hardware resources

#nodes cpu/ram
2 16 * AMD Opteron Processor 6366 HE / RAM 128 GB
1 8 * AMD Opteron Processor 6212 / RAM 64 GB

Hardware

Flexiant added a second cluster PaaSage testbed recently to support the two clus-
ters available in PaaSage. These improvements are detailed in Table 4.1.

To cater for the needs of the PaaSage project a number of improvements have
been made to the existing PaaSage testbed, expanding it to include 4 new high
performance compute nodes. These nodes are each specked with 128 GB of
RAM and 16 Cores, which has resulted in an additional 512 GB of capacity, an
almost doubling of the previous capacity.

In addition to this capacity upgrade the backend storage for Cluster 1 has
now been updated to use Ceph storage. This has resulted in an increase of speed
available to VMs as well as an increase in capacity to the total overall storage
for the Cluster.

A further improvement has been the splitting of the FCO management box
from the back end database. The database has now been placed onto a new
separate node. This allows an increase in the total number of API requests as
well as improved performance for both the database and Web console.

The new platform topology after these improvements is shown in Figures 4.1
and 4.2.

Software

In addition to the updates to the testbed, Flexiant have also updated the cloud
software used on the testbed. Currently the testbed is on version 5.05 of FCO,
which is the most current version available since September 2015.

D5.1.2—Product Executionware Page 55 of 62

Figure 4.1: FCO Cluster 1 topology

Figure 4.2: FCO Cluster 2 topology

D5.1.2—Product Executionware Page 56 of 62

Figure 4.3: User Interface of current FCO version.

The User Interface has been rebuilt and offers increased speed, flexibility,
and usability. This improvement resulted in a cleaner more user-friendly experi-
ence (cf. Figure 4.3).

FCO now supports the addition of multi-tier storage. This can be offered
to customers using FCO products and can be limited to a certain value of I/O
operations per second (IOPS) or disk throughput. These can be used to create
product offers, which either restrict the speed of disks available, or offer higher
speed disks. The values available for limitation depend on the hypervisor in use.

4.2 Deployment Controller
Considering the fact that the Executionware already provides a RESTful inter-
face and an associated application server, it is the natural choice to integrate a
common controller functionality for the entire PaaSage platform. This feature
makes COLOSSEUM (cf. Section 2.1) the central entry point in PaaSage for de-
ployment.

In order to achieve this functionality the COLOSSEUM core has been ex-
tended with a REST API allowing to send models of applications to the PaaSage
platform, to run the Reasoner on those models and possibly to launch the de-
ployment of the application. Third-party and other PaaSage components such
as the social network [5] can use this API in order to trigger deployments of

D5.1.2—Product Executionware Page 57 of 62

Figure 4.4: Environment for deployment testing

CAMEL applications. Indeed, an integration with the social network is foreseen
for the final version of PaaSage [9]. Also the testing environment provided to
the PaaSage consortium (cf. Figure 4.4) makes use of this API.

Requests to the deployment API can be processed by COLOSSEUM’s asyn-
chronous queuing and execution system. The backend is responsible for launch-
ing of components from the PaaSage Upperware and then invoking them. In
particular, the API allows loading of CAMEL models into the CDO server as
well as triggering individual steps from the Upperware up to deploying the ap-
plication through COLOSSEUM.

D5.1.2—Product Executionware Page 58 of 62

5

Conclusion and Future Work

The Executionware constitutes a fundamental part of the entire PaaSage sys-
tem and its architecture. The primary purposes of the Executionware are (i) to
enact interacting with the cloud providers through their respective and largely
inhomogeneous APIs, in order to support the creation, configuration as well as
tear down of virtual machines and virtual networks; (ii) to enact the deployment
of application components such as load balancers, databases, and application
servers across the created virtual machines; (iii) to support the monitoring of
both virtual machines and application component instances by provisioning of
appropriate sensors/probes and by supporting a reporting interface for applica-
tions; (iv) to support the aggregation of raw metrics coming from the probes
to higher-level composite metrics, and the evaluation of any of these metrics
according to conditions and thresholds; (v) to report back metric values to the
Upperware and to store them in the Metadata-Database (MDDB).

Throughout the PaaSage project, the Executionware has been designed and
developed in order to fulfill the aforementioned tasks. Following the concept of
divide et impera this has led to a set of components that all support a sub set of
the requested features, but whose interplay emerges to the desired functionality.
In the following, we re-visit the individual components and by explicating the
way to access them and further sketch an outlook on their possible future.

The CLOUDIATOR suite consists of several individual tools that are re-captured
in the following. Table 5.1 presents an overview on these components, their li-
cense and whether they can be used independently. All of these components are
released publicly through their main repository hosted on GitHub. Besides, reg-
ular releases will also be available through the PaaSage OW2 repository1. The
development of COLOSSEUM will be continued in the scope of the CloudSocket2

project with a focus on fault tolerance and the aim to integrate PaaS-like of-
1https://tuleap.ow2.org/projects/paasage
2https://cloudsocket.eu/

59

https://tuleap.ow2.org/projects/paasage
https://cloudsocket.eu/

component source standalone
COLOSSEUM http://git.io/vn6mI no
AXE http://git.io/vn6mW yes
SWORD http://git.io/vn6mi yes
LANCE http://git.io/vn6m5 yes
VISOR http://git.io/vn6mA yes

Table 5.1: Components of the CLOUDIATOR suite (https://github.com/
cloudiator) and their download locations. All components have been re-
leased under the Apache 2.0 license.

ferings. Summarising, CLOUDIATOR consists of COLOSSEUM, AXE, SWORD,
LANCE, and VISOR.

The COLOSSEUM component runs in the domain of the PaaSage operator
and represents the central access point for any clients through a REST as well
as a Web UI. Clients may either be human operators or other tools including
the components of the Upperware. COLOSSEUM internally stores information
about cloud providers, created virtual machines, components, and component
instances.

SWORD is a library that provides an abstraction layer of the various cloud
providers. In particular, it encapsulates the differences between them with re-
spect to terminology and technical differences such as provisioning of floating
IPs, passwords, and access to virtual machines. LANCE runs in the cloud do-
main. In particular, COLOSSEUM will deploy one instance of Lance on each vir-
tual machine it creates. LANCE is responsible for executing the life-cycle of the
component instances to be installed on the virtual machine. Hence, LANCE ex-
ecutes the scripts to download, install, configure, and start component instances.
Just as LANCE, VISOR runs in the cloud domain and is responsible for collecting
monitoring data from virtual machines and component instances. In particular,
COLOSSEUM will install an instance of VISOR in any virtual machine it creates.
Whenever COLOSSEUM is requested to monitor certain aspects of an application
and/or virtual machine, it will connect to the VISOR of that virtual machine and
request the installation of a sensor together with an interval.

AXE is a two-purpose component that runs partially in the home and partially
in the cloud domain. Its first task is to post-process the data collected by the vi-
sor component. In particular, Axe is capable of executing aggregation functions
on the monitored data such as computing amongst other averages, medians, and
quantiles. It may relay selected metrics to other components including the Up-
perware.

D5.1.2—Product Executionware Page 60 of 62

http://git.io/vn6mI
http://git.io/vn6mW
http://git.io/vn6mi
http://git.io/vn6m5
http://git.io/vn6mA
https://github.com/cloudiator
https://github.com/cloudiator

Bibliography

[1] Ian Clarke, Oskar Sandberg, Brandon Wiley and TheodoreW. Hong. ‘Freenet:
A Distributed Anonymous Information Storage and Retrieval System’.
English. In: Designing Privacy Enhancing Technologies. Ed. by Hannes
Federrath. Vol. 2009. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2001, pp. 46–66. ISBN: 978-3-540-41724-8. DOI: 10.1007/
3-540-44702-4_4.

[2] The PaaSage Consortium. D1.6.1—Initial Architecture Design. PaaSage
project deliverable. Oct. 2013.

[3] The PaaSage Consortium. D2.1.3—CLOUDML Implementation Documen-
tation Final version. PaaSage project deliverable. Sept. 2015.

[4] The PaaSage Consortium. D3.1.2—Product Upperware. PaaSage project
deliverable. Sept. 2015.

[5] The PaaSage Consortium. D4.1.2—Product Database and Social Network
System. PaaSage project deliverable. Sept. 2015.

[6] The PaaSage Consortium. D5.1.1—Prototype Executionware. PaaSage project
deliverable. Mar. 2014.

[7] The PaaSage Consortium. D6.1.1—Initial Requirements. PaaSage project
deliverable. Mar. 2013.

[8] The PaaSage Consortium. D6.1.2—Final Requirements. PaaSage project
deliverable. Sept. 2014.

[9] The PaaSage Consortium. D6.2.3—Modified System. PaaSage project de-
liverable. June 2016.

[10] Jörg Domaschka, Kyriakos Kritikos and Alessandro Rossini. ‘Towards a
Generic Language for Scalability Rules’. In: Proceedings of CSB 2014:
2nd International Workshop on Cloud Service Brokerage. 2014 (To Ap-
pear).

61

http://dx.doi.org/10.1007/3-540-44702-4_4
http://dx.doi.org/10.1007/3-540-44702-4_4

[11] Lars George. HBase: The Definitive Guide. 1st ed. O’Reilly Media, 2011.
ISBN: 1449396100.

[12] Thomas Goldschmidt, Anton Jansen, Heiko Koziolek, Jens Doppelhamer
and Hongyu Pei Breivold. ‘Scalability and Robustness of Time-Series
Databases for Cloud-Native Monitoring of Industrial Processes’. In: 2014
IEEE 7th International Conference on Cloud Computing, Anchorage, AK,
USA, June 27 - July 2, 2014. 2014, pp. 602–609.

[13] Kyriakos Kritikos, Jorg Domaschka and Alessandro Rossini. ‘SRL: A
Scalability Rule Language for Multi-cloud Environments’. In: CloudCom,
2014 IEEE 6th International Conference on. Dec. 2014, pp. 1–9. DOI:
10.1109/CloudCom.2014.170.

[14] Avinash Lakshman and Prashant Malik. ‘Cassandra: A Decentralized Struc-
tured Storage System’. In: SIGOPS Oper. Syst. Rev. 44.2 (Apr. 2010),
pp. 35–40. ISSN: 0163-5980. DOI: 10.1145/1773912.1773922.
URL: http://doi.acm.org/10.1145/1773912.1773922.

[15] D. MacEachern and R. Morgan. SIGAR — System Information Gatherer
And Reporter. 2010.

[16] B. Morin, O. Barais, J. -M Jezequel, F. Fleurey and A. Solberg. ‘Models@
Run.time to Support Dynamic Adaptation’. In: Computer, IEEE 42.10
(2009), pp. 44–51. ISSN: 0018-9162. DOI: 10.1109/MC.2009.327.

D5.1.2—Product Executionware Page 62 of 62

http://dx.doi.org/10.1109/CloudCom.2014.170
http://dx.doi.org/10.1145/1773912.1773922
http://doi.acm.org/10.1145/1773912.1773922
http://dx.doi.org/10.1109/MC.2009.327

	Introduction and Overview
	The Executionware in PaaSage
	The Executionware Architecture
	Cloudiator and its Tools
	The MetricsCollector Component
	Third Party Components

	List of Changes from Initial Prototype
	Structure of This Document

	Cloudiator
	Colosseum
	Registries
	Usage and APIs
	Further Features

	Sword
	Lance

	Monitoring and Auto-scaling
	Visor
	Available Sensors and Probes
	Application-specific Probes
	Application specific probes for Scalarm and HyperFlow engines
	Client libraries for Visor

	TSDB Selection
	Requirements
	KairosDB
	OpenTSDB
	InfluxDB
	Selection of TSDB
	Time-series Database Installation

	Axe
	Aggregation
	Scalability Rules Language
	Auto-Scaling

	MetricsCollector
	MetricsCollector Modes of Operation
	Main Assumptions
	Architecture
	Modes of Interaction
	Integration with Axe

	Further Aspects
	Testbeds
	GWDG's OpenStack Testbed
	Flexiant Testbed (FLEX)

	Deployment Controller

	Conclusion and Future Work
	Bibliography

