

PaaSage

Model Based Cloud Platform Upperware

Deliverable D3.1.2

Product Upperware

Version: 1.1

D3.1.2 – Upperware Product Report Page 3 of 108

D3.1.1
Name, title and organisation of the scientific representative of the project's coordinator:

Mr Philippe Rohou Tel: +33 4 9715 5306 Fax: +33 4 9238 7822 E-mail: philippe.rohou@ercim.eu

Project website address: http://www.paasage.eu

Project

Grant Agreement number 317715

Project acronym: PaaSage

Project title: Model Based Cloud Platform Upperware

Funding Scheme: Integrated Project

Date of latest version of Annex I against which the
assessment will be made:

3rd July 2014

Document

Period covered: M18-M36

Deliverable number: D3.1.2

Deliverable title Product Upperware

Contractual Date of Delivery: 30th September 2015 (M36)

Actual Date of Delivery: 30th October 2015

Editor (s): Christian Perez

Author (s): Shirley Crompton, Kamil Figiela, Geir Horn, Frank
Griesinger, Dennis Hoppe, Tom Kirkham, Kyriakos
Kritikos, Maciej Malawski, Nikos Parlavantzas, Christian
Perez, Laurent Pouilloux, Daniel Romero, Craig Sheridan,
Pedro Silva, Arnab Sinha

Reviewer (s): Jörg Domaschka, Kyriakos Kritikos, Alessandro Rossini

Participant(s): Same as authors.

Work package no.: 3

Work package title: Upperware

Work package leader: Christian Perez

Distribution: PU

Version/Revision: 1.1

Draft/Final: Final

Total number of pages (including cover): 108

D3.1.2 – Upperware Product Report Page 4 of 108

DISCLAIMER

This document contains description of the PaaSage project work and findings.

The authors of this document have taken any available measure in order for its content to be accurate, consistent and

lawful. However, neither the project consortium as a whole nor the individual partners that implicitly or explicitly

participated in the creation and publication of this document hold any responsibility for actions that might occur as a

result of using its content.

This publication has been produced with the assistance of the European Union. The content of this publication is the sole

responsibility of the PaaSage consortium and can in no way be taken to reflect the views of the European Union.

The European Union is established in accordance with the

Treaty on European Union (Maastricht). There are currently

28 Member States of the Union. It is based on the European

Communities and the member states cooperation in the

fields of Common Foreign and Security Policy and Justice and

Home Affairs. The five main institutions of the European

Union are the European Parliament, the Council of Ministers,

the European Commission, the Court of Justice and the Court

of Auditors. (http://europa.eu)

PaaSage is a project funded in part by the European Union.

D3.1.2 – Upperware Product Report Page 5 of 108

History

Date Version Authors Description

2/10/2015 1.0 All Final version

16/10/2015 1.1 All Style improvement

D3.1.2 – Upperware Product Report Page 6 of 108

Contents
1 Introduction . 12
2 Upperware Architecture Overview 14

2.1 Overview . 14
2.2 ZeroMQ . 14
2.3 Upperware Meta-Models 17

3 Upperware Meta-Models . 18
3.1 Types and Constraint Problem Meta-Model 18
3.2 PaaSage Type and Application Meta-Models 20
3.3 Example . 22

4 Profiler . 26
4.1 CP Generator Model-to-Solver 26
4.2 Rule Processor . 32
4.3 Summary . 33

5 Reasoner . 34
5.1 Learning Automata (LA) based Assignments 35
5.2 MILP Solver . 47
5.3 CP Solver . 48
5.4 Greedy Heuristics . 54
5.5 Simulator Wrapper . 59
5.6 Meta-Solver . 65
5.7 Utility Function Generator 70
5.8 Flexiant Utility Function Cost Trigger 74
5.9 Solver-to-deployment 75

6 Adapter . 78
6.1 Adaptation Manager 78
6.2 Plan Generator . 82
6.3 Application Controller 85
6.4 SRL Adapter . 86
6.5 Executionware Client 88

7 Conclusion . 91

References 92

A Common Meta-Models 100

B Saloon Ontology 103

C Plan Generator Output Data Dictionary 104

D3.1.2 - Product Upperware Report Page 7 of 108

List of Figures
1 CAMEL models in the PaaSage workflow 12
2 ZeroMQ Architecture of the Upperware 15
3 Meta-Models overview. 18
4 CP Meta-Model overview. 19
5 Expressions in the CP Meta-Model. 19
6 Type Meta-Model: types, variables, and constants in the CP Meta-

Model. 20
7 PaaSage Type and Application Meta-Models overview. 21
8 Virtual Machines and Providers in the PaaSage Type and App Meta-

Models. 22
9 Application Components and Variables in the PaaSage Type and

App Meta-Model. 23
10 CP Model of the Simple Application example. 24
11 PaaSage Model of the Simple Application. 25
12 Properties of some elements of the Simple Application example. . . 26
13 Profiler Architecture. 27
14 CP Generator - Model to Solver Architecture. 29
15 Saloon Ontology (excerpt) with the selected concepts for the Simple

Application example. 30
16 Process executed by the CP Generator Model-to-Solver component. 31
17 Reasoner: Architecture and main components. 34
18 The fundamental learning loop: The learning actor proposes an ac-

tion to the environment. In this case, the action is a particular de-
ployment configuration. The environment then provides feedback
on the quality of this configuration in terms of a reward to the learn-
ing agent. 36

19 The learning environment controlling the problem variables and
constraints is an actor that interacts with a learning actors through
messages. 42

20 The various options of binding the solver code with the compiled
variables and constraints of the problem at hand. 45

21 The hierarchy of a learning actor implementing Variable Structure
Stochastic Learning. Alternatively the Learning Actor could have
inherited the class implementing a Fixed Structure Stochastic Learn-
ing type. 46

22 Architecture of MILP solver. 48
23 Internal architecture of the Simulator Wrapper. 60
24 Generic application model. 60
25 Generic request’s dataflow model. 61

D3.1.2 - Product Upperware Report Page 8 of 108

26 Generic application model for the RUBBoS application. 62
27 2 request types’ dataflow for the RUBBoS application. 63
28 Trade-off between the metrics for the RUBBoS application and the

horizontal scalability of the application tier. 67
29 Meta-Solver ZeroMQ Interaction 68
30 The steps needed in order to compute the fuzzy utility value. 72
31 Solver-to-deployer-overview. 76
32 Adapter Architecture. 78
33 Adaptation Manager structure. 79
34 Plan Generator class diagram. 84
35 Logical dependencies between the configuration tasks. 85
36 Workflow of the SRL Adapter. 87
37 Meta-Models overview. 100
38 CP and Type Meta-Models. 101
39 PaaSage Type and Application Meta-Model. 102
40 Saloon Ontology. 103

D3.1.2 - Product Upperware Report Page 9 of 108

List of Tables
1 ZeroMQ Messages in the Upperware. 16
2 ZeroMQ message integration with the Meta-Solver. 69
3 REST API. 83
4 Structure of the SRL Adapter. 87
5 Methods of the generic Client Controller of type T. 89
6 Data Dictionary . 104
6 Data Dictionary . 105
6 Data Dictionary . 106
6 Data Dictionary . 107
6 Data Dictionary . 108

D3.1.2 - Product Upperware Report Page 10 of 108

Executive Summary
This document describes the architecture of the Upperware layer of PAASAGE

at M36. The Upperware contains three main entities, known as the Profiler,
the Reasoner, and the Adapter. This deliverable describes the implementation
of each of them, as well their interaction through asynchronous messages. It
also describes four meta-models internal to the Upperware to ease separation of
concerns, in particular with respect to the Profiler and the Adapter.

This deliverable provides our view at M36. As long as experience will be
gained using the developed software, the implementation of the Upperware layer
can be updated. It is a refinement of Deliverable D3.1.1 [Bsi+13] that has presen-
ted the initial description of the Upperware.

Intended Audience
The deliverable is a public document designed for readers with some Cloud com-
puting experience. It presumes the reader is familiar with the overall PAASAGE

architecture as described in Deliverable D1.6.1 [Jef+13]. CAMEL is described
in detail in Deliverable D2.1.3 [RP15] whereas the ExecutionWare is presen-
ted in Deliverable D5.1.2 [Hop+15]. This document is an updated version of
Deliverable D3.1.1 [Bsi+13] that describes the first prototype version of the Up-
perware.

For the external reader, this deliverable provides an insight into the Upper-
ware sub-module of PAASAGE, its architecture and its various entities. For the
research and industrial partners in PAASAGE, this deliverable enables an under-
standing of the design of the Upperware, its capabilities and also its limitations.

D3.1.2 - Product Upperware Report Page 11 of 108

1 Introduction
In order to facilitate the integration across the components managing the life-
cycle of multi-cloud applications, PaaSage leverages upon CAMEL models that
are progressively refined throughout the modelling, deployment, and execution
phases of the PaaSage workflow (see Figure 1):

Provisioning	
 and	

deployment
modelling

Quality	
 of	

service	

modelling

Provisioning	
 and	

deployment	

requirements

Service-­‐level	

objectives Scalability	
 rules

Organisation	

modelling

Provider	

modelling

Organisation	
 models Provider	
 models

CAMEL
Cloud	
 provider-­‐

independent	
 model Profiler Constraint	
 problem Reasoner

CAMEL
Cloud	
 provider-­‐
specific	
 model

Adapter

Deployment	
 plansExecutionwareInfrastructures	

/	
 Platforms

Historical	
 data

Modelling
phase

Deployment
phase

Execution
phase

Figure 1: CAMEL models in the PaaSage workflow

• Modelling phase: The PaaSage users design a cloud-provider independ-
ent model (CPIM), which specifies the deployment of a multi-cloud ap-
plication along with its requirements and objectives in a cloud provider-
independent way.

• Deployment phase: It is handled by the Uppeware, made of three sub-
components. First, the Profiler component consumes the CPIM, matches
this model with the profile of cloud providers, and produces a constraint
problem. Second, the Reasoner component solves the constraint prob-
lem (if possible) and produces a cloud-provider specific model (CPSM),
which specifies the deployment of a multi-cloud application along with its
requirements and objectives in a cloud provider-specific way. Third, the
Adapter component consumes the CPSM and produces deployment plans,
which specify platform-specific details of the deployment.

• Execution phase: The Executionware consumes the deployment plans and
enacts the deployment of the application components on suitable cloud in-
frastructures. Finally, the Executionware records historical data about the

D3.1.2 - Product Upperware Report Page 12 of 108

application execution, which allows the Reasoner to look at the perform-
ance of previous CPSMs when producing a new one.

Deliverable D1.6.1 [Jef+13] has provided a high level view of these elements.
In particular, it gives some insights on the components of the Upperware (Pro-
filer, Reasoner, and Adapter), and how they relate. This document present the
major choices we have made for developing them, showing in particular the in-
puts and outputs of the various sub-components. One major change with respect
to the initial architecture presented in D1.6.1 is the introduction of four meta-
models private to the Upperware to ease separation of concerns, in particular
with respect to the Profiler and the Adapter.

Deliverable D3.1.1 [Bsi+13] has presented an initial description of the Up-
perware, known as the prototype Upperware. The current document is an up-
dated version of Deliverable D3.1.1 based on 18 more months of work. As a
whole, the architecture does not have any major change.

Structure of the document
The structure of this document quite closely follows the structure of the Upper-
ware. Section 2 sums up the architecture of the Upperware, its relationships
with other PAASAGE elements, as well as the ZeroMQ based communication
layer between Upperware elements. Next, Section 3 motivates and presents the
four meta-models internal to the Upperware. The sub-components of the three
major entities of the Upperware are then described: Section 4 for the Profiler
elements, Section 5 for the Reasoner elements, and Section 6 for the Adapter
elements. Section 7 concludes the deliverable.

This deliverable contains the appendices. Appendix A fully describes the
Upperware meta-models. Appendix B fully represents the Saloon Ontology.
Appendix C list the full data dictionary output by the Plan Generator of the
Adapter.

D3.1.2 - Product Upperware Report Page 13 of 108

2 Upperware Architecture Overview

2.1 Overview
As defined in Deliverable [Jef+13], the first objective of the Upperware is to
compute which commands to send to the Executionware from a CAMEL config-
uration model (initial deployment). To this end, it can make use of the Metadata
Database (MDDB) to retrieve information related for example to Cloud Pro-
viders or to historical data related to previous executions.

After the initial deployment, the Upperware will typically receive monitoring
information from the Executionware and the MDDB. Its tasks will be to com-
pute new commands to send to the Executionware to reconfigure the existing
deployment in order to still conform to the user’s deployment constraints.

As shown in Figure 1, at the end of the deployment description phase, that
involves the deployment design, the identification of requirements and goals, all
information is gathered into a CAMEL configuration model (aka CPIM). This
document instance is the initial input to the Upperware. Its processing is as
follows. First, the Profiler analyses it to produce an Upperware model , that con-
tains a list of potential candidate providers that satisfy the constraints. Second,
the Reasoner computes a CAMEL deployment model (aka CPSM), that is the
chosen deployment solution. Third, the Adapter addresses the transformation
of the output of the Reasoner into the target configuration in an efficient and
consistent way, by derving a set of commands to the Executionware.

The Adapter is also responsible for performing high-level application man-
agement, which involves monitoring and adapting components deployed on mul-
tiple cloud providers, at runtime to still satisfy the user deployment and perform-
ance requirements initially posed.

The reminder of this section gives an overview of two transveral elements:
the ZeroMQ messaging library as describe in the Section 2.2, and the Upperware
Meta-Models as introduced in Section 2.3.

2.2 ZeroMQ
Overview

In order to distribute metric information effectively across the PaaSage architec-
ture the project decided to use the ZeroMQ messaging library. The choice of
ZeroMQ was made after an investigation over alternatives including RabbitMQ.
It was decided that ZeroMQ offered the best option to support scalable imple-
mentations of PaaSage where the possibility of large amounts of messaging data
is expected.

D3.1.2 - Product Upperware Report Page 14 of 108

Figure 2: ZeroMQ Architecture of the Upperware

ZeroMQ supports multiple forms of message exchange and can achieve this
without the use of a message broker. This enables point to point connections to
be developed in the PaaSage architecture which improves performance and re-
moves potential security risks associated with a broker (as a third party) handling
messages from various sources.

Design

The use of ZeroMQ in the year 3 implementation of PaaSage is to enable the re-
deployment of applications. ZeroMQ is used to pass messages between Upper-
ware and Executionware components currently associated with the deployment
and reasoning of PaaSage deployments.

Using ZeroMQ metrics are sent to a number of components from the Metrics
Collector. These metrics are used by the MetaSolver, Adaptor, the LA Solver, the
SimWrapper to monitor the current application deployments and adapt operation
in response. A typical adaptation is the creation of a new solution either directly
by the Solver based on metrics or via a request directly from the MetaSolver’s
reading of metrics or indirectly via the MetaSolver through the Adaptors analysis
of metrics.

D3.1.2 - Product Upperware Report Page 15 of 108

Implementation

The project uses the publish and subscribe model for message exchange. When
components in the PaaSage architecture are started they automatically look to
subscribe to specific ZeroMQ publishing endpoints provided by other compon-
ents. The address and port of these endpoints is contained in a configuration file
that is exploited during a component’s initialisation to adjust it.

ZeroMQ message exchange is visualised in Figure 2. As illustrated, the pub-
lish and subscribe message exchanges dictate the flow of data and are done in a
point to point fashion.

As Figure 2 illustrates the main point to point connections between Reasoner
and the Adapter internal components, and also the Executionware. This is be-
cause the key focus of the implementation in year 3 is to use the messaging
framework to enable to the platform to adapt to changes. The key workflow is
reflected in the order of messages (marked in numbers within Figure 2), explan-
ations of the messaging can be seen in Table 1 below.

ID Purpose Format Publisher / Port
1 Solution Notification MQ: “solutionAvailable”, Refer-

ence to Model in CDO (String)
Solvers: 5530 to
5540

2 Model to Deploy Request MQ: “startDeployment”, Refer-
ence to CPModel (String), Refer-
ence to Model in CDO(String)

Meta Solver:
5544

3 Deploy Model Request MQ: newDeploymentCAMELM-
odel, Ref to Updated / New
CAMEL Model in CDO

Solver2Deploy:
5546

4 Scale Action Notification MQ: entityName(String) ,
ID(String), typeOfAction(String)

ExecutionWare:
5548

5 Metric Configuration MQ, “startCollection”,Reference
to model in CDO

Adaptor: 5550

6 Metric Notification MQ, metricName(String), value
(String), Reference to model in
CDO

Metrics Col-
lector: 5552

7 Solve Model Request MQ: “startSolving”, Reference to
Model in CDO (String), Reference
to CPModel (String)

Adaptor: 5550

Table 1: ZeroMQ Messages in the Upperware.

In addition to the message formats of the ZeroMQ implementation Table 1
also illustrates the implemented ports and publisher / subscriber relationships.

D3.1.2 - Product Upperware Report Page 16 of 108

Model references passed are used by the components to retrieve specific mod-
els from the CDO server/MDDB and compare the contents against the received
metric data from ZeroMQ.

2.3 Upperware Meta-Models
PAASAGE is a model based project. The Profiler and most Reasoner and Adapter
elements are based on the usage of models. Therefore, we have defined four
additional meta-models that aims at capturing elements important for Reasoner
components. Section 3 presents these meta-models in details, and their usage is
detailed when components of the Profiler (cf. Section 4) and the Reasoner (cf.
Section 5) make use of them. Globally, the Profiler creates meta-model instances
that are mainly read by Reasoner components. The only important modifications
made by Reasoner components is for storing a deployment solution into them.

These meta-models are mainly defined to capture information related to the
deployment problem that the Reasoner has to solve. We have aimed to minimise
dependencies to CAMEL, for example by controlling the exposition of CAMEL
concepts. Our goal was to separate as much as possible CAMEL evolutions from
Reasoner internals.

D3.1.2 - Product Upperware Report Page 17 of 108

3 Upperware Meta-Models
As introduced in Section 2.3, four meta-models have been defined to minim-
ise model transformations and to minimise Reasoner dependencies to CAMEL.
Figure 3 provides an overview of these meta-models and their relationships. The
Constraint Problem Meta-Model (CP Meta-Model) and Types Meta-Model en-
able the definition of the Cloud provider selection problem as a constraint prob-
lem. The PaaSage Application Meta-Model (PaaSage App Meta-Model) and
PaaSage Type Meta-Model establish the relationship between concepts from the
Cloud and constraint problem worlds. These meta-models are presented in the
remaining of this section.

PaaSage App
Metamodel

CP Metamodel Type Metamodel

PaaSage Type
Metamodel

Figure 3: Meta-Models overview.

3.1 Types and Constraint Problem Meta-Model
Overview

The CP meta-model contains the different concepts needed to define a constraint
problem: variables, constants, constraints, objective functions and solutions.
Figure 4 presents an overview of this meta-model. An objective function is re-
ified through a NumericExpression which value will be maximised or minimised
(cf. Goal and GoalEnumTypes). The constraints are ComparisonExpressions
that are defined by means of auxiliary expressions. A Solution provides values
for different variables and metric variables that are in the constraint problem and
a time stamp indicating when the problem was solved.

Expressions

The Expressions are mainly NumericExpressions and BooleanExpressions. Vari-
ables, Metric Variables, Constants and ComposedExpressions are numeric ex-
pressions as depicted in Figure 5. A ComposedExpression contains a set of nu-

D3.1.2 - Product Upperware Report Page 18 of 108

variables

<<Abstract>>
Expression

-id:String

<<Abstract>>
CPElement

goal:GoalTypeEnum
Goal auxExpressions

0..*constraints0..*

-comparator:ComparatorEnum
ComparisonExpression

goals

type:BasicTypeEnum
Constant
constants

0..*

0..*

Variable

expression

<<Abstract>>
NumericExpression

MetricVariable Solution
metricVariables solutions

0..*

ConstraintProblem

0..*

Figure 4: CP Meta-Model overview.

meric expressions related through an operation, i.e.,, addition, subtraction, mul-
tiplication, and division (cf. OperatorEnum in Figure 5).

type:BasicTypeEnum
Constant

<<Abstract>>
Expression

expressions

exp2 exp1

2..*

-comparator:ComparatorEnum
ComparisonExpression-plus

-minus
-times
-div

<<enumeration>>
OperatorEnum

-greaterThan
-lessThan
-greaterOrEqualTo
-lessOrEqualTo
-equalTo
-different

<<enumeration>>
ComparatorEnum

<<Abstract>>
NumericExpression

<<Abstract>>
Expression

<<Abstract>>
BooleanExpressionVariable

goal:GoalTypeEnum
Goal

-max
-min

<<enumeration>>
GoalTypeEnum

expression

MetricVariable

-operator:OperatorEnum
ComposedExpression

Figure 5: Expressions in the CP Meta-Model.

A boolean expression is a ComparisonExpression that relates two expres-
sions by using a comparator, such as >,<, ≥ , ≤ , = and 6= (cf. ComparatorE-
num in Figure 5).

Types, Variables, Metric Variables, Solutions and Constants

Figure 6 shows the Types Meta-Model concepts in green, and the concepts in
yellow are the ones related to CP Meta-Model. As observed, this meta-model
defines the basic values types, i.e.,, integer, long integer, float, double, boolean
and string, which are used to characterise variables, metric variables and con-
stants in a constraint problem.

D3.1.2 - Product Upperware Report Page 19 of 108

<<Abstract>>
ValueUpperware

<<Abstract>>
NumericValueUpperware

-value:int
IntegerValueUpperware

-value:long
LongValueUpperware

-value:double
DoubleValueUpperware

-type:BasicTypeEnum
Constant

from

<<Abstract>>
Domain

NumericListDomain

-type:BasicTypeEnum
NumericDomain

RangeDomain<<Abstract>>
NumericValueUpperware

to

values

domain

-value:float
FloatValueUpperware

value

1..*

Types Metamodel

CP Metamodel

Legend

ListDomainvalues

1..* MultiRangeDomain

ranges
2..*

-Integer
-Float
-Double
-Long

<<enumeration>>
BasicTypeEnum

-locationId:String
-providerId:String
-vmId:String
-OsImageId: String
-hardwareId: String

Variable

-value:boolean
BooleanValueUpperware

type:BasicTypeEnum
MetricVariable

-timestamp:long
Solution

-value:string
StringValueUpperware

VariableValue MetricVariableValue

<<Abstract>>
NumericValueUpperware

value

1..* 1..*
variableValue metricVariableValue

variable

variable

Figure 6: Type Meta-Model: types, variables, and constants in the CP Meta-
Model.

A Variable has a Domain that can be numeric or a list of strings while a
MetricVariable has a basic type (cf. BasicTypeEnum in Figure 6) as domain. A
Variable also defines identifiers as strings which are related to different require-
ments defined by the CAMEL model of the application. A NumericDomain is
defined by basic types. However, this kind of domain can be specialised for only
considering a subset of values through NumericListRange, RangeDomain and
MultiRangeDomain. A MultiRangeDomain contains two or more ranges. On
the other hand, a Constant also has a value but its domain is defined only by
basic types.

A Solution defines VariableValues and MetricVariableValues which specify
numeric values for variables and metric variables respectively. A CP can have
several solutions as Cloud offers can evolve at runtime making necessary to
modify the deployment of the application.

Figure 38 in Appendix A depicts the whole Types Meta-Model and CP Meta-
Model and their relationships.

3.2 PaaSage Type and Application Meta-Models
Overview

The PaaSage Application Meta-Model (or PaaSage App Meta-Model) combined
with the PaaSage Type Meta-Models contain the required concepts to charac-

D3.1.2 - Product Upperware Report Page 20 of 108

components

1..*

-camelId:String

<<Abstract>>
CAMELElementUpperware

providers
vmProfiles

-camelId:String

<<Abstract>>
CAMELElementUpperware

0..*

vms
1..*

-id:String
VirtualMachine

profile

relatedComponent

-typeId:int

<<Abstract>>
PaaSageCPElement variables

0..*

-GeoLocation
-PhysicalLocation
-VirtualLocation
-ResponseTime
-Provider
-Bandwidth
-Users
-Quantity

<<enumeration>>
VariableElementTypeEnum

goals

0..*

0..*

-id:String
PaaSageConfiguration

-id:string
FunctionType function

-Min
-Max

<<enumeration>>
GoalOperatorEnum

VirtualMachineProfile

-id:String
-features:List
-min:int
-max:int

ApplicationComponent

-id:String
-goal:GoalOperatorEnum

PaaSageGoal

CP Metamodel

Legend

PaaSage Application Metamodel

PaaSage Types Metamodel

-typeId:int

<<Abstract>>
PaaSageCPElement

-id.String
Provider

VirtualMachineProfile

-paasageType: VariableElementTypeEnum
-cpVariableId:String

PaaSageVariable

-id.String
Provider

relatedVirtualMachineProfile

relatedProvider

Figure 7: PaaSage Type and Application Meta-Models overview.

terise an application to be deployed by using the PaaSage platform. Figure 7
provides an overview of these models. As observed, an application is described
with a PaaSageConfiguration containing VirtualMachineProfiles, and a set of
Providers. The configuration also contains PaaSageGoals, i.e.,, minimisation
and/or maximisation of relevant dimensions for users. The final objective of
the PaaSage Type and Application Meta-Models is to allow the derivation of the
CP Model used by the Reasoner (cf. Section 5) and the generation of virtual
machine and component instances for the Adapter component (cf. Section 6).

Virtual Machines and Providers

The Cloud providers are reified by the ProviderType class in the PaaSage
Type Meta-Model (cf. Figure 8). This means that, for example, Amazon EC2,
ElasticHosts and Windows Azure are provider types. As these providers can be
located in different regions and their location is defined according to application
requirements, the PaaSage App Meta-Model includes a Provider concept with a
specific position, i.e.,, continent, country or city.

As Cloud providers, virtual machines (VM) are represented through two con-
cepts in the meta-model (cf. Figure 8): VirtualMachineProfiles and VirtualMa-
chines. The former represents the types of VM supported by providers or defined
by the users themselves. The latter represents concrete instances of VirtualMa-
chineProfiles that will potentially enable the application execution.

VirtualMachineProfiles have an operating system (OS), memory, storage ca-
pacity, CPU (with frequency and number of cores) and location as depicted in
Figure 8. These profiles are also related to a ProviderDimension that depends on
a specific metric (e.g., cost and availability) related to the provider.

D3.1.2 - Product Upperware Report Page 21 of 108

-MHz
-GHz

<<enumeration>>
FrequencyEnum

-MB
-GB
-TB

<<enumeration>>
DataUnitEnum

ContinentUpperware

country

continent

CityUpperware

CountryUpperware

location

location

-camelId:string

<<Abstract>>
CAMELElementUpperware

-frequency:FrequencyEnum
-cores:int

CPU

-unit:DataUnitEnum
Memory

cpu 0..1

<<Abstract>>
NumericValueUpperware

<<Abstract>>
ResourceUpperware

value

0..1 0..1memory

storage

1..*

-id:String
VirtualMachine

profile

0..*

-name:String
-version:String
-architecture:OSArchitectureEnum

OS
os

-typeId:int

<<Abstract>>
PaaSageCPElement

-typeId:int

<<Abstract>>
PaaSageCPElement

-name:String
-alternativeNames:List

<<Abstract>>
LocationUpperware

-typeId:int

<<Abstract>>
PaaSageCPElement

Type Metamodel

Legend

PaaSage Application Metamodel

PaaSage Types Metamodel

-id:string
ProviderType

-id.String
Provider

type

-value:double
-metricID:string

ProviderDimension

-relatedCAMELId:string
VirtualMachineProfile

providerD
im

ension

-id.String
Provider provider

<<Abstract>>
ResourceUpperware

1..*

-typeId:int

<<Abstract>>
PaaSageCPElement

-unit:DataUnitEnum
Storage

Figure 8: Virtual Machines and Providers in the PaaSage Type and App Meta-
Models.

Variables and Application Components

ApplicationComponents in the PaaSage App Meta-Model represents the internal
components in CAMEL [Ros+15]. An ApplicationComponent has Required-
Features, which are dependencies to other application components or virtual
machines. An ApplicationComponent also has a list of preferred providers to be
deployed and a VM that could contain it. Figure 9 shows ApplicationComponent
and these relationships.

PaaSageVariables represents the connection between a PaaSage App Model
and a CP Model. They are related to ApplicationComponents and they typically
define relationships between VM, providers and application components.

3.3 Example
In order to illustrate the use of the presented meta-models, we use a Java applic-
ation, called Simple Application, with one component containing a Web applic-
ation ARchive (WAR) file. Let assume the requirements are as follow:

• Required resources: ≥ 512 MB of RAM,≥ 1 GB of hard disk,≥ 1.6 GHz
of CPU frequency.

D3.1.2 - Product Upperware Report Page 22 of 108

-camelId:string

<<Abstract>>
CAMELElementUpperware

-id:String
VirtualMachine

vm

relatedComponent

0..1

-relatedCloudVMId:string
VirtualMachineProfile

requiredProfile

requiredFeatures 0..*

providedBy

-id:string
ProviderType

preferred
Providers
0..*

-id:String
-features:List
-min:int
-max:int

ApplicationComponent

0..1Legend
PaaSage Application Metamodel

PaaSage Types Metamodel

Provider

relatedProvider

-paasageType:VariableElementTypeEnum
-cpVariableId:string

PaaSageVariable
relatedVirtu alM

achine Profile

-camelId:string

<<Abstract>>
CAMELElementUpperware

-feature:string
-remote:boolean
-optional:boolean
-contaiment:boolean

RequiredFeature

Figure 9: Application Components and Variables in the PaaSage Type and App
Meta-Model.

• Preferred providers: Amazon EC21, ElasticHosts2, Windows Azure3.

• Preferred operating system: Ubuntu Server 13.X.

• Additional services: Apache Tomcat 7.X.

• User goal: Minimisation of the deployment cost.

CP Model

Equation 1 represents a simple cost function that we want to minimise for the
simple application example.∑

c∈COMP

∑
p∈PROV

(number_ofvm1,c,p)× Pricevm1,p ≡ (1)

(number_ofvm1_simpleApplicationWar_amazon1)× Pricevm1_amazon1)+

(number_ofvm1_simpleApplicationWar_elastichosts1)× Pricevm1_elastichosts1) + ...
(2)

1Amazon EC2: http://aws.amazon.com/ec2/
2ElasticHosts: http://www.elastichosts.com/
3Windows Azure: www.windowsazure.com/

D3.1.2 - Product Upperware Report Page 23 of 108

http://aws.amazon.com/ec2/
http://www.elastichosts.com/
www.windowsazure.com/

where
vm1 = Virtual machine defining the hardware and OS requirements
PROV = {amazon1, elastichosts1, windowsAzure1}
Pricevm1,p = Cost of deploying Virtual Machine vm1 on the provider p
COMP = {simpleApplicationWar, tomcat}
(∀p ∈ PROV | : (∀c ∈ COMP | : number_ofvm1_c_p ∈ [0, 128]))

CP Metamodel

conforms to

Figure 10: CP Model of the Simple Application example.

Figure 10 presents a screenshot of the related CP Model by using the Eclipse
Modeling Framework4 (EMF). In this example vm1 satisfies the requirements
of application in terms of memory, storage, CPU and operating system. The
constraint to be satisfied in order to minimise this function is presented below.

• Tomcat and application WAR have to be deployed on the same virtual
machine:

(∀c1, c2|c1, c2 ∈ COMP ∧ c1 6= c2 : (∀p|p ∈ PROV :

number_ofvm1_c1_p = number_ofvm1_c2_p)) (3)
4EMF: http://www.eclipse.org/modeling/emf/

D3.1.2 - Product Upperware Report Page 24 of 108

http://www.eclipse.org/modeling/emf/

PaaSage Application Model

Figure 11 shows a screenshot of the PaaSage Model for the Simple Application.
Such a model defines the minimisation goal, the three preferred providers, the
virtual machine profile that supports the required resources and the variables that
define the relationship between virtual machine, providers and components.

The minimisation goal has cost as function type as depicted in
Figure 12 a). In the provider case, Figure 12 b) shows an in-
stance of Amazon called amazon1 that has Europe as location. Fig-
ure 12 c) indicates that Simple Application should be deployed in
Europe on any of the three providers. Finally, Figure 12 d) relates
U_app_component_simpleApplicationWar_vm_vm1_provider_elastichosts1
variable to simpleApplicationWar component, vm1 and elastichosts1 provider.

PaaSage App
Metamodel

conforms to

Figure 11: PaaSage Model of the Simple Application.

D3.1.2 - Product Upperware Report Page 25 of 108

a) b)

c)

d)

Figure 12: Properties of some elements of the Simple Application example.

4 Profiler
The Profiler represents the entry point of the Upperware, which means that it pro-
cesses the different application requirements, user goals and preferences (e.g., a
list of desirable providers or the deployment in a specific region) in order to
produce a constraint problem description used by the reasoner to find a suitable
provider. Requirements refer to different computational resources (e.g., memory,
CPU cores and storage) and software elements (e.g., operating system, database
and frameworks) that the application needs to work properly. User goals (called
optimisation requirements in CAMEL) are minimisation or maximisation of di-
mensions that have important business impact, such as cost or application re-
sponse time.

Figure 13 depicts the global architecture of the Profiler. The CP
Generator Model-to-Solver component produces a constraint problem
description that is improved by the Rule Processor component by remov-
ing redundancies and verifying the list of Cloud providers candidates. A detailed
description of these two components is given in the following sections.

4.1 CP Generator Model-to-Solver
Overview

This component receives as input a CAMEL Model, which captures the require-
ments in terms of computational resources and services related to the PAASAGE

D3.1.2 - Product Upperware Report Page 26 of 108

Input
Camel
Model

CP Generator
Model to Solver

CP Model

Upperware Model

PaaSage
Application

Model

Rule Processor
CP Model

PaaSage
Application

Model

Application and
Resource Model

Upperware Model

Legend

Output

Component

Camel
Model

SLA

Figure 13: Profiler Architecture.

application as well as the user goals such as the minimisation of cost and re-
sponse time. The outputs are a CP Model (cf. Section 3.1) representing the
selection problem as a constraint problem and a PaaSage Application Model (cf.
Section 3.2) that relates the variables in the CP Model with the Cloud concepts
in the CAMEL Model. Listing 1 presents an excerpt of the CAMEL Model for
the Simple Application (cf. Section 3.3). In particular, it shows a deployment
model that defines a VM (named "vm1") satisfying the application requirements
in terms of resources, location and operating system.

Implementation

Figure 14 depicts the various components that compose the CP Generator
Model-to-Solver component. The CAMEL Model Processor uses the
Deployment Model Processor and Provider Model Processor
to deal with the input CAMEL Model. In particular, the Deployment Model
Processor fills the PaaSage Application Model with information related
to virtual machine profiles and their related Cloud providers as well as to
the different elements that compose the application. On the other hand, the
Provider Model Processor benefits from the core of the Saloon Frame-
work [QRD13], which is based on the CHOCO library5 for constraint program-
ming, to filter the Cloud providers defined by the CAMEL Model according to
the application requirements. The CAMEL Model Processor extracts these

5The CHOCO Solver: http://www.emn.fr/z-info/choco-solver/

D3.1.2 - Product Upperware Report Page 27 of 108

http://www.emn.fr/z-info/choco-solver/

Listing 1: CAMEL Model for the Simple Application example (excerpt)

camel model SimpleApplication {
...
deployment model simpleApplicationDeploymentModel {

vm vm1 {
requirement set vm1RequirementSet
provided host vm1ProvidedHost

}
internal component simpleApplicationWar {

required host simpleApplicationWarRequiredHost
}
...
requirement set vm1RequirementSet {

location: simpleApplicationRequirementModel.
vm1LocationRequirement

quantitative hardware: simpleApplicationRequirementModel.
vm1HardwareRequirement

os: simpleApplicationRequirementModel.vm1OSRequirement
}
hosting simpleApplicationWarTovm1 {

from simpleApplicationWar.
simpleApplicationWarRequiredHost

to vm1.vm1ProvidedHost
}
...

}
location model simpleApplicationLocationModel {

region EU {
name: Europe
alternative names [eu, europe]

}
}
requirement model simpleApplicationRequirementModel {

quantitative hardware myVmHardwareRequirement {
cpu: 1.6 ..
ram: 512 ..
storage: 1 ..

}
os vm1OSRequirement {

os: ubuntu
}
location requirement vm1LocationRequirement {

locations [simpleApplicationLocationModel.EU]
}

}
...

}

D3.1.2 - Product Upperware Report Page 28 of 108

requirements from the requirement model (in the CAMEL Model) and defines
them on the Saloon Ontology depicted in Figure 15. As observed, the selected
concepts and some of the related values correspond to the application require-
ments specified in Section 3.3 and they are independent from Cloud providers.
A complete version of the Saloon ontology is defined in Appendix B.

Database Proxy

Generation
Orchestrator

Dimension Value
Estimator

CP Model
Derivator

Function Creator

Camel Model
Processor

Deployment
Model Processor

Provider Model
Processor

Figure 14: CP Generator - Model to Solver Architecture.

The CP Model Derivator component processes the PaaSage Applica-
tion Model produced by the CAMEL Processor in order to generate a first
version of the CP Model that will be later improved by the Rule Processor
component. The list of variables, constants and constraints are derived from
the different kind of virtual machines as well as the relationships between the
different elements that compose the application. According to the dimensions
to be optimised such as cost, response time or availability, the CP Model
Derivator provides Function Creator components that create basic ob-
jective functions that will be used for the provider selection. For example, the
Cost Function Creator generates a cost function by using the Cloud
provider candidates selected by the Provider Model Processor. The
information related to provider configurations (i.e., selected virtual machine
types) is retrieved through the Database Proxy. Finally, the Generator
Orchestrator coordinates the whole model processesing that leads to the
generation of the output models, which are stored via the Database Proxy.
Figure 10 and Figure 11 present a screenshot of the output models in the EMF
editor.

Summary

The CP Generator Model-to-Solver component takes a CAMEL
Model as input. The outputs are a CP Model and a PaaSage Application
Model. Considering the different subcomponents of the CP Generator

D3.1.2 - Product Upperware Report Page 29 of 108

Thing

Technical
Element

Provisioning

Countable
Concept

Application
Server

Language

Countable
Concept

Tomcat Tomcat 6.0

Tomcat 7.0

Java

Resource

Quantifiable
Concept

Java 6

Java 7

Tomcat
7.0.X

Memory

Storage

CPU
Frequency

provider Heroku

Amazon
EC2

ElasticHosts

Windows
Azure

Min= 1.6
unit= GHz

Min= 1
unit= GB

min= 512
unit= MB

Virtual
Machine

Legend

Abstract Concept

Concrete Concept

Selected Concept

is a

uses

value= 1

min= 0
max=128

OS

Ubuntu
Server Bounded

Concept

Bounded
Concept

Quantifiable
Bounded Concept

Core
Number

Figure 15: Saloon Ontology (excerpt) with the selected concepts for the Simple
Application example.

D3.1.2 - Product Upperware Report Page 30 of 108

Model-to-Solver (cf. Figure 14) the following process is executed in or-
der to generate these outputs:

1. The Generation Orchestrator creates an empty PaaSage App
Model and loads the CAMEL Model through the CAMEL Model
Processor.

2. The Deployment Model Processor extracts from the Deployment
model information related to virtual machines, providers and application
components and fills the PaaSage App Model with them.

3. The CAMEL Model Processor defines on an ontology the applica-
tion requirements by processing the Requirement Model from the CAMEL
Model.

4. The Provider Model Processor filters the providers in the PaaS-
age App Model according to the requirements defined in the ontology.

5. The CP Derivator generates a CP Model from the PaaSage App
Model and uses the Function Creator to generate a basic objective
function.

6. The generated models are stored in CDO Server to be retrieved by the
Rule Processor component.

The previous process is also depicted in Figure 16.

Begin

End

Create
PaaSage App

Model

Generate CP
Model from
PaaSage

App Model

Load Camel
Model and
Ontology

Fill PaaSage App
Model with

VMs, providers,
app components

Filter providers in
PaaSage App

Model

Generate Ontology
with application
requirements

Figure 16: Process executed by the CP Generator Model-to-Solver component.

D3.1.2 - Product Upperware Report Page 31 of 108

4.2 Rule Processor
Overview

The Rule Processor component improves, as already motivated in Sec-
tion 4.1, the CP Model generated by the CP Generator Model-to-Sol-
ver component. The Rule Processor guarantees that the CP Model will
eventually only include feasible deployments. This is achieved by ensuring that
the list of potential deployments and Cloud providers, as provided by the gener-
ated CP Model, satisfies all user-defined constraints.

The Rule Processor component receives as input a CAMEL Model as
well as the corresponding CP Model generated by the CP Generator Mod-
el-to-Solver. The CAMEL Model provides the Rule Processor with
information about user-defined constraints with respect to valid Cloud providers,
whereas the CP Model itself is revised while being processed by the Rule
Processor. The final output of the Rule Processor is thus an updated CP
Model, where redundancies and infeasible deployments are removed. It should
be noted that deployments formed by the Rule Processor take constraints
and details of the implementation in PAASAGE’s Metadata Database (MDDB)
into account.

The Profiler provides the Rule Processor with a list of potential Cloud
providers based on requirements specified by the application designer via the
IDE. The Rule Processor then checks these providers against implementa-
tion specific rules in the MDDB. These rules define essential rules of the overall
system, and are expressed in terms of performance and data processing con-
straints associated with the specific instance of the PAASAGE platform.

An example: The Rule Processor component could contain a rule that
limits data processing to private clouds; the MDDB could further have SLA
specific data from associated service providers that fulfil this rule. Thus, it
is added to the list of potential deployments. If during this phase the Rule
Processor encounters a requirement that can’t be fulfilled by the PAASAGE

platform, e.g., no private Cloud providers are available for data processing, the
Rule Processor returns an error message explaining this fact to the applic-
ation designer.

Implementation

The Rule Processor receives as input the CP Description from the CP
Generator Model-to-Solver. The description defines a list of input
constraints for a planned deployment. The content of the CP Description is a
CP Model and a PAASAGE Application Model. The latter describes characterist-
ics of an application including service level objectives, CPU and other provider

D3.1.2 - Product Upperware Report Page 32 of 108

goals. The CP Description is passed to the Rule Processor as an input
parameter.

The Rule Processor retrieves the list of potential Cloud providers from
the CP Model, and then validates individual Cloud providers defined in the
CAMEL Model (Organization Model). The purpose of the validation step is to
evaluate if provider types match with the ones selected by the CP Generator
Model-to-Solver component. In the extreme case when no Cloud pro-
vider is defined in the Organization Model, the Rule Processor accepts
the Cloud provider added by the CP Generator Model-to-Solver com-
ponent, and passes the CP Model unmodified to the next component in PAAS-
AGE’s workflow. Otherwise, the Rule Processor will remove from the CP
Model all Cloud providers that do not correspond with the type of providers
defined in the Organization Model. This process of removing Cloud providers
can, however, result in having no provider associated to deploy an application
on the PAASAGE platform. Then, the Rule Processor returns with an ap-
propriate error message. The user is then encouraged to adapt her requirements
in order to be able to run her application on PAASAGE’s platform.

The Rule Processor component uses the CDODatabaseProxy of
the CP Generator Model-to-Solver component to access directly the
MDDB database for data extraction and CP Model revision.

4.3 Summary
The Rule Processor component receives as input a CAMEL Model as well
as the corresponding CP Model generated by the CP Generator Model-
-to-Solver, i.e., a CP Description. The output is a revised CP Descrip-
tion including feasible deployments—wrapped in the Deployment Model. This
model is linked to a wider Cloud Application Modeling & Execution Language
(CAMEL) object, where resource parameters are linked and described using spe-
cific DSLs. The Rule Processor then passes the CAMEL data onto the
Reasoner.

D3.1.2 - Product Upperware Report Page 33 of 108

Solver-to-

deployment

MILP

Solver

CP

Solver

Simulator

Wrapper

Meta

Solver

Utility Function

Generator

Metadata

database

AdapterProfiler

Cloud

Simulator

Greedy

Heuristics

LA based

allocator
Profiler

Legend

External

Software

Reasoner

Adapter

Other WP

Figure 17: Reasoner: Architecture and main components.

5 Reasoner
In a nutshell, the Reasoner part of the Upperware receives a CAMEL model
and a constraint problem (CP model) from the Profiler. Its goal is to compute
a solution, i.e., to provide a placement of an application on concrete VMs. It
may also use the data and knowledge stored in the the meta-data database when
computing a solution.

As there are many ways in the litterature to compute a solution, depending
mainly on tradeoff about required knowledege, time-to-solution, general versus
specific solutions, we decide to have a very flexible Reasoner layer such that
very different type of approaches can be integrated. Hence, the Upperware will
be easely adaptable and/or extendable.

The architecture of the Reasoner is displayed in Figure 17. Central to the
Reasoner is the concept of Solvers. The Solvers sit at the centre of the compon-
ent and conduct the main functions in the Reasoner. The Reasoner shall support
various kinds of Solvers: Learning Automata based allocator, Constraint Pro-
gramming based solvers, Heuristics based solvers, Simulation based solver, and
Meta-Solvers. These solvers can access the MDDB to access historical data an-
d/or metrics. For very reactive solvers, it is also possible to directly received
metrics without going through the MDDB.

When a solution has been computed, the Solver-to-deployment component
translates the solution in a CAMEL deployment model format (aka CPSM).

D3.1.2 - Product Upperware Report Page 34 of 108

5.1 Learning Automata (LA) based Assignments
Overview

The problem to solve is defined by variables, each defined over a given do-
main. Then there are constraints, i.e., functional relations of the variables. Each
constraint is either satisfied when the functional expression evaluates to true or
unsatisfied when it evaluates to false. A particular assignment of variables is
feasible if all constraints are satisfied. At the conceptual level, reasoning on
the deployment problem means assigning values to all parameters from their
respective domains to form a feasible deployment configuration.

An inherent weakness of semantic reasoning is its inability to deal with prob-
abilistic knowledge [LH13]. There have rightly been attempts on logic based
stochastic reasoning like the Probabilistic Logic Network [Ben+08] or, more re-
cently, the Non-Axiomatic Logic [Pei13], which aims to be a complete model
for how humans learn and reason. To our knowledge these approaches are not
yet supported by accessible reasoners making it hard to adopt the frameworks
within the PaaSage project.

Fuzzy reasoning [CC05] can make decisions under uncertainty conditioned
on the a priori system knowledge encoded into the fuzzy sets defined for the
input and output variables, and the control strategy encoded in the fuzzy rules.
Even though there are heuristic methodologies to support the development of
these rules, they will be subject to the same issues as ordinary rules in non-
stationary environments. Alternatively, the rules could be derived from data
mining, i.e., statistical pattern recognition and parameter identification on logged
data. Hence, there must be a model defined a priori whose parameters are iden-
tified. In the case of Cloud deployment this would probably mean that the fuzzy
rules must be defined by a Cloud deployment expert, and it is therefore contra-
dictory to the vision of PaaSage as a platform to aid autonomously the applic-
ation owner with the deployment task. A further issue with fuzzy reasoning is
the difficulty in analysing the adaptive system analytically with respect to key
aspects of automatic control systems like scalability and stability.

Given that it is very difficult to extract universally available expert knowledge
on generic Cloud application deployment that can automate the deployment of
any application, the only solution would be to learn what is the better way of
deploying the particular application at hand.

Different learning approaches can broadly be categorised as either:

Training approaches that use available information to train the algorithms or a
controller, and after the training phase the learned knowledge is reused on
similar problems. Data mining techniques, pattern recognition, statistical
parameter estimation and regression, clustering, and neural networks are
all examples of training based approaches.

D3.1.2 - Product Upperware Report Page 35 of 108

Environment

Learning actor

Action
proposed

Reward
received

Figure 18: The fundamental learning loop: The learning actor proposes an action
to the environment. In this case, the action is a particular deployment configur-
ation. The environment then provides feedback on the quality of this configura-
tion in terms of a reward to the learning agent.

Reinforcement learning algorithms that learn as new information arrives, and
the learned knowledge is immediately available, albeit it may take some
time (iterations) for the algorithm to gain confidence in the selection of its
strategy. The idea is that the learning actor will select the action at any
moment that it perceives to give the highest future reward. Examples of
approaches belonging to this class of learning are Markov Decision Prob-
lems (MDPs), Learning Automata (LA), Parameter identification, control
charts, and statistical hypothesis testing.

Both classes of learning are applicable in stationary environments; however
only reinforcement learning algorithms can be used in non-stationary environ-
ments because they may need to unlearn previous knowledge if the operational
constraints change.

The basic learning loop is illustrated in Figure 18. The learning actor selects
the appropriate “action”, which in our context is a set of values for all variables in
the deployment configuration with each variable value taken within the domain
allowed for the concerned variable. Then the environment provides a “reward”
for this choice of deployment configuration. The reward can be the strength or
goodness scaled to the unit interval [0, 1] from bad to good; it can be binary taken
from the set {0, 1} indicating that the action was respectively bad or good; or it
can be taken from a finite set of options like {very bad, bad, almost good, good}.

The environment can be the real world, and so the action represents an actual
deployment and the reward can, for instance, be the fraction of the execution cost
budget that was left unused by this particular deployment, provided that minimal
cost is the main goal for the user. However, learning is an iterative process and

D3.1.2 - Product Upperware Report Page 36 of 108

many deployments may be necessary before the learning algorithm may confid-
ently conclude on the best one. The need for actual deployments can be reduced
if one is able to “simulate” the effect of a particular employment; either by us-
ing historical data or using a simulated model of the available infrastructures
and extra-functional aspects like cost and performance. Simulated deployment
is further discussed in Section 5.5.

Finally, learning can also be made against a utility function representing the
combined set of goals and preferences specified by the application owner. In this
case, any proposed deployment configuration that increases the utility for the
user will be rewarded. For instance, if the user wants to execute the application
at minimal cost, then the utility function can simply be the negative cost (since
an increase in the utility then corresponds to less cost). Utility functions are
further discussed in Section 5.7.

The solver must be able to use constructively the stochastic feedback from
the environment to converge on the better deployment configuration over time.
The learning environment must provide some kind of ranking of the possible
solutions, and for the sake of exposition we can assume that this is the utility
function6. From the second requirement it is clear that the maximal utility should
be found respecting the constraints of the application, and the domains of the
variables. The problem is therefore akin to a mathematical non-linear program
whose canonical form is [DY08]:

maximize U(x) (4)

subject to

g(x) ≤ 0 (5)
h(x) = 0 (6)

xi ∈ Xi (7)

A complicating factor is that many of the parameters in the configuration x
are discrete: as an example, the parameter for the Cloud provider can only take
its values from the finite set of possible providers. If the constraints and utility
function are all linear, the problem belongs to the class of mixed integer op-
timisation problems [Lau08], otherwise it is a combinatorial optimisation prob-
lem [BJ08]. The size of the solution space, i.e., the number of possible con-
figurations, will generally grow like the product of the sizes of the domains for

6Please note that this choice is made without prejudice to any of the other ways outlined for
obtaining the environment’s feedback to the learning actor. From this point on, a utility function
value can therefore also be understood as outcome of an actual deployment or the output of a
simulated system.

D3.1.2 - Product Upperware Report Page 37 of 108

each discrete parameter, and finding the optimum will necessitate testing each
and every possible configuration. This is obviously feasible only for small de-
ployments, so in general the optimisation of Equation (4) must be understood
as the best possible configuration tested within the search time available. The
found configuration will therefore be a feasible configuration satisfying all the
constraints, which can be safely deployed, although a better configuration might
still be possible.

There is one important aspect of the deployment problem: the constraints as
well as the utility function may be stochastic. For instance one constraint can
specify that the average response time experienced by the user of a web server
should not exceed 3 seconds. This is easily achieved with a configuration of a
few web servers when there are few users, but might require a different config-
uration with more web servers when there are many users. Thus, for a given
deployment x, the constraints (5) and (6) will only be satisfied with a certain
probability. The same is the case for the utility function. Assuming, as an ex-
ample, that the utility measures cost, then a certain provider can have a discount
at a particular time, or the data pattern of the application requires less communic-
ation and thus incur less communication cost. Evaluating the “utility function”,
which in this case could be the real deployment, twice with the same deploy-
ment configuration x could give two different utility values. We therefore have
to consider the non-linear stochastic program where we would like to find the
configuration that will give the best utility on average with expected satisfaction
of the constraints, i.e., we have to consider the following program:

maximise E {U(x)} (8)

subject to

E {g(x)} ≤ 0 (9)
E {h(x)} = 0 (10)

xi ∈ Xi (11)

If the distributions for the parameters xi were known, the problem could
be approached with stochastic programming [PR09]. It should be possible to
estimate unknown parameters of hypothesised distribution functions from avail-
able historical data, or even use empirical density functions or fitted functions as
representations for the generally unknown probability density functions. Again,
this would be possible only for stationary environments where the involved dis-
tributions would be constant over time. Otherwise, one would have the problem
of estimating the distributions over a window of only the most recent observa-
tions of the involved system parameters.

D3.1.2 - Product Upperware Report Page 38 of 108

An alternative approach requiring only known bounds for the system para-
meters is robust optimisation [ALA09], and it is attractive that efficient methods
exist for robust integer programming [DM03]. However, as only the bounds
are known for the parameters, robust optimisation can mainly give a worst case
analysis with bounds on the robustness of the found solution.

An issue with both the stochastic programming and the robust optimisation
is that the optimisation program has to be solved again from scratch when the
results of a new deployment is observed since either the distributions involved or
the bounds may have changed. Fortunately, there are many heuristics that can be
used for stochastic search [Jam03]. For the parameters with discrete domains,
i.e., the combinatorial optimisation part, we will adopt a reinforcement learn-
ing [RA98] approach based on Learning Automata [KM89]. Albeit other rein-
forcement learning techniques can be used, learning automata theory is based on
the theory of Markov chains and therefore admits rigorous mathematical analysis
of key aspects like scalability and convergence.

Poznyak and Najim [AK97] developed a theory for stochastic optimisation
using learning automata based on Baba’s multi-teacher approach [Nor83] where
the utility function (4) and the constraints (5) and (6) are all considered to be
independent stochastic teachers for the learning automata. Given that this ap-
proach is feasible for the learning of a single parameter, we will use one learning
automata for each discrete parameter. Thus our proposed approach corresponds
to an automata game [MP04]. The algorithm of the proposed stochastic reasoner
is shown in Algorithm 1.

Two lines of Algorithm 1 requires further attention: Line 15 states that the
continuous optimisation problem should be “solved”. Non-linear optimisation
problems are often themselves solved by iterative algorithms [DY08], where
each iteration requires sampling the objective function (4). This sampling can be
costly as described above, and we need to investigate if this step of the algorithm
should be finding a complete solution, or if it can be understood as “performing
the next iteration of the iterative solver for the non-linear program”.

Furthermore, the probability updating function of line 18 should be defined.
Half a century of research on learning automata has produced a plethora of al-
gorithms to choose from. Given that our approach is a game of many automata,
we need to ensure that each automaton converges in the sense that its probabil-
ities converge to a pure deployment strategy with only one probability equal to
unity and all the others equal to zero, i.e., limk→∞ pi = [0, . . . , 1, . . . , 0]T . The
stable behaviour of various algorithms under non-stationary environments also
needs further research.

Recall that a change in a single discrete variable leads to a completely new
configuration. The foreach loop on line 12 will therefore make a major change
in the configuration. This can be seen as positive from the perspective of explor-

D3.1.2 - Product Upperware Report Page 39 of 108

Algorithm 1: Stochastic reasoning.
1 Identify the variables xi of the deployment problem
2 Identify their respective domains Xi from the given constraints and rules,

i.e., xi ∈ Xi

3 Partition the parameter set in two parts: XDiscrete for the parameters with
discrete domains, i.e., for those xi whose domain Xi is not an interval of
R, and XContinuous for those xi whose Xi ⊆ R

4 foreach xi ∈ XDiscrete do
5 Form probability vectors over the possible values in the domain:

pi(0) = [p(i,1)(0), . . . , p(i,|Xi|)(0)]
T

6 if a priori knowledge then
7 Initialise the probabilities in pi(0) accordingly
8 else
9 Initialise the probabilities equally p(i,j)(0) = 1/|Xi|

10 Initialise the step counter k = 0
11 repeat
12 foreach xi ∈ XDiscrete do
13 Select a random index Ii ∼ pi(k)
14 Assign the variable value xi = Xi[Ii]

15 Solve the optimisation problem for the continuous parameters in
XContinuous with the assigned values of the variables in XDiscrete

16 Obtain the environment’s reward r(k) for the complete set of
parameters XDiscrete ∪ XContinuous

17 foreach xi ∈ XDiscrete do
18 Update the probabilities pi(k + 1) = T (pi(k), r(k))

19 k = k + 1

20 until converged

ing the configuration space quickly, by sampling many distant configurations.
However, it may have a negative impact on the convergence of the learning al-
gorithms [GB10]. Making the selection in line 13 and line 14 for only one vari-
able and then subsequently update the probabilities in line 18 only for this single
variable may be better, but it will come at the cost of more frequent environment
feedback, which can be costly to obtain especially in the case where this means
making a full deployment. Arguably, as time goes and most of the automata for
the different parameters converge, the foreach loops on line 12 and 17 will de-
generate to updating only one, or a few, variables (automata) with respect to the
current configuration. The trade-off between exploration speed and the cost of

D3.1.2 - Product Upperware Report Page 40 of 108

evaluating the environment feedback consequently needs careful attention when
developing the final stochastic search algorithm.

It should be noted that the learning automata based approach is only used
for the discrete variables and assigns a value to each of them in a stochastic
environment from their respective domains. It must therefore be coupled with
a constraint solver if there are continuous variables, where the constraint solver
will find values for the continuous variables conditioned on the discrete values
fixed by the stochastic learning.

Implementation

The Learning Automata (LA) based solver is implemented in terms of the Uni-
versity of Oslo’s open source LA framework written in C++, and contributes to
the further expansion of this framework. The framework is implemented using
the actor model [CPR73] for concurrent and parallel operation of independent
actors that asynchronously exchange messages. Additionally, actors may cre-
ate other actors, and designate the actions to take for the next arriving message.
There is no synchronisation between an actor sending a message and the actor
receiving it, and the message is self-contained with addresses of both the sender
and receiver. This means that there is no fixed interaction topology among the
actors. Furthermore, each actor can only act on its own, private memory. Con-
sequently, the actor model supports inherent concurrency of computation.

The agent model is implemented in the framework by the Theron library7,
released as open source under the MIT licence. The Theron library is robust,
efficient, and complete compared with other alternatives: libcppa8 is still not in
official release and the current version maps each actor to an individual execution
thread, which limits the number of concurrent actors that can be created under
most operating systems. The actor-cpp9 implementation seems to be a minimal
fragment not actively maintained. libprocess10 adopts the view that each actor
is a process. It is poorly documented with the best information source being a
presentation11 by its author even though libprocess is under active maintenance
and the library is packaged with many of the Linux distributions. The lack of
documentation makes it hard to evaluate libprocess.

The Theron library essentially maintains a pool of threads and schedules the
message handlers of the actors with pending messages onto these threads. The
Theron scheduler supports two yield modes: condition and spin. In the former

7http://www.theron-library.com/
8http://libcppa.blogspot.no/
9http://code.google.com/p/actor-cpp/

10https://github.com/3rdparty/libprocess
11https://www.dropbox.com/s/50buds6t0vizr4w/libprocess.pdf

D3.1.2 - Product Upperware Report Page 41 of 108

http://www.theron-library.com/
http://libcppa.blogspot.no/
http://code.google.com/p/actor-cpp/
https://github.com/3rdparty/libprocess
 https://www.dropbox.com/s/50buds6t0vizr4w/libprocess.pdf

Figure 19: The learning environment controlling the problem variables and con-
straints is an actor that interacts with a learning actors through messages.

mode, a thread is halted if no actors uses it. This saves system resources and
allows the CPU to be used for other applications. However, when many actors
become active again, then the thread must be restarted by the operating system,
which will introduce latency in the execution of the actors’ thread handlers. The
spin strategy keeps all threads active, even if they are empty. Potentially this
wastes CPU cycles, but the thread is running when an actor receives a message
and needs the thread to execute the message handler. Since it is anticipated
that the LA based solver will run in the same machine as the other Upperware
components, the “condition” type scheduler is used.

Learning actor A learning automata is basically a Markov chain, i.e. a set
of connected states with probabilistic transitions among the states. This struc-
ture is called a Fixed Structure Stochastic Automata (FSSA), and with each state
there is associated an “action” taken by the automata in that state. The feedback
can either be enforcing (“reward”) or discouraging (“penalty”), and the automata
selects randomly a transition out of the state from the set of reward or penalty
transitions respectively. Thus an FSSA is completely characterised as a graph
by its set of states and the associated actions for each state, and two probabil-
istic adjacency matrices: one for the reward transitions and one for the penalty

D3.1.2 - Product Upperware Report Page 42 of 108

transitions. The LA framework uses the Armadillo12 linear algebra library to
represent matrices. It was selected over the Eigen13 template library for linear
algebra because Armadillo had an easier interface, in particular for manipulating
sub-matrices and Armadillo is also used for implementing the mlpack14 machine
learning library.

Only a few years after the first paper on FSSA [Mik61], Varshavskii and
Vorontsova introduced the family of Variable Structure Stochastic Automata
(VSSA) [VI63]. Basically they studied Markov chains where the transition prob-
abilities were increased if the state transitions resulted in rewards, or otherwise
decreased. This model was developed for binary feedback from the environ-
ment, and it was extended by McMurtry and Fu to a continuous feedback model
in [GK66]. More importantly, McMurtry and Fu also introduced the concept of
an action probability vector, i.e. the stationary action probabilities were directly
updated instead of via the changing transition probabilities of the underlying
Markov chain.

Each discrete variable of the CS model is represented by a learning actor,
whose set of actions is the values of the domain of the variable. The learning
actor selects one of the domain elements based on the probability vector (or its
state if the actor implements an FSSA). The selected “action” is proposed to the
learning environment, and based on the feedback from the learning environment
the probability vector (or state) is updated according to the learning algorithm
used by the actor.

Learning framework This class essentially sets up the Theron execution
framework. All learning actors will run in this environment. The framework
instantiates a learning environment and encapsulates it. This ensures that it is
not possible to interact with the environment except through messages, thus en-
forcing the actor model.

Learning environment This class defines the learning environment. It accepts
messages containing “actions” from the learning actors and produces “rewards”
for the chosen actions. In the context of the LA solver, the learning environ-
ment will first evaluate all constraints, and it will then evaluate the configuration
if all the constraints were satisfied by the current configuration of variable as-
signments proposed as “actions” by the learning agents. If the configuration
is feasible, then it is ranked against other feasible configurations by one of the
evaluation methods: actual deployment, simulated deployment or through an
evaluation of the utility function.

12http://arma.sourceforge.net/
13http://eigen.tuxfamily.org
14http://mlpack.org/

D3.1.2 - Product Upperware Report Page 43 of 108

http://arma.sourceforge.net/
http://eigen.tuxfamily.org
http://mlpack.org/

Based on how this configuration ranks, an individual “reward” is calculated
for each of the participating learning actors and returned to the actor to update
its views on the better choices for a particular variable. Chandrasekaran and
Shen [BD68] were the first to introduce the term P-model feedback for a prob-
ability model where the stochastic feedback was binary and a penalty response
was given with a certain probability; and the term S-model feedback where the
strength of the feedback was measured over the unit interval. Viswanathan and
Narendra introduced the Q-model as the third feedback model where the re-
sponse from the environment can take its value only from a finite set of val-
ues [RK71].

Binding the model with the solver The constraints are mathematical func-
tions of the variables. A mathematical operator is either unary or binary and acts
respectively upon one or two variables or results of other operators. Consider
for example (a + b)2. Here the binary “plus” operator acts on the two variables
a and b and the unary operator “square” acts on the result of the plus operator.
In other words the expression forms a tree of sub-expressions with the involved
variables as the leaf nodes.

The profiler model essentially holds the constraints in this way, and any inter-
preted language would need to traverse this expression tree in order to evaluate
the constraint value. However, a compiler would generate a compact set of CPU
instructions from this tree. Given that the constraints will be evaluated over and
over again for new choices of the variables, it would be a huge performance gain
if the constraints could be compiled. The implication of this is that the solver
will have to be linked with the object code generated for a particular problem
and does not exist as a component independent of this problem.

From an Upperware meta-model instance, a LA-Dumper component will
therefore generate a C++ source file containing the variables, their domains, and
the constraint expressions. This file will be compiled as a part of starting the
solver. Then the resulting object code file will be linked with the solver code in
one of three possible ways.15

Static linking will construct one executable file by combining the problem spe-
cific object file with the object files of the solver. The problem description
is then just one of the source files of the solver producing a single, stan-
dalone application that can the be executed.

Static binding is binding the compiled solver code to a dynamic library created
from the compiled problem description. This dynamic library will then

15http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.
html

D3.1.2 - Product Upperware Report Page 44 of 108

 http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html
 http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html

CAMEL

CS
metamodel

Variables
Constraints

Compiled
solver

Compiled
model

Static
Linking

Dynamic
library

Static
binding

Solver
executable

Solver
executable

Dynamic
binding

Figure 20: The various options of binding the solver code with the compiled
variables and constraints of the problem at hand.

be loaded by the operating system when the solver starts. The variables
and constraints can be used by the solver as if they had been statically
linked with the solver. This approach would allow several versions of the
solver to share the problem description, as the library will be loaded only
once even if there are several solvers using it. If the problem changes,
only the dynamic library needs to be recreated, and the new version is
automatically loaded by the solver provided that the new library has the
same name as the one that was statically bound to the solver.

Dynamic binding is similar to the static binding except that the solver can be
compiled and linked with no knowledge about the problem library. The
name of the library can be passed on the command line when starting
the solver, which will then load the correct library into memory. There are
however significant limitations on how the components in the dynamically
bound library can be accessed from the solver code.

The different options are illustrated in Figure 20. Which option to choose
depends on the deployment of PaaSage. The machine running the solver must

D3.1.2 - Product Upperware Report Page 45 of 108

Figure 21: The hierarchy of a learning actor implementing Variable Structure
Stochastic Learning. Alternatively the Learning Actor could have inherited the
class implementing a Fixed Structure Stochastic Learning type.

have a compiler installed in all cases, and the object code of the solver can be
compiled at installation time since it is independent of the problem. The time it
takes to compile the problem description and linking or producing the dynamic
library is probably similar for all three alternatives, and anyway ignorable com-
pared with the time the reasoning will take.

Owing to the limitations of the dynamic binding, this is the least desired
alternative. It is also not clear if it makes sense to have several versions of the
solver working on the same problem in parallel. This could be the case if one
would like to test different learning algorithms, since the learning actor is bound
to the algorithm as illustrated in Figure 21. However, in order to benefit from
the dynamic library the solvers must run in the same computer, i.e., all solvers

D3.1.2 - Product Upperware Report Page 46 of 108

will compete for the same resources. It could be better to send the source file
of the problem to different computers, and then compile and statically link the
problem with the solver in each machine. Thus, as static linking allows the
most transparent access to the problem’s constraints, this will be used initially in
PaaSage with the opportunity to shift to the alternative binding models at a later
stage if needed.

5.2 MILP Solver
Overview

The solver developed by AGH uses Mixed Integer Linear Programming (MILP)
approach in order to optimise application deployment. The solver has been in-
troduced into PAASAGE platform for supporting workflow applications within
the extended eScience use case [Mal+13]. The MILP solver is to be used as
a generic solver within the Reasoner component.

The main premise of the MILP Solver is to use an existing mathematical
modelling framework and ready to use external solvers. To this end we decided
to use CMPL [Ste14] mathematical modelling language and optimisation sys-
tem. CMPL supports many commercial and open source general purpose solv-
ers for linear and mixed integer programming problems that can be described
using a high-level mathematical notation. The advantage of CMPL is that it is
available as an open source project, so it can be integrated into an open platform
as PAASAGE.

Design

To enable integration of the solver with the PAASAGE environment, the MILP
solver encapsulates several components shown in Figure 22:

Solver interface This component is responsible for communication with other
PAASAGE components (meta-solver and MDDB). It translates data
between PaaSage CP model and internal problem description and binds
the different technologies used.

CP problem transformer The function of this component is to transform CP
problem to make it suitable for CMPL. For instance, it replaces variable
names used in PaaSage with the generated ones to ensure that they are
compilant with CMPL limitations.

CMPL problem generator The goal of this component is to generate an in-
stance of MILP problem that is subject to optimisation by CMPL. It con-
verts CMPL file from internal CP representation.

D3.1.2 - Product Upperware Report Page 47 of 108

Figure 22: Architecture of MILP solver.

CMPL and external solver In order to solve mixed integer linear problem,
PAASAGE solver will use open-source CMPL modelling language backed
by one of the available solvers (both open-source and commercial, e.g.
Cbc, CPLEX).

Implementation

The current version of the MILP solver implements all features described above
and final integration with Meta-Solver is being implemented. The MILP solver
is designed to be called as a commandline tool or from a ZeroMQ bus. First,
it fetches CAMEL model and CP problem description from MDDB, then it
translates problem to internal representation that is transformed and later trans-
lated to CMPL. Next, CMPL and the solver are run. As soon as they finish, the
MILP solver converts back the solution, stores it into MDDB. If invoked through
ZeroMQ, it sends message to Meta-Solver via ZeroMQ.

5.3 CP Solver
Overview

While the Solver developed by FORTH relied on Constraint Logic Programming
techniques to solve the deployment plan problem, it was decided to update it

D3.1.2 - Product Upperware Report Page 48 of 108

with a different technique, namely, constraint programming (CP) based on the
following rationale:

• Exploitation of well-known CP techniques which have been proven to
work well under finite domains. The problem at hand actually maps to
such type of domains

• Better handling of constraints over sets

• Exploitation of recent trends towards combining CP techniques with Lin-
ear Programming (LP) ones or other CP techniques by splitting the prob-
lem into discrete and continuous parts which are solved independently by
utilizing well-known algorithms from these two techniques.

• Better cooperation/integration with the KnowledgeBase which has been
developed in Java (while the CLP version of the CP Solver relied on EC-
LiPSe environment).

The final result is a new solver [KP15] which apart from the above advant-
ages also exhibits the following features:

• Deal with decisions of whether to exploit an external service to realize
the functionality of an application component or rely on existing internal
implementation of this component which should be deployed on a par-
ticular VM whose requirements are provided. We advocate that such de-
cisions must be taken by solving a combined cloud selection problem at
the SaaS and IaaS levels. In this way, we avoid independently solving
two different problems for each level as there can be inter-dependencies
between these levels, like the ones indicated through the decisions to be
taken. As such, in the end, our algorithm is able to also discover SaaS
services to realize the functionality of application components, something
not provided by the other solvers in PaaSage. As this constitutes a unique
feature of this solver, it can lead to its selection for execution by the meta-
solver whenever the respective SaaS requirements are posed by the applic-
ation end-user. Such a feature will, however, need to be backed up at the
CAMEL model level and especially the deployment model as currently
there are no means to express SaaS requirements.

• Use of functions, possibly non-linear, to map low-level (VM or PaaS)
capabilities to high-level (application or component) ones. In this way,
through the propagation of values from low to high-levels, we will be able
to compare the global, high-level requirements posed for an application
to the respective capabilities exhibited by the currently selected solution.

D3.1.2 - Product Upperware Report Page 49 of 108

More details about how such functions can be constructed can be found in
[KP15].

• Combine constraints through logical operators to cater for cases where
user requirements are not expressed solely as a set of constraints that all
need to be satisfied. For instance, user requirements can be given as a
disjunction of conjunctive constraints in order to express requirements on
different (service) levels enabling to associate each of these levels to a
different cost that the user is willing to pay.

• Deal with high-level security requirements and capabilities in the form
of security controls. The matching between this type of security specifica-
tions maps to matching security controls sets (i.e., those required and those
exhibited by a specific cloud provider). We consider that security control
requirements can be posed either at the global application level or at the
local application component level. In the first case, any cloud provider
whose VM has been selected to deploy an application component should
exhibit security control capabilities which match the global requirements
set. In the second case, only the cloud provider whose VM has been se-
lected to deploy the component for which the security requirements have
been set should exhibit security capabilities that match these requirements.

• Addressing of co-location constraints which can be of the following two
types: (a) a component C1 can or cannot be co-located with another com-
ponent C2 at the same VM and (b) a component C1 can or cannot be co-
located with another component C2 at the same cloud.

• Express optimisation formulas involving utility functions on quality met-
rics and attributes as well as cost. The main advantage of the new version
of the solver with respect to the previous one is its capability to include
both continuous and discrete variables into the optimisation formula. In
this way, we can deal with objective functions which consider all the ob-
jectives/optimisation requirements that have been posed for a particular
application, irrespectively of the domain of the metrics mapping to these
objectives.

More formally, the CP problem that can be solved by the CP Solver can be
expressed as follows:

maximize

(
Q∑

q=1

wq ∗ ufq (valq)

)
(1)

valq = fq (val
q
i) (2)

D3.1.2 - Product Upperware Report Page 50 of 108

∑
j

∑
k

xijk +
∑
l

zil = 1 (3)

valqi = yi ∗ f q
i (corei,memi, storei) + (1− yi) ∗

(∑
l

zil ∗ valqil

)
(4)

corei =
∑
jk

xijk ∗ corejk (5)

memi =
∑
jk

xijk ∗memjk (6)

storei =
∑
jk

xijk ∗ storejk (7)

xijk = xi′jk (8)

∑
k

xijk =
∑
k

xi′jk (9)

if

(
yi ∧

∑
k

xijk == 1

)
=⇒ cc− ccpj = ∅

else if (6 yi ∧ zil) =⇒ cc− ccpzil.provider = ∅ (10)

if

(
yi ∧

∑
k

xijk == 1

)
=⇒ seqpj ≥ seqp

else if (6 yi ∧ zil) =⇒ seqpzil.provider ≥ secp (11)

Constraint (1) indicates that the main objective is to maximise the weighted
sum of the utility functions application on the metric values considered for each
high-level metric (including cost). In this sense, we follow the Simple Weight-
ing Additive (SAW) technique [HY81] to transform the multiple optimisation
requirements posed by the end-user into a single optimisation objective. In the
constraint, Q denotes the total number of metrics used in the end-user’s optimisa-
tion requirements, wq denotes the weight given to the metric, while ufq indicates
the utility function used to compute the utility for this metric based on its global
value valq at the application level.

A global metric value can be computed from the respective metric values at
the component level through a particular function. This is actually expressed by

D3.1.2 - Product Upperware Report Page 51 of 108

Constraint (2), where fq is the aggregation function and valqi is the metric value
for the application component i.

Constraint (3) imposes the main set of constraints on the problem’s decision
variables. In particular, it is indicated that for each application component, we
have the choice to either select a particular VM to deploy its internal implement-
ation or to select a particular external SaaS service able to realize its functional-
ity. Obviously, only one of the two choices can be selected and for each choice,
only one alternative can be chosen. The main decision variables of the problem
are the following:

• yi which indicates whether the internal service or an external SaaS service
will be used to realize component i (i.e., only one of the two possible
choices can be made)

• xijk which indicates whether for component i, the IaaS offering k of the
cloud provider j has been selected (internal service selection case).

• zil which indicates whether for component i, the SaaS service l has been
selected (external service selection case).

The next constraint (4) expresses the way a metric value for a component
is calculated. This calculation depends on the realisation/deployment choice
for this component. When the internal implementation of this component is
selected, then the metric value is expressed as a function over the respective
resources supporting the execution of this component, which are the number of
cores and the size of main memory and storage. On the other hand, when an
external SaaS service is used to realise the functionality of the component, then
the component metric value is actually the respective metric value advertised by
this service.

Constraints (5-7) actually propagate the resource values of the selected VM
to the respective values of the component in order to facilitate the computation
of higher metric values as expressed by the previous constraint. Constraint (5)
deals with the number of cores while Constraints (6-7) with the size of main
memory and storage, respectively.

Constraints (8-9) express the two types of co-location constraints addressed.
The 8th constraint indicates that components i and i

′ should be deployed on the
same VM, while the 9th constraint indicates that these two components should
be deployed on the same cloud. More details about how the respective negated
co-location constraints are expressed can be found in [KP15].

Finally, Constraints (10-11) express security control constraints at the global
application and the local component level, respectively. Constraint (10) indicates
that irrespectively of whether an internal service deployment or an external ser-
vice selection has been decided for each application component, every respective

D3.1.2 - Product Upperware Report Page 52 of 108

IaaS or SaaS cloud provider should comply with the global security control re-
quirements posed. Constraint (11) is similar but maps to the case of a single
application component indicating that the cloud provider whose service (either
IaaS or SaaS) is selected should comply to the security control requirements
posed for this component.

The above formal problem representation is simplified in the current variant
of the CP solver employed in PaaSage. Once the support for SaaS selection is
decided and included as a feature of the PaaSage prototype, the switch to the full
variant will be performed.

Current Challenges

One of the challenges [Bar+13] with CP optimisation problems is that resolution
time can be high as a huge solution space needs to be explored, thus not covering
situations where a deployment solution needs to be calculated very quickly. We
are currently considering the following remedies:

1. Restrain the resolution time: this alternative, however, leads to a deploy-
ment solution which is not the best possible according to the user require-
ments provided. As the user requirements are not violated, we can deduce
that this alternative is acceptable and can enhance the performance of the
reasoner.

2. Exploit the knowledge derived from the Knowledge Base [Kri+14]: in-
stead of considering the whole solution space, the reasoner can exploit the
fact that the execution history for the application at hand or for equival-
ent applications with this application is available and the Knowledge Base
has deduced the best deployments for these applications, such that only
these deployment solutions are explored in order to solve the optimisation
problem. This alternative seems even better than the previous one as (a)
the reasoner relies on real, summarised data derived from the applications’
execution history and not data which might have been advertised by a par-
ticular cloud provider and (b) the solution space is significantly restrained.

Obviously, when no execution data are available for a particular application
(which is not similar or equivalent with any other application), the second altern-
ative cannot be applied, so the first one should be picked up, provided that the
solution space is large.

The first challenge is already supported by the CP solver and is planned to
enable its support through a configuration parameter. The second challenge is
under implementation and will be finalized in the beginning of the fourth year of
the project.

D3.1.2 - Product Upperware Report Page 53 of 108

Implementation

The current implementation of the CP Solver relies on Choco
(choco-solver.org), a free Constraint Satisfaction Optimisation Pro-
gramming solver supported by a very active community and competing
well-known proprietary solvers. This solver supports all types of variabes
required, mapping to the different types of metric domains expected, and has
implemented well-known state-of-the-art constraint types (e.g., all different)
and search strategies. Real variables are addressed through the Ibex CP engine
(www.ibex-lib.org), offered as a C++ library, which relies on interval
and affine arithmetic and is able to handle non-linear constraints and roundoff
errors.

The CP Solver is integrated into the Upperware as it supports the (program-
matic) transformation of Choco models from to CP models which comply to
the Upperware CP meta-model. In this sense, the respective input to success-
fully call the solver as well as the respective output to be consumed by the next
components in the Upperware flow is guaranteed. The solver has been already
tested with particular input produced by the CP Generator which maps to specific
PaaSage use cases.

As indicated above, the integration with the Knowledge Base is planned for
the beginning of the fourth year. The same holds with respect to the integra-
tion with the MetricsCollector component of the Executionware such that fresh
metric values will be considered for the re-execution of the solver for the same
application deployment planning problem.

5.4 Greedy Heuristics
Overview

Exact solution solvers (e.g. MILP and CP Solver) always give a set of optimal
solutions. However, when the search space increases, the time to compute those
solutions grows exponentially. This happens because the application placement
problem is a generalization of the bin packing problem which is NP-Hard,
meaning that a polynomial time algorithm to solve it is unknown.

Thus, when using a multi-cloud platform and a medium to large application,
solvers might not be able to scale and give a solution within reasonable time. A
common approach to solve this kind of problem is the usage of heuristics which
can find near optimal solutions in feasible time. The major drawback is that it
has to be developed and/or specialized for each class of application.

In the state of the art there are two main types of heuristics used to solve
the placement problem, namely greedy heuristics and meta-heuristics [Cha14;

D3.1.2 - Product Upperware Report Page 54 of 108

choco-solver.org
www.ibex-lib.org

LKK99; GZ13; Jea+13; Kum+11; MNC11; Pan+11; Sha+11]. Due to its scal-
able characteristics and ease of implementation, we are interested on the former.

The Heuristic Based Solver component calculates a good solution for a N-
Tier application placement problem in feasible time by means of a set of heurist-
ics based on First Fit Decreasing and Best Fit for solving the placement problem.

Design

In short, the first fit decreasing algorithm – applied to the N-Tier application
placement problem – selects tier instances, organized in decreasing order of size,
and assigns them to virtual machine (VM) instances sufficiently large for them
to be placed on. If there is no such VM instance, a new one sufficiently large is
rented, chosen from a list of VM types, possibly from different cloud providers.
Best Fit works in a similar manner, but it also sorts VM types and available VM
instances in increasing order of size and cost aiming at assigning the largest tier
instances to the smallest suitable VM instances.

The algorithms are straightforward, however, there are some peculiarities
concerning their application to Paasage that must be discussed.

Firstly, the notion of size is associated to the amount of available resources or
capacities in the case of VM instances or VM types and to the amount of required
resources for tier instances. It is possible to think of tier instances, VM instances
or VM Types as multi-dimensional vectors where each dimension is the amount
of required or offered resources. Furthermore, as it will be necessary to sort those
multi-dimensional vectors, a comparison strategy, known as a measure [GZ13],
is needed. Finally, rented virtual machines are instances derived from VM types
and each one has a renting price that must be taken in consideration when sorting
them.

We use a group of seven heuristics, adapted from the state of the art bibli-
ography to the needs of Paasage. Six of them are based on first fit decreasing,
namely First Fit Decreasing Weighted Sum, First Fit Decreasing Priority, First
Fit Decreasing Average Sum, First Fit Decreasing Exponential Sum, First Fit
Decreasing Random Bins N Times and First Fit Decreasing Windowed Multi-
Capacity, and one is based on best fit called Best Fit Dot Product.

First Fit Decreasing Based Heuristics All first fit decreasing based heuristics
(Algoritm 2) share the same basic structure differing mostly on the measure
used, which interferes on the way elements are sorted (Line 4 from Algorithm 2).
As briefly discussed before, a measure, is a method for assigning a size (or score)
to the multi-dimensional representation of a tier instance, VM instance or VM
type.

D3.1.2 - Product Upperware Report Page 55 of 108

Algorithm 2: First Fit Decreasing Algorithm
Require: C – set of tier instances, N – set of V.M. types
Ensure: Placement of tier instances on V.M. instances

1: B ← ∅ {Instanced Virtual Machines}
2: P ← {} {Placement configuration}
3: SortV MIncreasingByCost(N)
4: SortItemsDecreasing(C)
5: for c ∈ C do
6: b← FindSuitableBin(c,B)
7: if b is null then
8: b← FindSuitableBin(c,N)
9: if b is null then

10: return {}
11: else
12: Insert b on B
13: end if
14: end if
15: Remove c from C
16: Insert the pair (c, b) on P
17: end for
18:
19: return P

Next, we go through a brief overview of each first fit decreasing based heur-
istics that we employ.

First Fit Decreasing Weighted Sum [GZ13] This heuristic uses the weighted
sum of the resource requirements or capacities as measure.

First Fit Decreasing Priority [GZ13] This heuristic uses the maximal normal-
ized resource requirements or capacities as measure.

First Fit Decreasing Average Sum [Pan+11] This heuristic uses the average
sum of resource requirements or capacities as measure.

First Fit Decreasing Exponential Sum [Pan+11] This heuristic uses the expo-
nential sum of resource requirements or capacities as measure.

First Fit Decreasing Random Bins N Times As its name suggests, it arranges
the virtual machine types randomly and assigns items, sorted in decreasing
order, to them. The experiment is repeated N times, with N depending on
the number of virtual machine types.

D3.1.2 - Product Upperware Report Page 56 of 108

Algorithm 3: Best Fit Dot Product Algorithm
Require: C – list of tier instances, N – list of V.M. types
Ensure: Placement of tier instances on V.M. instances

1: B ← ∅ {Instanced Virtual Machines}
2: P ← {} {Placement configuration}
3: D ← CalculateDotProducts(C,N) {Dot Product C × N }
4: D′ ← ∅ {Dot Product C × B}
5: for c ∈ C do
6: if B 6= ∅ then
7: b← FindMostSuitedV mForT ierInst(c, B,D′)
8: end if
9: if b is null then

10: b← FindMostSuitedV mForT ierInst(c,N , D)
11: if b is null then
12: return {}
13: else
14: Insert b on B
15: end if
16: end if
17: Remove c from C
18: Insert the pair (c, b) on P
19: UpdateDotProduct(C, B,D′)
20: end for
21:
22: return P

First Fit Decreasing Windowed Multi-Capacity [Kum+11] uses a different
strategy based on balancing the resource usage on each dimension of VM
instances.

Best Fit Dot Product The Dot Product strategy [Pan+11; GZ13] proposes an
approach to calculate the size of an element by using a weighted dot product
between tier instances dimensions and VM instance or VM type dimensions.
The basic idea is to calculate the “best suited” VM instance to place each tier
instance by using the dot product as measure for comparison. The outline of this
algorithm is illustrated in Algorithm 3.

Heuristic Based Solver After having presenting the heuristics individually, let
now describe how the Heuristic Based Solver (HBS) works. The objective of

D3.1.2 - Product Upperware Report Page 57 of 108

Algorithm 4: Heuristic Based Solver Algorithm
Require: C – list of tiers, N – list of V.M. types
Ensure: Problem configuration and placement

1: P ← GetAllPossibleProblemConfigurations(C)
2: S ← ∅
3: for p ∈ P do
4: for each considered greedy heuristic h do
5: s← CalculateP lacement(h, p,N)
6: if s 6= null then
7: insert (s, p) on S
8: end if
9: end for

10: end for
11:
12: return LessExpensive(S)

HBS is to calculate a near optimal placement that meets application perform-
ance constraints without exceeding a budget. To do that, as the time consumed
by an heuristic to solve an instance of a placement problem lies on milliseconds,
HBS solves a given placement problem using all seven heuristics discussed pre-
viously but only keeps the best solution.

Algorithm 4, summarizes the mechanisms of this algorithm as it is applied to
Paasage. One can notice that HBS does not receive a list of tier instances as input
like the heuristics discussed above, but instead, it receives a list of tiers. This is
because the input of HBS is given by the CAMEL model and the CP model,
i.e.,, it receives a list of tiers, a list of minimum and maximum number of tier
instances per tier and a list of VM types. This means that the algorithm does
not know a priori how many instances of each tier will need to be placed neither
what is the problem configuration to be solved. The only available information
is that, among the numerous possibilities of problem configurations derived from
tiers and their associated minimum and maximum number of instances, there is
a set of configurations that allow for a less expensive placement while meeting
application constraints.

To solve this, again, taking advantage of the low execution times of our
heuristics, HBS generates all possible problem configurations and the respective
placements for each one of them. The output is a placement problem configur-
ation and a near optimal solution for this problem. It is important to notice that
the found configuration is one of those whose placement is the less expensive
among all other configurations.

D3.1.2 - Product Upperware Report Page 58 of 108

It is important to notice that this straightforward approach to solve this prob-
lem was only possible because of the efficiency of the greedy heuristics handled
by HBS. Preliminary evaluation of the greedy heuristics on experimental sets
showed that even using large data sets as inputs, they manage to give near op-
timal solutions in feasible time.

Implementation

The current version of HBS prototype was written in Python with a Java layer to
read from CDO (CAMEL model and CP model) and to write into it (a solution
of CP model).

5.5 Simulator Wrapper
Overview

The goal of this component is to provide to the PAASAGE platform a solver that
determine the best deployment solution using a cloud simulator. Simulator
Wrapper retrieves informations from the CAMEL model to generate an ap-
plication mockup, namely a scenario like 3-tier app, and explore a range of para-
meters corresponding to the application requirements. To run a scenario, virtual
machines are instantiated on a simulated cloud platform that is generated from
the cloud provider model (VM type, price, etc.) and which performance and
behaviour can be improved thanks to the MDDB. Using analytic performance
model and/or historical data, Simulator Wrapper simulates the resource
consumption of the different workloads of the application and computes a set
of metrics and trade-offs between them. Using this information, it can rank the
different mappings between cloud resources and applications components and
transfer to the meta-solver the generated Upperware meta-model. Figure 23 de-
scribes how Simulator Wrapper component works internally.

Design

Layer #1 To accurately simulate an application on a cloud, it is required to
have a good understanding of the application components and their interac-
tionsm, as well as the performance characteristics of the cloud platform. The
first step executed by Simulator Wrapper is to select a scenario that is
compliant with the PAASAGE application model. To do so the PAASAGE ap-
plication model is transformed into internal application model (see Figure 24).
Each class of application relies on a specific dataflow which is obtained form
Informations about the cloud infrastructure are retrieved from the MDDB.

D3.1.2 - Product Upperware Report Page 59 of 108

Figure 23: Internal architecture of the Simulator Wrapper.

Figure 24: Generic application model.

Layer #2 Once the scenario has been selected, a parameter range is generated
using requirement model of the application to explore the different deployment
solutions: number of VM instances for each components, hardware parameter of
virtual machines that are hosting the components, localization of cloud provider
datacenters. During this step, a specific cloud topology file and cost model for

D3.1.2 - Product Upperware Report Page 60 of 108

Figure 25: Generic request’s dataflow model.

the usage is generated, i.e., the Cloud offers (VM types, storage solutions, prices,
etc.).

Layer #3 This layer is a wrapper for the SimGrid Cloud Broker (SGCB) Cloud
simulator [DR13]. This toolkit is based on the well-known SimGrid framework
which has been extended to be able to simulate virtual machines behavior. For
each parameter combination, a run is executed and trace files are stored in a
specific directory, which can be reused later as a cache.

Layer #4 Layer #4 parses output files from the simulator in order to select
combinations that meet performance requirements, e.g. the required response
time from a client, and returns the cheapest solution within them.

Layer #5 This final layer simply convert the selected solution to a solution into
the CP Upperware model that will be used by the solver-to-deployer
component.

Implementation

Currently, all layers have a prototype implementation that allows to test every
step of the solving procedure, with some restrictions. First, as data for cloud pro-
vider topology is not in the MDDB, simulator uses a generic topology file obtain
computed from experiments on the Amazon Web Service platform. Second, the
dataflow and component behavior of an n-tier application requires benchmark-
ing, which has only be done for a few cases. A working example is presented
below for the Rubbos application (3-tier scenario). The BeWan use case is cur-
rently studied to obtain the SGCB model.

Example of a 3-tier application

Rubbos application model It uses RUBBoS16 as test application, that is com-
posed of an HTTP front-end, an application server back-end and a database.

16http://jmob.ow2.org/rubbos.html

D3.1.2 - Product Upperware Report Page 61 of 108

http://jmob.ow2.org/rubbos.html

Figure 26: Generic application model for the RUBBoS application.

Moreover, for each tier, there is a tier load balancer that spreads the incoming
requests between the different instances of each components. Figure 26 presents
a generic description of the application.

The application workflow reads as:

• For each Tier Server

1. Register to Tier Balancer

2. Launch X Tier Process (one per core by default)

3. Process requests

a) Receive requests
b) Read data
c) Compute requests
d) Write data
e) Send to next tier (optional)

4. De-register and die

D3.1.2 - Product Upperware Report Page 62 of 108

Figure 27: 2 request types’ dataflow for the RUBBoS application.

• For each Tier Balancer

1. Receive registering requests

2. Process requests

a) Receive requests
b) Elect a tier server
c) Send to the selected tier server

See Figure 27 for more details.

Cloud topology and pricing policy The layer #2 of the Simulator
Wrapper component is also in charge of generating the platform configuration
file. In the case of SGCB, the file is divided into 2 parts: one for the topology
and one for the Cloud offers. The topology file describes all the network links
(latency and bandwidth), the physical machines (speed and number of cores,
amount of memory and storage, etc.) and their interconnections. An example of
such file is given in Listing 2. As one can see, the example describes a single
Cluster with an output bandwidth of 1.25 GB/s, composed of 50 physical nodes
with 4 cores, 15 GB of memory and 1,690 GB local hard drive.

The Cloud offers file describes all the different VM types and their char-
acteristics but also the other services, e.g. storage. An example of such file is
given in Listing 3. The example contains the description of the Cloud offering
of one VM type and the price of Internet data transfer. Moreover, the layer #2
of the simulator wrapper is also in charge of generating Java code based on the
platform performance models. Thanks to the modular architecture of SGCB, it
is simple to plug new platform performance models. Using this interface, the
simulator wrapper can generate on-the-fly code that describes and implements
the performance models of the targeted platform.

D3.1.2 - Product Upperware Report Page 63 of 108

Listing 2: Example of the platform topology
<cluster bb_bw="1.25E9" bb_lat="1.0E-4" bw="1.25E8" core="4" id="

AS_usa_west_1_pm_m3.xlarge" lat="1.0E-4" power="1.5354508E10"
prefix="usa_west_1_pm_m3.xlarge-" radical="1-50" suffix=".
usa_west_1.broker.simgrid.org">

<prop id="memory" value="15000"/>
<prop id="disk" value="1690"/>
</cluster>

Listing 3: Example of the Cloud offering.
[...]
<instance id="c1.xlarge" vcpu="8" computing_unit="2.5" memory="7000"

disk="1690">
<on_demand_price price="0.580"/>

</instance>
[...]
<data_transfer_prices>

<internet>
<input>

<range price="0.0"/>
</input>
<output>

<range begin="0" end="1" price="0.0"/>
<range begin="1" end="10000" price="0.120"/>
<range begin="10000" end="40000" price

="0.090"/>
<range begin="40000" end="100000" price

="0.070"/>
<range begin="100000" price="0.050"/>

</output>
[...]

Internal representation of the Rubbos instance For each combination of the
parameter sweeper, a configuration file is generated that is used by the simulator,
i.e., for each component to resource mapping. See Listing 4 for an example. The
executions traces are stored in a specific directory and will then be used by the
layer #4

Trace analysis Then the Simulator Wrapper component retrieves the
execution traces of all the simulations. In the case of SGCB, the traces are in
Paje binary format17. The traces are analysed by the layer #4 of Simulator
Wrapper . These traces contain the billing of all resources, virtual resources’
information, e.g. startup duration of each VM and overall and per request ap-
plication execution information. An example of such trace is given in Listing 5.

17https://github.com/schnorr/pajeng

D3.1.2 - Product Upperware Report Page 64 of 108

https://github.com/schnorr/pajeng

Listing 4: Example of a configuration file
<nTierApplication version="1">
[...]

<proxy>
<webProxy region="eu_1" instanceType="m1.small"/>
[...]

</proxy>

<services>
<webService>

<region name="eu_1">
<instance type="VM_TYPE_TIER_1" quantity="INSTANCE_NB_TIER_1

"/>
</region>

</webService>
[...]

</services>
</nTierApplication>

This trace represents the different states, i.e., step in the request’s dataflow, of a
request (REQTASK_STATE_mwthanr_439). For each state, it contains where
the state has changed, e.g. on the eu_1.m2.2xlarge.14 resource: for ex-
ample, the request has changed its state to 16. Moreover, the trace also contains
when each state has begun and ended and its duration. Accordingly, it is pos-
sible to recreate a complete view of the execution of each request. This layer
finalley returns metrics and price values Simulator Wrapper also produces
trade-off curves between the different metrics. Finally, based on this trade-off,
the layer #4 of the Simulator Wrapper component ranks the different com-
ponent to resource mappings.

Selecting the “best” deployment solution According to the performance
model (cf Figure 28), the layer #4 determines which parameter combinations
corresponds to the trade-off between price and round-trip time (RTT). Finally,
layer #5 transmits stores the solution into the Upperware model.

5.6 Meta-Solver
Overview

The Meta-Solver acts as a gateway to the Solvers which provide the reasoning
in the PaaSage platform. To date we have five main Solvers which are the MILP
Solver, CP Solver, LA Solver, Greedy Heuritics, and SimWrapper. Each one
approaches the task of finding an optimal PaaSage deployment in a different way.
In year 2 of the project the Meta-Solver was triggered as part of a one way from

D3.1.2 - Product Upperware Report Page 65 of 108

Listing 5: Example of the pre-analysis trace of a simulation.
Variable, node-1.broker.broker.simgrid.org, REQTASK_STATE_mwthanr_439,

56336.3, 65670, 9333.74, 0
Variable, eu_1.m1.small.2, REQTASK_STATE_mwthanr_439, 56345.7, 65670,

9324.31, 15
Variable, eu_1.m1.small.1, REQTASK_STATE_mwthanr_439, 56338.2, 65670,

9331.84, 8
Variable, eu_1.m1.small.0, REQTASK_STATE_mwthanr_439, 56337.9, 65670,

9332.19, 1
Variable, eu_1.m2.2xlarge.14, REQTASK_STATE_mwthanr_439, 56345.8,

56345.8, 0.041315, 16
Variable, eu_1.m2.2xlarge.14, REQTASK_STATE_mwthanr_439, 56345.8,

56345.8, 0.002897, 18
Variable, eu_1.m2.2xlarge.14, REQTASK_STATE_mwthanr_439, 56345.8,

56348.7, 2.86561, 19
Variable, eu_1.m2.2xlarge.14, REQTASK_STATE_mwthanr_439, 56348.7,

56348.7, 0.008236, 20
Variable, eu_1.m2.2xlarge.14, REQTASK_STATE_mwthanr_439, 56348.7,

65670, 9321.37, 21
Variable, eu_1.m2.2xlarge.8, REQTASK_STATE_mwthanr_439, 56338.2,

56342.8, 4.61757, 9
Variable, eu_1.m2.2xlarge.8, REQTASK_STATE_mwthanr_439, 56342.8,

56342.8, 0.002897, 11
Variable, eu_1.m2.2xlarge.8, REQTASK_STATE_mwthanr_439, 56342.8,

56345.7, 2.86561, 12
Variable, eu_1.m2.2xlarge.8, REQTASK_STATE_mwthanr_439, 56345.7,

56345.7, 0.008236, 13
Variable, eu_1.m2.2xlarge.8, REQTASK_STATE_mwthanr_439, 56345.7,

65670, 9324.33, 14
Variable, eu_1.m2.2xlarge.3, REQTASK_STATE_mwthanr_439, 56337.9,

56337.9, 0.007831, 2
Variable, eu_1.m2.2xlarge.3, REQTASK_STATE_mwthanr_439, 56337.9,

56337.9, 0.00029, 4
Variable, eu_1.m2.2xlarge.3, REQTASK_STATE_mwthanr_439, 56337.9,

56338.2, 0.286561, 5
Variable, eu_1.m2.2xlarge.3, REQTASK_STATE_mwthanr_439, 56338.2,

56338.2, 0.008236, 6
Variable, eu_1.m2.2xlarge.3, REQTASK_STATE_mwthanr_439, 56338.2,

65670, 9331.87, 7

profile to execution invocation chain managed by a master script. Appropriate
solvers were selected based on the judgement of Meta-Solver over deployment
requirements in the CAMEL model being either a set of linear or non-linear
constraints.

In year 3 the Meta-Solver is triggered either via a direct call from the Rule
Processor in the case of an initial solution request or Adaptor for a new solu-
tion request. Integration with the ZeroMQ Paasage messaging architecture also
enables the Meta-Solver to make new solution requests based on live data and
deployed model constraints.

D3.1.2 - Product Upperware Report Page 66 of 108

0.25

0.50

0.75

1.00

m1.small m2.xlarge m2.2xlarge m2.4xlarge
InstanceType

M
et

ric

MetricType

Price

RTT

Throughput

Figure 28: Trade-off between the metrics for the RUBBoS application and the
horizontal scalability of the application tier.

Design

During year 3 the Meta-Solver has been adapted to take into account 3 main
functions:

1. Communication via ZeroMQ

2. Modification of models to incorporate monitored metrics

3. Continuous invocation of Solvers

Communication via ZeroMQ is a wider architectural change in the project
and has focused on using the messaging technology to propagate monitored met-
rics across the PaaSage architecture. The Meta-Solver subscribes to messages
from the Reasoning components present in the Solvers using ZeroMQ and also
the Upperware with messages received from the Adaptor and Metrics Collector.
The message relationships can be seen in Figure 29.

Messages received from the Solvers notify the creation new deployment
models and are expressed as references to CAMEL. Although the Solvers in the
architecture are invoked by the Meta-Solver using non ZeroMQ calls the results
of the solvers are transmitted to the Meta-Solver via ZeroMQ. This is because

D3.1.2 - Product Upperware Report Page 67 of 108

Figure 29: Meta-Solver ZeroMQ Interaction

the results from the solvers are likely to be more frequent and time specific. Thus
using ZeroMQ the Meta-Solver can process them as they arise in as close to real
time as possible. The format for these messages is notification that a specific
solution is available and its reference in the CDO server.

The messages received from the Metrics Collector are direct values taken
from monitored data related to the infrastructure that deployed application mod-
els reside on. The format of the message as illustrated in Table 2 contains the
metric name, its value and corresponding model reference in the CDO server.

Implementation

Support for ZeroMQ has been added to the Meta-Solver to enable the adaptor or
Rule Processor to send messages via ZeroMQ to start solving on specific models.
This is a difference from year 2 where the requests were trigger sequentially by
the Master Script. In year 3 the trigger for these requests is either based on direct
input from the user (i.e. via the social network) or by analysis of monitored data
from the Metrics Collector. The Executionware can also trigger the Adaptor into

D3.1.2 - Product Upperware Report Page 68 of 108

Solution Notification
(Solver to Meta-Solver)

MQ: “(SOLVERNAME)solutionAvailable”, Refer-
ence to Model in CDO (String)

Model to Deploy Re-
quest (Meta-Solver to
Solver2Deploy)

MQ: “startDeployment”, Reference to CPModel
(String), Reference to Model in CDO(String)

Metric Notification (Met-
rics Collector to Meta-
Solver)

MQ, metricName(String), value (String), Reference
to model in CDO

Solve Model Request (Ad-
aptor to Meta-Solver)

MQ: “startSolving”, Reference to Model in CDO
(String), Reference to CPModel (String)

Table 2: ZeroMQ message integration with the Meta-Solver.

a redeployment action on the Meta-Solver. The format of this message is the
request to start solving on a specific model that a reference in the CDO server is
supplied for.

The only component the Meta-Solver publishes data to via ZeroMQ
is the Solver2Deployer component. Here, the Meta-Solver notifies the
Solver2Deployer of the new solutions generated by the Solvers. The Meta-
Solver sends this notification if the new Solutions presented by the solvers is
different from existing solutions (it is expected that some solvers will return the
same result). The content of the message here is the reference to the new model
and request to deploy.

Modification of models by the Meta-Solver is a new function for year 3. In
the previous year model modification was conducted by the Solver. Now the
Meta-Solver adds data values into the models using the metrics provided by the
ZeroMQ link to the Metrics Collector. Adding live metrics to the models enable
the Solvers to take into account live values such as current memory use, thus
enabling the Solvers to create new solutions in the case where constraints are
breached.

Finally, the continuous invocation of the Solvers is part of the ongoing use
of live metrics and to support possible new solution requests as the Solvers are
executing. In year 2 solvers were only invoked once. The support for multiple
invocations enables the platform to keep a constant stream of up to date solutions
available to support rapid redeployments in the platform. For example, in the
case of the LA Solver it will continuously learn and adapt to the state of the
deployment via its own ZeroMQ link to the Metrics Collector.

D3.1.2 - Product Upperware Report Page 69 of 108

5.7 Utility Function Generator
Overview

Recall from Section 5.1 that a feasible configuration is defined as an assignment
of variable values that satisfies all the constraints of the deployment problem.
Thus only by addressing the user’s preferences and goals can we distinguish
between these feasible configurations. The only purpose of the utility function
is consequently to rank the various feasible configurations by assigning a nu-
merical value to each feasible configuration such that the configuration with the
largest utility value is the “better” configuration seen from the user.

The utility function is the objective function for mathematical solvers, and
serves to train learning based solvers. Learning is by definition an iterative pro-
cess, and learning from trial and error in the real world will be unfeasible. Most
of the learning iterations will therefore be performed against the utility function
similar to the hybrid reinforcement learning approach used by Tesauro et al. for
autonomic resource allocation [Ger+06].

The concept of utility is well established in economics as a representation of
preferences over some goods and services, and has long been used for decision
making [Pet70]. Chu and Halpern showed that essentially all decision rules can
be represented as a generalised notion of expected utility [FJ04]. Arguably, one
of the first applications in computer science was when Sutherland designed an
auctioning system where users could bid for computer time depending on their
perceived utility of the computation [I E68]. The concept of utility for system
management and operation is closely linked with the vision of autonomic com-
puting [JD03] and was first used to allocate resources in a data centre [Ter03],
an application close to the allocation problems considered in PaaSage. Kephart
and Das argued that both rule based policies and goal policies are in general in-
sufficient and inflexible for decision making in autonomic systems when one has
to trade-off potentially conflicting goals, and showed how utility functions could
be seen as an extension of goal policies [JR07]. Furthermore, Walsh et al. have
shown how the attributes of high level services could be expressed in the utility
function in high-level business terms [Wil+04].

Utility functions were used for self-adaptive applications in the MADAM
project [Kur+09], seeding ideas that were carried forward for context aware
ubiquitous computing systems in the MUSIC project [Sve+12]. Extensive ex-
perimentation with real applications revealed that even experienced software de-
velopers would find it difficult to develop utility functions [Jac+06], and that they
often reduced the utility function to some kind of situation-action rule [Jac+13].
These experiments thus confirmed the conjecture of Walsh et al. [Wil+04] who
stated that “(...) humans will often find it difficult to express their utility for vari-
ous components of a large, complex system. Carefully designed interfaces and

D3.1.2 - Product Upperware Report Page 70 of 108

preference elicitation techniques are needed to represent human notions of value
accurately.”

The DiVA project developed a model to assist the user in specifying impli-
citly the utility function as a sum of “properties” to be optimised under the cur-
rent configuration where the terms were weighted by a discrete priority factor
like “high”, “medium”, or “low” [FA09]. Although the configurations were
ranked by the utility function, different priority dimensions were balanced us-
ing priority rules. However, Cheng et al. realised that when more than one
dimension must be considered for adaptation “(...) updating and maintain-
ing consistency between the trade-off preferences quickly becomes unmanage-
able” [SDB06].

Another approach to elicit a utility function was offered by Valetto et
al. [GPD11]. They instrumented the application with monitors extracting data
on various performance features in laboratory tests, and then tried to correlate
the features impacting the application utility. However, this approach requires
significant off-line testing of the application in the laboratory, and significant
manual effort in the statistical analysis of the recorded data.

Finding the optimal configuration is relatively easy if the utility function
is a linear combination of independent utility functions for the application’s
artefacts like components, modules, virtual machines, and similar. The util-
ity function of Kephart and Das was of this kind [JR07]. The best configura-
tion can then be found in polynomial time by an application of the Bellman-
Ford algorithm [Ric58] as explained in [Mou+06]. However, the experiments
in MUSIC showed that decomposable utility functions cannot be expected in
general [Jac+13].

The approach to elicit and build a suitable utility functions currently under
investigation in PaaSage resembles the approach in DiVA where the user’s goals
will be captured as discrete preference sets over specific system properties. The
user will not be asked to formulate the utility function directly, but rather provide
certain rules for how the user would assess the application’s utility under differ-
ent situations. As an example consider that one can measure performance and
estimate the cost of the execution of a deployment. The user might then specify
the perceived utility as in the following examples.

R1: if performance is acceptable then utility is acceptable

R2: if performance is bad then utility is very low

R3: if cost is high then utility is low

The salient feature is that the different factors influencing the utility like per-
formance and cost, are classified and based on this classification the utility can

D3.1.2 - Product Upperware Report Page 71 of 108

take values from subsets of all possible utility values. This is different from the
approach in DiVA where rules specified directly the property to be prioritised,
e.g. “if the battery runs low, the power consumption should prioritised over per-
formance” [FA09]. In PaaSage this is done as an implicit trade-off between the
various properties based on the parts of the utility value chosen for that property
value. One can for instance assume that the user setting the rules R1–R3 above
prioritises performance over cost since the utility will never be assessed as worse
than “low” even if the cost is “high” whereas the utility could be taken as “very
low” if the performance is “bad”.

Implementation

Our intent is to use fuzzy numbers [JE02] to establish a utility value in the unit
interval, [0, 1]. This approach entails the following steps that are illustrated in
Figure 30.

Observation Fuzzification Evaluation Defuzzification Utility value

Figure 30: The steps needed in order to compute the fuzzy utility value.

1. Observation of the values of the property monitors. For each configur-
ation there are monitors stating how property values should be obtained,
and so in the example there must be ways to measure “performance” and
“cost” for the example rules above. In a real and simulated deployment,
the way to monitor the properties will be given by the infrastructures or
the simulator. In a utility function setting these values must be estimated
based on the configuration choices and historical information. One can
for instance assume that a large virtual machine with many cores will give
better performance than a smaller one, and from the price tables of the
Cloud providers and passed executions one can monitor the cost of a vir-
tual machine as a random variate with a given probability density function.

2. Fuzzyfication is the process of mapping the observed property value to
one of the possible alternatives. Each alternative is represented as a fuzzy
number. A fuzzy number is a fuzzy subset of the real numbers R and has
a membership function indicating on a scale from zero to unity whether
a given value is the fuzzy number. For instance the fuzzy number “bad
performance” will have a membership function that covers low values of
performance but drops off to zero as the performance value increases. An
observed value may consequently map to more than one fuzzy number if

D3.1.2 - Product Upperware Report Page 72 of 108

their membership functions overlap, and can therefore fractionally repres-
ent several fuzzy numbers. This reflects the underlying variability of the
observations. In our example, the specific value measured for the Per-
formance property can belong, say, 0.65 to the fuzzy number “acceptable
performance”, and 0.35 to the fuzzy number “bad performance”.

3. Evaluation of the rules uses the fuzzy values to assess the conditions of
the rules. Continuing our example, this implies that we should “weight”
the outcome of the first rule with 0.65 and the second rule with 0.35 since
the measured value indicates that the performance is mostly acceptable,
but may also be bad. These conclusions can be mapped to utility values
by inverting the membership functions of the fuzzy utility values so that, in
our case, the utility resulting from the first rule is the real value which has a
membership value of at least 0.65 to the fuzzy number “acceptable utility”.
The “very low utility” set of the second rule may cover a different range
of utility values, and again the utility value is the one whose membership
value to this fuzzy number is larger than, or equal to 0.35.

4. Defuzzification is combining the evaluation of different rules into one
single utility value. It is not a simple sum of the different outputs of the
rule evaluation since the fuzzy numbers can overlap, e.g. the upper val-
ues in the “very bad utility” coverage can overlap with some of the lower
values in the “bad utility”. Popular ways of doing defuzzification is the
mean of maxima technique, the centroid technique, or the centre of max-
ima technique. The most intuitive one is the centroid technique that will
be tried first in PaaSage. It aims to find the “centre of gravity” of the
membership functions of the outcome of the evaluation of the different
rules. It integrates the area under the membership functions of the result-
ing fuzzy numbers, but truncates these at the level at which the rule made
the decision, and averages. In the example at hand, one would integrate
the membership function for the “acceptable utility” limiting the member-
ship values to 0.65, integrating the “very low utility” membership function
limiting the values to 0.35, and integrating the “low utility” to the level of
decision of rule number three. The single utility value returned will be the
one splitting this combined area in two equal parts (the center of gravity).

In order to use this approach, fuzzy numbers must be defined for the the input
properties, as well as for the different utility classes. For each fuzzy number
there must be a membership function defined. It is clear that the range covered
by each of these numbers and the corresponding membership function chosen
will influence the produced utility value. These choices are therefore crucial to
the usefulness of the fuzzy utility function.

D3.1.2 - Product Upperware Report Page 73 of 108

The literature reports, however, that most of the fuzzy number membership
numbers are specified as either triangles or trapezoids, and as such it could be
that these functions will be good enough for PaaSage where the utility value has
no precise meaning in. It is only required to give a consistent ranking of the
deployment configurations.

Work has therefore started on evaluating this approach with the PaaSage end-
users to understand what will be the easiest way to formulate the utility function,
either directly or through the above outlined use of fuzzy numbers. This will
continue up to month 18. The fuzzy utility function will thus only be included
in the second phase of the project to be demonstrated at month 36.

5.8 Flexiant Utility Function Cost Trigger
Overview

As a study on the improved relationships beteen the Upperware and a Cloud
provider service, a cost related ‘Trigger’ has been created by Flexiant. It exposes
cost related information from within a user FCO account which can then be used
by the ‘Utility Function’.

Firstly, to define a Trigger, they are written as a block of Flexiant Devel-
opment Language (FDL) code that runs either before an event occurs (a pre
trigger) or after an event occurs (a post trigger). These are executed from within
the Cloud platform itself and allow an action in Flexiant Cloud Orchestrator to
initiate a second action, which can be external to Flexiant Cloud Orchestrator.
These are also highly exploitable areas of technology.

The developed cost trigger is called once a VM is shutdown within the PaaS-
age user account. The trigger does this by comparing a required key set at a user
account level once a VM is shutdown with FCO, if this key matches the trigger
continues. Next the cost information is pulled using the FCO API to list the total
credits used that day, using the listUnitTransactionSummary API call18.

This cost information, server UUID and timestamp is then emailed to the
PaaSage account owner for their information, or can be passed to any PaaSage
component such as the ‘Utility Function’. In the background, a script gauges
the rate of various PaaSage cost related assets within FCO and converts this to a
usage-versus-time amount.

The Trigger is for use in PaaSage by the use cases when taking advantage of
the Utility Function. Cost is a key metric for decision making and will be one of
several handled by the Utility Function. Architecturally, the Upperware will tell
the Executionware what to monitor including cost. Cost should be [a] metric(s)

18http://docs.flexiant.com/display/DOCS/SOAP+User+
listUnitTransactionSummary

D3.1.2 - Product Upperware Report Page 74 of 108

http://docs.flexiant.com/display/DOCS/SOAP+User+listUnitTransactionSummary
http://docs.flexiant.com/display/DOCS/SOAP+User+listUnitTransactionSummary

that is taken from the Metric Collector via a probe on FCO which picks up the
output of the Trigger.

The Executionware should feed back the monitored data to the MDDB/Up-
perware where it should also be picked up by CAMEL, and the Utility Function
will use it along with other relevant metrics for a specific use case.

Further improvements

To further improve the cost information for use within the Paasage project, ad-
ditional work could be used to develop the existing trigger.

The trigger could feed the exposed data straight from the FCO platform to
the Upperware rather than passing this information via email.

In addition more detailed cost information could be provided by using the
listUnitTransactions API call2, which provides a detailed granular breakdown
of the unit costs within the users account. This way more intelligent decisions
could be taken by the Upperware.

5.9 Solver-to-deployment
Overview

The Solver-to-deployer component is a glue layer between the Reasoner
and the Adapter (cf. Section 6). It participates to lowering the dependen-
cies of solvers to the remaining of PAASAGE. As described in Section 3,
Upperware meta-models aim at enabling interactions between the Profiler
and the Reasoner while lowering dependencies to CAMEL. Solvers produce
solutions using these Upperware meta-models. The main objective of the
Solver-to-deployment component is to translate the output of the Solv-
ers into the CAMEL deployment model (aka CPSM). Figure 31 describes the
various subcomponents that compose the Solver-to-deployer component.

The Model Processor component loads the models received as input
and passes them to the Derivator component, that encapsulates the function-
ality to parse and extract the required elements. The Derivator component
is concerned with matching the CP and PaaSage Application Models of applic-
ations so as to extend the CAMEL model with solutions. Finally, the CAMEL
Generator component save the enhanced CAMEL model.

Matching Algorithm

The Solver-to-deployement component is implemented in Java. It re-
ceives the solution as a list of objects with the PaaSageVariable type. A
PaaSageVariable object is described as follows:

D3.1.2 - Product Upperware Report Page 75 of 108

Model Processor

* Load CP and PaaSage
Application Models

Derivator

* Parse CP and PaaSage
Application Models

* CP and PaaSage Application
Models to CAMEL

CAMEL Generator
* Generator CAMEL

Figure 31: Solver-to-deployer-overview.

RelatedComponent It gives the ApplicationComponent of the UpperModel to
instanciate in the CAMEL model.

RelatedVirtualMachineProfile It enables determining the VM template to in-
stanciate in the CAMEL model.

RelatedProvider It gives the Provider from the UpperwareModel that allows
finding in which provider the VM must be instanciated.

The creation process comprises the following steps.

1. Creation of the InternalComponentInstances.

A PaaSageVariable’s relatedComponent is used to create one correspond-
ing InternalComponentInstance. To do so, we need to find in the CAMEL
model the associated InternalComponent. This InternalComponent is as-
sociated to a list of ProvidedCommunications and a list of requiredCom-
munications. For each item of these lists, we must create a corresponding
instance, either ProvidedCommunicationInstance or RequiredCommunic-
ationInstance (depending on the original type). The two resulting lists can
then be associated to the InternalComponentInstance.

2. Creation of the VmInstance.

PaaSageVariable’s RelatedVirtualMachineProfile and RelatedProvider are
used to create a vmInstance. Those two values allow finding the VM and
the ProviderModel. From the VM, we create a ProvidedHostInstances that
gets associated to the VmInstance. The ProviderModel is used to find the
VMType and VMTypeValue of the VmInstance.

D3.1.2 - Product Upperware Report Page 76 of 108

3. Creation of the HostingInstances.

The HostingInstances are created using the previously-created VmIn-
stance and InternalComponentInstances, as well as the InternalComponent
associated to the ComponentInstance.

A HostingInstance must be created for each ProvidedHostInstance associ-
ated to the VmInstance. Each HostingInstance must be associated to the
current ProvidedHostInstance and to the RequiredHostInstance matching
the InternalComponentInstance.

D3.1.2 - Product Upperware Report Page 77 of 108

6 Adapter
The purpose of the Adapter is to transform the currently running application con-
figuration into the target configuration in an efficient and safe way. The Adapter
is composed of three components, the Adaptation Manager, the Plan
Generator, and the Application Controller, as shown in Figure 32.
These three components are discussed in the following three sections. The last
two sections discuss the SRL Adapter, a component that helps with configur-
ing the Executionware, and the Executionware client, a library for using
the REST interface of the Executionware.

Figure 32: Adapter Architecture.

6.1 Adaptation Manager
Overview

Adaptation Manager drives the overall reconfiguration process. It has
three main responsibilities: (1) validating reconfiguration plans, (2) applying the
plans to the running system in an efficient and safe way, and (3) maintaining an
up-to-date representation of the current system state. It communicates with the
Reasoner to obtain target deployment models, with the Plan Generator to
obtain plans, with the Application Controller to configure high-level
monitoring rules, and with the Executionware to collect information and to ex-
ecute reconfiguration actions.

D3.1.2 - Product Upperware Report Page 78 of 108

Figure 33: Adaptation Manager structure.

Implementation

The Adaptation Manager is decomposed into four main components shown in
Figure 33. The Reasoner Interfacer loads the deployment model de-
livered by the Reasoner. The ExecutionWare Interfacer provides a
wrapper interface to the REST API used for Upperware-Executionware interac-
tions (see the next section). The Validator decides whether a reconfiguration
plan is acceptable. Finally, the Coordinator directs the other components
and maintains a deployment model that reflects the state of the current system.

The following workflow illustrates the reconfiguration process.

1. The Reasoner Interfacer obtains a new target deployment model
from the Reasoner (cf. Section 5.9).

2. The Plan Generator receives the target model along with the current
model and produces a reconfiguration plan.

3. The Validator verifies that the plan execution will be beneficial to the
system.

D3.1.2 - Product Upperware Report Page 79 of 108

4. The Coordinator configures the Application Controller to
supervise application execution.

5. The Coordinator invokes the ExecutionWare Interfacer to
deploy the Executionware specific actions generated from the plan.

6. The Coordinator updates the current deployment model.

At Step 3, if validation fails, the Coordinator restarts the process with a
new target deployment model, when available. At Step 5, if one of the actions
fails, the Coordinator terminates plan execution, updates the deployment
model, and asks the Plan Generator for a new reconfiguration plan starting
from the updated state.

The Adaptation Manager is implemented as a Java process that uses
the Apache HTTPClient library for invoking REST operations and the ZeroMQ
library for exchanging messages with other PaaSaage components. The remain-
ing of this section provides more details on the Coordinator, Validator
and the ExecutionWare Interfacer.

Coordinator

As previously mentioned, the Coordinator directs the execution of the other
components within the Adapter. Once a new target deployment model is re-
ceived, it invokes the Plan Generator to obtain a reconfiguration plan, and
passes this plan through the Validator to verify its applicability. It can then
proceed to execute the reconfiguration plan. Notably, the plan is executed in par-
allel, reducing the overall reconfiguration duration. The plan execution process
is described next.

The target reconfiguration plan contains a set of tasks that have dependencies
among themselves. Examples of such tasks are creation/update/deletion of VM,
VM Instance, Internal Component, Communication, Hosting etc. The first step
of executing the plan consists in casting the task dependencies within the plan
into a graph data structure, where each node represents a task. As a result, the ex-
ecution and verification of the tasks becomes easier, requiring traversal between
the nodes. The second step is to translate the plan from the initial CAMEL-based
perspective to an Executionware-based perspective as a preparation for the de-
ployment using the Executionware Interfacer. Specifically, each of
the tasks is mapped to a set of concrete executable actions for deployment in the
Executionware. For example, the CommunicationType in the CAMEL model
contains the following information:

• name

D3.1.2 - Product Upperware Report Page 80 of 108

• provider port number

• consumer port number

• provider component

• consumer component

To realize this in the Executionware, three entities need to be created, i.e.,
two port entities (provider and consumer) linked to a communication entity. The
two port entities are independent and hence their creation can be parallelized.
The provider and consumer components (also as entities) should already exist
in the Executionware and be provided during the creation of the communica-
tion entity. The execution hierarchy can be clearly noticed while creating the
communication type of the model. Nodes representing communication type cre-
ation task in the reconfiguration plan graph discussed above are replaced with
following actions: creation action (two ports and communication entities), veri-
fying existence and then linking the existing provider and consumer component
entities. Similarly, every node (i.e., task) in the reconfiguration plan graph is
substituted by relevant actions to be performed in the Executionware. Thus the
transformation into reconfiguration action graph is performed which is ready to
be deployed.

The reconfiguration action graph may or may not contain dependent actions.
As in the above example, the actions for creating the two port entities are in-
dependent. The Coordinator component traverses this graph and allocates each
node to a pool of processors, i.e., enqueues each of these nodes as threads onto a
processor. The graph has design provisions such that a processor would wait for
executing the actions within a node, in case of dependency with other neighbour-
ing nodes within the graph. In this way the hierarchical execution is maintained
in case of dependency while on the other hand deployment is parallelized as
much as possible.

Validator

The Validator decides whether the proposed reconfiguration plan is accept-
able. The decision relies on weighing potential reconfiguration benefits, such
as increases in the application performance, against potential costs, such as dis-
ruption of the application operation. To take this decision, the validator uses
information about the operational state of the application, its execution context
as well as historical information stored in the metadata database.

The current implementation performs a cost-benefit calculation based on the
utility values associated with the current deployment and the target deployment

D3.1.2 - Product Upperware Report Page 81 of 108

as well as the estimated reconfiguration duration, derived from past executions of
reconfiguration actions. Improved approaches are currently being investigated,
taking into account the possibility of failures of reconfiguration actions.

Executionware Interfacer

The Executionware Interfacer supports the interaction with the Exe-
cutionware, which relies on a REST API. The API is based on the main concepts
of CAMEL, namely, applications, components, component instances, relation-
ships, and virtual machines. It exposes operations for obtaining information
about the running application (e.g. retrieving the state of a particular component
instance) and sending reconfiguration commands (e.g. deploying an application
or adding a new instance). Resource representations are in JSON. To deploy an
application, the API client makes a series of HTTP POST requests. Successful
deployment produces a set of linked resources that enables the client to mon-
itor and manipulate the application through HTTP requests. Table 3 provides an
overview of the API.

However, as described in section 6.1, the CAMEL concepts are realized by
creating multiple entities in Executionware; reiterating its example, the CAMEL
CommunicationType is actualized by creating three entities in the Execution-
ware. And the Executionware provides unique id for every entity. The id
is required to perform future actions like update or delete on the correspond-
ing entity. Hence the Executionware Interfacer has a subcomponent
CamelExecwareMapper to store these ids. This subcomponent is a data
structure that represents the mapping between the CAMEL concepts and its rep-
resented entities in Executionware and stores information about the entities cre-
ated during runtime for further actions.

6.2 Plan Generator
Overview

The Plan Generator is a sub-component of the Adapter. Its key role is
to generate re/configuration plans which the Adapter uses to orchestrate the
deployment/reconfiguration of a cloud application managed by the Paasage plat-
form. In the simple deployment usage scenario, the Plan Generator takes
in a single CAMEL DeploymentModel object which describes the target deploy-
ment desired by the Reasoner. In the reconfiguration usage scenario, it addition-
ally takes in a current DeploymentModel object which describes the existing
system deployment when the comparison is launched. For both usage scenarios,
the Plan Generator generates a plan which contains a set of configuration
tasks and the dependencies that exist between the tasks. In year 3, the design

D3.1.2 - Product Upperware Report Page 82 of 108

Table 3: REST API.

Operations Description

GET /api/application
POST /api/application
GET /api/application/{application_id}
DELETE /api/application/{application_id}

Query, deploy, undeploy a
single application within the
system

GET /api/lifecycleComponent
POST /api/lifecycleComponent
GET /api/lifecycleCompon-
ent/{lifecycleComponent_id}
DELETE /api/lifecycleCompon-
ent/{lifecycleComponent_id}
PUT /api/lifecycleCompon-
ent/{lifecycleComponent_id}

Query, deploy, undeploy, per-
form actions on components
using lifecycle shell scripts to
execute the lifecycle actions
(e.g. start, stop instances)

POST /api/communication
DELETE /api/communica-
tion/{communication_id}
GET /api/communication/{communication_id}

Create, destroy, query com-
munication between two
ports. The communication
has a direction going from
provided port to required
port.

GET /api/instance/{instance_id}
POST /api/instance
DELETE /api/instance/{instance_id}
GET /api/instance/{instance_id}

Query, add, delete, query,
perform actions on an in-
stance of an application com-
ponent on a virtual machine

GET /api/virtualMachine Lists all virtual machines
available in the system

of the Plan Generator was re-iterated and the key changes are described in
the next section.

D3.1.2 - Product Upperware Report Page 83 of 108

Implementation

Figure 34 shows the class diagram for the Plan Generator. There are two key
variations from the year 2 design:

1. The input models are now based on Paasage CAMEL.

2. The output plan contains a list of ConfigurationTasks as opposed to Action
objects.

Figure 34: Plan Generator class diagram.

The adoption of CAMEL to cover the necessary aspects of modelling and
provisioning of cloud application is intended to decouple the Plan Generator
from the concrete enactment of the deployment by the Adapter using specific
ExecutionWare API. As a result, the Adapter needs to map the Configur-
ationTasks contained in the deployment Plan into specific deployment Actions
for submission to the ExecutionWare (see Section 6.1 for a description of
the process). To facilitate the mapping and orchestration, the Plan Generator
provides each ConfigurationTask with a plain text Json key-value map of in-
formation describing the target configuration (see Appendix C) and computes
the dependencies between tasks according to the logical dependencies between
the CAMEL concepts (see Figure 35). Other than these changes, the overall

D3.1.2 - Product Upperware Report Page 84 of 108

model comparison process remains the same except for the addition of functions
to identify update to key attributes of an already deployed object.

Figure 35: Logical dependencies between the configuration tasks.

During a model comparison, the Plan Generator first compares the type
definition of each object instance. For example, the VMType objects are first
compared followed by the VMInstance objects. If a target object is not found
in the current model, a Create ConfigurationTask is generated. Conversely, if
a current object is not found in the target model, a Delete ConfigurationTask is
generated. And if an object is found in both the current and target models, the
object’s key attributes, e.g. port number, OS/Image, location, etc., are then com-
pared to identify if an Update ConfigurationTask is needed to re-configure the
deployed object.

6.3 Application Controller
Overview

The Application Controller component monitors the running applica-
tion and its execution context in order to detect changes that make the current
deployment unacceptable. Monitored information includes parameters neces-
sary for evaluating application requirements (e.g., application response time), the
status of previously-triggered reconfiguration actions (e.g., component deploy-
ment), and any deployment changes outside the Upperware control (e.g., VM
failures, Executionware-triggered auto-scaling, or administrator actions). Based
on this information, the component decides whether to trigger the execution of

D3.1.2 - Product Upperware Report Page 85 of 108

the full reconfiguration process, based on the best available target deployment
model.

Implementation

The Application Controller receives as input the CAMEL model, in-
cluding application requirements, and uses Executionware APIs to configure
metric collection and to receive notifications related to the current deployment. If
the incoming information invalidates the current application model, then the ap-
plication controller informs the Application Manager, which executes the
full reconfiguration process involving generating, validating, and applying a new
reconfiguration plan. This happens, for example, when a hard requirement is vi-
olated, such as a service-level objective specifying a maximum response time.
To handle delays and transient failures, which are unavoidable in cloud infra-
structures, the Application Controller applies simple fault-tolerance
tactics, adding resiliency and avoiding costly reconfiguration. For example, it
may retry reconfiguration actions or issue extra reconfiguration requests and can-
cel the late ones. If such tactics fail to address the situation, the component in-
forms the Application Manager to launch a new reconfiguration process.

6.4 SRL Adapter
Overview

The SRL Adapter has two main functionalities: (i) the creation of the Metri-
cInstances based on the MetricContexts and the actual available VirtualMachine
resources and (ii) the translation of these metric definitions to the Executionware.

The workflow as shown in Figure 36: (i) The Adaptation Manager transfers
the application into the Executionware and updates the model with the actual
values; (ii) After the deployment has finished and deployment details like IP ad-
resses are stored in the CAMEL model, the SRL Adapter is called; (iii) The
Instantiator of the SRL Adapter connects to the CDO server and creates the
required MetricInstances; (iv) Already instantiated monitors in the Execution-
ware, that might be raw or composed Metrics from an older CAMEL model, are
deleted; (v) For each entity in the Scalability and Metric models of the CAMEL
model, an corresponding Adapter is instantiated and transforms the CAMEL
entity into an Executionware entity; (vi) The Adapters send the entities to the
Executionware via the FrontendCommunicator.

This Adapter component is loosely coupled to the others, since it can be used
independently from the deployment phase. First of all, because the engagement
of the sensors require the virtual machines to be up and running. And secondly,
since the monitoring requirements can change during execution, e.g. after the

D3.1.2 - Product Upperware Report Page 86 of 108

Figure 36: Workflow of the SRL Adapter.

Table 4: Structure of the SRL Adapter.

Package Description
adapter The actual adapters for each model entity.
communication The communication manager towards the exe-

cutionware.
config Managing of the config parameters.
test Holds some tests for the adapter and the execu-

tionware.
utils Utilities for instantiating, finding and convert-

ing types, entities, etc. from the CAMEL model
to the Executionware.

application manager identifies better-suited analysis methods for the monitoring
based on workload behaviour.

Implementation

The Java package structure of SRL Adapter is shown in Table 4.
There is an Adapter implemented for each CAMEL entity of the Metrics and

Scalability packages to translate it.
For this task it needs access to the CDO server in order to read and update the

current CAMEL model. Therefore it needs the CDO endpoint and credentials as

D3.1.2 - Product Upperware Report Page 87 of 108

configuration parameters, as well as the resource and model name. To be able
to distinguish between several possible parallel deployments, an additional input
parameter is the ExecutionContext of the deployment to be adapted.

In order to access the Executionware and therefore install probes and ag-
gregators, also these credentials have to be passed as parameters. The monitor-
ing agent Visor was forked to implement the connection to the Metric Collector.
This fork is called "visor-bridge". Its endpoint is used to send the values of ob-
served Monitors to the metrics-collector-accessor - a tool that has the sole task
to instantiate the Metric Collector and therefore provide a ZeroMQ server to
publish those measurements and events. Also the creation of MetricInstances
can be deactivated. Example application arguments may look like this:

-cdoUser="sa"
-cdoPass=""
-modelName="BewanCamelModel"
-resourceName="enterprise-service-application.xmi_1442232824"
-executionContextName="ExecutionContext"
-colUser="john.doe@example.com"
-colTen="admin"
-colPass="admin"
-colUrl="http://localhost:9000/api"
-visEndpoint="localhost"

-createMetricInstances="true"

The implementation is solely done in Java and uses the REST interface via
the Executionware Client.

6.5 Executionware Client
Overview

The ExecutionwareClient (or Colosseum Client19) is a Java-based
client for the REST interface of the Executionware (Colosseum).

The colosseum-client-test application shows the intended usage
with test deployments, like the be.wan use case.

Implementation

The client is instantiated with credentials and the Executionware endpoint. A
Client Controller per entity of the Executionware model provides the functions
for resource manipulation as predetermined by the REST priniciple of HTTP.

19https://github.com/cloudiator/colosseum-client

D3.1.2 - Product Upperware Report Page 88 of 108

https://github.com/cloudiator/colosseum-client

Table 5: Methods of the generic Client Controller of type T.

Method Meaning (and HTTP method)
T get(long id) Retrieves the object with the identifier id. (GET)
List<T> getList() Retrieves all objects of the type of the specific

Client Controller. (GET)
T create(T t) Create the object t in Colosseum. (POST)
T update(obj) Updates the object t with the current values in

Colosseum. (PUT)
T delete(obj) Deleting the object t. (DELETE)
T getSingle(Predicate fil-
ter)

Special form of the get method with a Predicate
to be used as filter. (GET)

List<T> getList(Predicate
filter)

Special form of the list method with a Predicate
to be used as filter. (GET)

Listing 6: Example code for client usage.
// This example shows the manipulation of
// resources stored in Colosseum.

// example credentials and endpoint
String url = "http://localhost:9000/api";
String username = "john.doe@example.com";
String password = "admin";
String tenant = "admin";

// the builder to create a client
ClientBuilder clientBuilder = ClientBuilder.getNew()

// the base url
.url(url)
// the login credentials
.credentials(username, tenant, password);

Client client = clientBuilder.build();

//get the controller for the cloud entity
final ClientController<Cloud> controller = client.controller(Cloud.

class);

//get the controller for the api entity
final ClientController<Api> apiController = client.controller(Api.

class);

//create a new API
Api api = apiController.create(new Api("ApiName-" + random.nextInt

(10000),
"InternalProviderName-" + random.nextInt(100)));

//create a new Cloud
controller

.create(new Cloud("MyCloud-" + random.nextInt(10000), "
endpointTest.com", api.getId()));

D3.1.2 - Product Upperware Report Page 89 of 108

//fetch all clouds
List<Cloud> clouds = controller.getList();

//fetch the first cloud of this list
Cloud cloud = clouds.get(0);

//create a another Cloud
cloud = controller

.create(new Cloud("MyCloud-" + random.nextInt(1000), "endpointTest
.com", api.getId()));

//update a cloud
cloud.setName("MyNewName-" + random.nextInt(100));
controller.update(cloud);

//delete a cloud
controller.delete(cloud);

The functions are presented in Table 5 and an example usage is shown in
Listing 6.

D3.1.2 - Product Upperware Report Page 90 of 108

7 Conclusion
The Upperware is made of three major components: the Profiler, the Reasoner,
and the Adapter. Interactions with other PAASAGE elements (CAMEL, MD-
DB/CDO, Executionware) have been well identified and the proposed Upper-
ware product architecture and aim to minimize them to few elements.

The Profiler is mainly made of two sub-components, with distinct object-
ives. The CP Generator Model-to-Solver produces a constraint prob-
lem description that is improved by the Rule Processor by removing re-
dundancies and verifying the list of Cloud providers candidates.

The Reasoner currently supports several kinds of solvers, so as to propose
various strategies to efficiently compute a deployment depending on the circum-
stances. Hence, we have defined an architecture where new solvers could be
integrated at low cost. Current efforts are geared towards developing a Learn-
ing Automata based solver, making use of existing solvers (MILP Solver and CP
Solver), developing some greedy heuristics as well as simulator based heuristics,
and developing a Meta Solver for handling complex situations. Reasoner also
contains

The Adapter is made of three major sub-components. The Plan Generator
transforms the target deployment computed by the Reasoner into an ordered set
of Configuration Tasks which the Adapter maps to deployment Actions. These
deployment Actions are executed parallely, if possible. The Adaptation Manager
is responsible for driving the (re)configuration process, and in particular inter-
acting with the Reasoner and the Executionware. The Application Controller
component monitors the running application and its execution context in order
to detect changes that make the current deployment unacceptable. Auxiliary
functionnalities are handled in well-separated components to ease PaaSage evol-
ution: the SRL Adapter for helping with configuring the Executionware and the
Executionware client for communicating with the Executionware.

This document describes our views of the Upperware product at M36. When
gaining experience by supporting more and more use cases, the Upperware ar-
chitecture may evolve. Therefore, interactions with other PAASAGE partners
(in particular from other work-package) may have some impacts on well identi-
fied sub-components. Interactions with the use case partners in PAASAGE will
provide feedbacks on the actual usage of the Reasoner, and its relevance to fulfil
requirements.

All these interactions and evaluations will contribute to the evolution of the
Upperware.

D3.1.2 - Product Upperware Report Page 91 of 108

References
[Bsi+13] Amin Bsila et al. Deliverable D3.1.1 - Upperware Prototype. PaaS-

age project deliverable. PaaSage Project, 2013.

[Jef+13] Keith Jeffery, Geir Horn, Lutz Schubert, Philippe Massonet, Kos-
tas Magoutis, Brian Matthews, Tom Kirkham, Christian Perez
and Alessandro Rossini. Deliverable D1.6.1 - Initial Architecture
Design. PaaSage project deliverable. PaaSage Project, 2013.

[RP15] Alessandro Rossini and the PaaSage consortium. D2.1.3 – CAMEL
Documentation. PaaSage project deliverable. Oct. 2015.

[Hop+15] Dennis Hoppe et al. Deliverable D5.2.1 - Product ExecutionWare.
PaaSage project deliverable. PaaSage Project, 2015.

[Ros+15] Alessandro Rossini, Kiriakos Kritikos, Nikolay Nikolov, Jörg
Domaschka, Frank Griesinger and Daniel Romero. CAMEL Doc-
umentation v2015.06t. 2015.

[QRD13] Clément Quinton, Daniel Romero and Laurence Duchien.
“Cardinality-Based Feature Models With Constraints: A Pragmatic
Approach”. In: SPLC - 17th International Software Product Line
Conference - 2013. Tokyo, Japan, Aug. 2013, pp. 162–166.

[LH13] Livia Predoiu and Heiner Stuckenschmidt. “Probabilistic Models
for the Semantic Web: A Survey”. In: Web Technologies: Con-
cepts, Methodologies, Tools, and Applications. Ed. by Arthur Tat-
nall. Chapter 102. IGI Global, 5th July 2013, pp. 1896–1928. ISBN:
9781605669823. URL: doi:10.4018/978-1-60566-982-
3.

[Ben+08] Ben Goertzel, Matthew Iklé, Izabela Freire Goertzel and Ari Hel-
jakka. Probabilistic Logic Networks: A Comprehensive Frame-
work for Uncertain Inference. DOI: 10.1007/978-0-387-76872-4.
Springer, 2008. 336 pp. ISBN: 978-0-387-76872-4. URL: http:
//www.springer.com/computer/ai/book/978-0-
387-76871-7.

[Pei13] Pei Wang. Non-Axiomatic Logic: A Model of Intelligent Reason-
ing. World Scientific, July 2013. 276 pp. ISBN: 978-981-4440-
29-5. URL: http : / / www . worldscientific . com /
worldscibooks/10.1142/8665.

D3.1.2 - Product Upperware Report Page 92 of 108

doi:10.4018/978-1-60566-982-3
doi:10.4018/978-1-60566-982-3
http://www.springer.com/computer/ai/book/978-0-387-76871-7
http://www.springer.com/computer/ai/book/978-0-387-76871-7
http://www.springer.com/computer/ai/book/978-0-387-76871-7
http://www.worldscientific.com/worldscibooks/10.1142/8665
http://www.worldscientific.com/worldscibooks/10.1142/8665

[CC05] Costas P. Pappis and Constantinos I. Siettos. “Fuzzy Reasoning”.
In: Search Methodologies: Introductory Tutorials in Optimization
and Decision Support Techniques. Ed. by Edmund K. Burke and
Graham Kendall. Chapter 15. Springer, 2005, pp. 437–474. ISBN:
978-0-387-23460-1, 978-0-387-28356-2. URL: http://link.
springer.com/chapter/10.1007/0-387-28356-
0_15 (visited on 05/07/2013).

[DY08] David G. Luenberger and Yinyu Ye. Linear and Nonlinear Pro-
gramming. 3rd. Springer, 2008. 546 pp. ISBN: 978-0387745022.

[Lau08] Laurence A. Wolsey. “Mixed Integer Programming”. In:
Wiley Encyclopedia of Computer Science and Engineer-
ing. DOI: 10.1002/9780470050118.ecse244. John Wiley &
Sons, Inc., 2008, pp. 1–10. ISBN: 9780470050118. URL:
http : / / onlinelibrary . wiley . com / doi / 10 .
1002/9780470050118.ecse244/abstract (visited on
05/07/2013).

[BJ08] Bernhard Korte and Jens Vygen. Combinatorial Optimization: The-
ory and Algorithms. 4th. Vol. 21. Algorithms and Combinator-
ics. Berlin Heidelberg: Springer, 2008. 627 pp. ISBN: 978-3-540-
71843-7. URL: http://www.springer.com/new+&+
forthcoming+titles+(default)/book/978-3-540-
71843-7.

[PR09] Pascal Van Hentenryck and Russell Bent. Online Stochastic Com-
binatorial Optimization. The MIT Press, 2009. ISBN: 0262513471,
9780262513470.

[ALA09] Aharon Ben-Tal, Laurent El Ghaoui and Arkadii Semenovich
Nemirovskii. Robust optimization. Princeton Series in Applied
Mathematics. Princeton: Princeton University Press, 2009. ISBN:
9781400831050 1400831059 9780691143682 0691143684. URL:
http : / / public . eblib . com / EBLPublic /
PublicView.do?ptiID=457706 (visited on 07/07/2013).

[DM03] Dimitris Bertsimas and Melvyn Sim. “Robust discrete optimization
and network flows”. In: Mathematical Programming 98.1 (Sept.
2003), pp. 49–71. ISSN: 0025-5610, 1436-4646. DOI: 10.1007/
s10107-003-0396-4. URL: http://link.springer.
com/article/10.1007/s10107-003-0396-4 (visited
on 07/07/2013).

D3.1.2 - Product Upperware Report Page 93 of 108

http://link.springer.com/chapter/10.1007/0-387-28356-0_15
http://link.springer.com/chapter/10.1007/0-387-28356-0_15
http://link.springer.com/chapter/10.1007/0-387-28356-0_15
http://onlinelibrary.wiley.com/doi/10.1002/9780470050118.ecse244/abstract
http://onlinelibrary.wiley.com/doi/10.1002/9780470050118.ecse244/abstract
http://www.springer.com/new+&+forthcoming+titles+(default)/book/978-3-540-71843-7
http://www.springer.com/new+&+forthcoming+titles+(default)/book/978-3-540-71843-7
http://www.springer.com/new+&+forthcoming+titles+(default)/book/978-3-540-71843-7
http://public.eblib.com/EBLPublic/PublicView.do?ptiID=457706
http://public.eblib.com/EBLPublic/PublicView.do?ptiID=457706
http://dx.doi.org/10.1007/s10107-003-0396-4
http://dx.doi.org/10.1007/s10107-003-0396-4
http://link.springer.com/article/10.1007/s10107-003-0396-4
http://link.springer.com/article/10.1007/s10107-003-0396-4

[Jam03] James C. Spall. Introduction to Stochastic Search and Optim-
ization: Estimation, Simulation, and Control. Wiley, Apr. 2003.
618 pp. ISBN: 978-0-471-33052-3. URL: http : / / eu .
wiley . com / WileyCDA / WileyTitle / productCd -
0471330523.html.

[RA98] Richard S. Sutton and Andrew G. Barto. Reinforcement learning.
Vol. 9. Boston, MA, USA: MIT Press, 1998. ISBN: 0-262-19398-1.

[KM89] Kumpati S. Narendra and Mandayam A. L. Thathachar. Learn-
ing Automata: An Introduction. Prentice Hall, May 1989. ISBN:
0134855582.

[AK97] Alexander Semenovich Poznyak and Kaddour Najim. Learning
Automata and Stochastic Optimization. Vol. 225. Lecture Notes
in Control and Information Sciences. DOI: 10.1007/BFb0015102.
Springer Berlin Heidelberg, 1997. ISBN: 978-3-540-76154-9, 978-
3-540-40938-0. URL: http://link.springer.com/book/
10.1007/BFb0015102/page/1.

[Nor83] Norio Baba. “On the Learning Behaviors of Variable-Structure
Stochastic Automaton in the General N-Teacher Environment”. In:
IEEE Transactions on Systems, Man, and Cybernetics SMC-13.3
(Mar. 1983), pp. 224–231.

[MP04] Mandayam A. L. Thathachar and P. S. Sastry. Networks of Learning
Automata: Techniques for Online Stochastic Optimization. 1st ed.
Boston, MA, USA: Kluwer Academic, 2004. ISBN: 1-4020-7691-6.

[GB10] Geir Horn and B. John Oommen. “Solving Multiconstraint Assign-
ment Problems Using Learning Automata”. In: IEEE Transactions
on Systems, Man, and Cybernetics, Part B: Cybernetics 40.1 (Feb.
2010), pp. 6–18. ISSN: 1083-4419. DOI: 10 . 1109 / TSMCB .
2009.2032528.

[CPR73] Carl Hewitt, Peter Bishop and Richard Steiger. “A Universal Modu-
lar ACTOR Formalism for Artificial Intelligence”. In: Proceedings
of the 3rd International Joint Conference on Artificial Intelligence.
IJCAI’73. Conference location: San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1973, pp. 235–245. URL: http://
dl.acm.org/citation.cfm?id=1624775.1624804
(visited on 25/03/2014).

[Mik61] Mikhail L’vovich Tsetlin. “On the Behavior of Finite Automata in
Random Media”. In: Automation and Remote Control 22.10 (1961),
pp. 1210–1219. ISSN: 1608-3032.

D3.1.2 - Product Upperware Report Page 94 of 108

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471330523.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471330523.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471330523.html
http://link.springer.com/book/10.1007/BFb0015102/page/1
http://link.springer.com/book/10.1007/BFb0015102/page/1
http://dx.doi.org/10.1109/TSMCB.2009.2032528
http://dx.doi.org/10.1109/TSMCB.2009.2032528
http://dl.acm.org/citation.cfm?id=1624775.1624804
http://dl.acm.org/citation.cfm?id=1624775.1624804

[VI63] V. I. Varshavskii and I. P. Vorontsova. “On the Behaviour of
Stochastic Automata with a Variable Structure”. In: Automation
and remote control 24 (Mar. 1963), pp. 327–333.

[GK66] George James McMurtry and K. S. Fu. “A variable structure auto-
maton used as a multimodal searching technique”. In: IEEE Trans-
actions on Automatic Control AC-11.3 (July 1966), pp. 379–387.
ISSN: 0018-9286. DOI: 10.1109/TAC.1966.1098374.

[BD68] B. Chandrasekaran and David W. C. Shen. “On Expediency and
Convergence in Variable-Structure Automata”. In: IEEE Transac-
tions on Systems Science and Cybernetics SSC-4.1 (Mar. 1968),
pp. 52–60. ISSN: 0536-1567. DOI: 10.1109/TSSC.1968.
300188.

[RK71] R. Viswanathan and Kumpati S. Narendra. Application of
stochastic automata models to learning systems with multimodal
performance criteria. Technical Report CT-40. No copies are avail-
able at Yale, but a copy can be obtained from the author of this
work. New Haven, Connecticut, USA: Becton Center, Yale Univer-
sity, June 1971.

[Mal+13] Maciej Malawski, Bartosz Baliś, Dariusz Król and Achilleas
Achilleos. Deliverable D6.1.3 - Initial Requirements. 2013.

[Ste14] Mike Steglich. CMPL (Coin Mathematical Programming Lan-
guage): https://projects.coin-or.org/Cmpl. 2014.

[KP15] Kyriakos Kritikos and Dimitris Plexousakis. “Multi-Cloud Applic-
ation Design through Cloud Service Composition”. In: CLOUD.
New York City, NY, USA, 2015, pp. 686–693.

[HY81] C. Hwang and K. Yoon. “Multiple Criteria Decision Making”. In:
Lect. Notes Econ. Math. (1981).

[Bar+13] George Baryannis, Panagiotis Garefalakis, Kyriakos Kritikos, Kos-
tas Magoutis, Antonis Papaioannou, Dimitris Plexousakis and
Chrysostomos Zeginis. “Lifecycle management of service-based
applications on multi-clouds: a research roadmap.” In: Proceedings
of the 2013 international workshop on Multi-cloud applications
and federated clouds (MultiCloud ’13). Prague, Czech Republic,
2013, pp. 13–20.

[Kri+14] Kyriakos Kritikos et al. D4.1.1 – Prototype Metadata Database
and Social Network / Prototype of Metadata Integration Extension.
PaaSage project deliverable. Apr. 2014.

D3.1.2 - Product Upperware Report Page 95 of 108

http://dx.doi.org/10.1109/TAC.1966.1098374
http://dx.doi.org/10.1109/TSSC.1968.300188
http://dx.doi.org/10.1109/TSSC.1968.300188
https://projects.coin-or.org/Cmpl

[Cha14] Drona Pratap Chandu. “A Parallel Genetic Algorithm for Three
Dimensional Bin Packing with Heterogeneous Bins”. In: CoRR
abs/1411.4565 (2014). URL: http : / / arxiv . org / abs /
1411.4565.

[LKK99] W. Leinberger, G. Karypis and V. Kumar. “Multi-capacity bin pack-
ing algorithms with applications to job scheduling under multiple
constraints”. In: Proc of International Conference on Parallel Pro-
cessing. Sept. 1999, pp. 404–412. DOI: 10.1109/ICPP.1999.
797428.

[GZ13] Michaël Gabay and Sofia Zaourar. Variable size vector bin pack-
ing heuristics - Application to the machine reassignment problem.
Tech. rep. INRIA, Sept. 2013.

[Jea+13] E. Jeannot, E. Meneses, G. Mercier, F. Tessier and Gengbin Zheng.
Process Placement in Multicore Clusters: Algorithmic Issues and
Practival Techiniques. Tech. rep. INRIA, 2013.

[Kum+11] Karthik Kumar, Jing Feng, Yamini Nimmagadda and Yung-Hsiang
Lu. “Resource Allocation for Real-Time Tasks Using Cloud Com-
puting”. In: 2011 Proceedings of 20th International Conference on
Computer Communications and Networks (ICCCN) (July 2011),
pp. 1–7. DOI: 10.1109/ICCCN.2011.6006077. URL: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=6006077.

[MNC11] Ching Chuen Teck Mark, Dusit Niyato and Tham Chen-Khong.
“Evolutionary Optimal Virtual Machine Placement and Demand
Forecaster for Cloud Computing”. In: 2011 IEEE International
Conference on Advanced Information Networking and Applica-
tions (Mar. 2011), pp. 348–355. DOI: 10.1109/AINA.2011.
50. URL: http : / / ieeexplore . ieee . org / lpdocs /
epic03/wrapper.htm?arnumber=5763426.

[Pan+11] R. Panigrahy, K. Talwar, L. Uyeda and U. Wieder. Heuristics for
Vector Bin Packing. Tech. rep. Microsoft Research, 2011.

[Sha+11] Upendra Sharma, Prashant Shenoy, Sambit Sahu and Anees
Shaikh. “Kingfisher: Cost-aware elasticity in the cloud”. In: 2011
Proceedings IEEE INFOCOM (Apr. 2011), pp. 206–210. DOI:
10 . 1109 / INFCOM . 2011 . 5935016. URL: http : / /
ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=5935016.

D3.1.2 - Product Upperware Report Page 96 of 108

http://arxiv.org/abs/1411.4565
http://arxiv.org/abs/1411.4565
http://dx.doi.org/10.1109/ICPP.1999.797428
http://dx.doi.org/10.1109/ICPP.1999.797428
http://dx.doi.org/10.1109/ICCCN.2011.6006077
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6006077
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6006077
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6006077
http://dx.doi.org/10.1109/AINA.2011.50
http://dx.doi.org/10.1109/AINA.2011.50
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5763426
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5763426
http://dx.doi.org/10.1109/INFCOM.2011.5935016
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5935016
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5935016
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5935016

[DR13] Frédéric Desprez and Jonathan Rouzaud-Cornabas. SimGrid Cloud
Broker: Simulating the Amazon AWS Cloud. Anglais. Rapport de
recherche RR-8380. INRIA, Nov. 2013, p. 30. URL: http://
hal.inria.fr/hal-00909120.

[Ger+06] Gerald Tesauro, Nicholas K. Jong, Rajarshi Das and Mohamed
N. Bennani. “A Hybrid Reinforcement Learning Approach to Auto-
nomic Resource Allocation”. In: Proceedings of the 3rd IEEE Inter-
national Conference on Autonomic Computing (ICAC ’06). IEEE
International Conference on Autonomic Computing, 2006. ICAC
’06. Ed. by Manish Parashar, Jeffrey O. Kephart, Omer Rana and
Mazin Yousif. Conference location: Dublin, Ireland: IEEE Com-
puter Society, 12th June 2006, pp. 65–73. DOI: 10.1109/ICAC.
2006.1662383.

[Pet70] Peter C Fishburn. Utility theory for decision making. New York:
Wiley, 1970. ISBN: 0471260606 9780471260608. URL: http :
/ / oai . dtic . mil / oai / oai ? verb = getRecord &
metadataPrefix=html&identifier=AD0708563 (vis-
ited on 30/03/2014).

[FJ04] Francis C. Chu and Joseph Y. Halpern. “Great expectations. Part II:
generalized expected utility as a universal decision rule”. In: Artifi-
cial Intelligence 159.1 (Nov. 2004), pp. 207–229. ISSN: 0004-3702.
DOI: 10.1016/j.artint.2004.05.007. URL: http:
//www.sciencedirect.com/science/article/pii/
S0004370204000979 (visited on 01/04/2014).

[I E68] I. E. Sutherland. “A Futures Market in Computer Time”. In: Com-
munications of the ACM 11.6 (June 1968), pp. 449–451. ISSN:
0001-0782. DOI: 10.1145/363347.363396. URL: http:
//doi.acm.org/10.1145/363347.363396 (visited on
30/03/2014).

[JD03] Jeffrey O. Kephart and David M. Chess. “The vision of autonomic
computing”. In: Computer 36.1 (2003), pp. 41–50. ISSN: 0018-
9162. DOI: 10.1109/MC.2003.1160055.

[Ter03] Terence Kelly. “Utility-Directed Allocation”. In: Proceedings of
the First Workshop on Algorithms and Architectures for Self-
Managing Systems. San Diego, California, USA: ACM, 11th June
2003. URL: http : / / tesla . hpl . hp . com / self -
manage03/.

D3.1.2 - Product Upperware Report Page 97 of 108

http://hal.inria.fr/hal-00909120
http://hal.inria.fr/hal-00909120
http://dx.doi.org/10.1109/ICAC.2006.1662383
http://dx.doi.org/10.1109/ICAC.2006.1662383
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0708563
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0708563
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0708563
http://dx.doi.org/10.1016/j.artint.2004.05.007
http://www.sciencedirect.com/science/article/pii/S0004370204000979
http://www.sciencedirect.com/science/article/pii/S0004370204000979
http://www.sciencedirect.com/science/article/pii/S0004370204000979
http://dx.doi.org/10.1145/363347.363396
http://doi.acm.org/10.1145/363347.363396
http://doi.acm.org/10.1145/363347.363396
http://dx.doi.org/10.1109/MC.2003.1160055
http://tesla.hpl.hp.com/self-manage03/
http://tesla.hpl.hp.com/self-manage03/

[JR07] Jeffrey O. Kephart and Rajarshi Das. “Achieving Self-Management
via Utility Functions”. In: IEEE Internet Computing 11.1 (2007),
pp. 40–48. ISSN: 1089-7801. DOI: 10.1109/MIC.2007.2.

[Wil+04] William E. Walsh, Gerald Tesauro, Jeffrey O. Kephart and Rajar-
shi Das. “Utility functions in autonomic systems”. In: Proceedings
of the International Conference on Autonomic Computing. IEEE,
17th May 2004, pp. 70–77. ISBN: 0-7695-2114-2. DOI: 10.1109/
ICAC.2004.1301349.

[Kur+09] Kurt Geihs et al. “A comprehensive solution for application-level
adaptation”. In: Software: Practice and Experience 39.4 (2009),
pp. 385–422. ISSN: 1097-024X. DOI: 10.1002/spe.900. URL:
http://onlinelibrary.wiley.com/doi/10.1002/
spe.900/abstract (visited on 07/07/2013).

[Sve+12] Svein Hallsteinsen, Kurt Geihs, Nearchos Paspallis, Frank Eli-
assen, Geir Horn, Jorge Lorenzo, Alessandro Mamelli and George
A. Papadopoulos. “A development framework and methodology
for self-adapting applications in ubiquitous computing environ-
ments”. In: Journal of Systems and Software 85.12 (Dec. 2012),
pp. 2840–2859. ISSN: 0164-1212. DOI: 10 . 1016 / j . jss .
2012.07.052. URL: http://www.sciencedirect.com/
science/article/pii/S0164121212002245 (visited on
17/12/2012).

[Jac+06] Jacqueline Floch, Svein Hallsteinsen, Erlend Stav, Frank Eliassen,
Ketil Lund and Eli Gjørven. “Using architecture models for runtime
adaptability”. In: IEEE Software 23.2 (2006), pp. 62–70. ISSN:
0740-7459. DOI: 10.1109/MS.2006.61.

[Jac+13] Jacqueline Floch et al. “Playing MUSIC — building context-aware
and self-adaptive mobile applications”. In: Software: Practice and
Experience 43.3 (Mar. 2013), pp. 359–388. ISSN: 1097-024X. DOI:
10.1002/spe.2116. URL: http://onlinelibrary.
wiley.com/doi/10.1002/spe.2116/abstract (visited
on 30/03/2014).

[FA09] Franck Fleurey and Arnor Solberg. “A Domain Specific Model-
ing Language Supporting Specification, Simulation and Execution
of Dynamic Adaptive Systems”. In: Model Driven Engineering
Languages and Systems: Proceedings of the 12 International con-
ference (MODELS 2009). Ed. by Andy Schürr and Bran Selic.
Vol. 5795. Lecture Notes in Computer Science. Conference loca-
tion: Denver, Colorado, USA: Springer, 4th Oct. 2009, pp. 606–

D3.1.2 - Product Upperware Report Page 98 of 108

http://dx.doi.org/10.1109/MIC.2007.2
http://dx.doi.org/10.1109/ICAC.2004.1301349
http://dx.doi.org/10.1109/ICAC.2004.1301349
http://dx.doi.org/10.1002/spe.900
http://onlinelibrary.wiley.com/doi/10.1002/spe.900/abstract
http://onlinelibrary.wiley.com/doi/10.1002/spe.900/abstract
http://dx.doi.org/10.1016/j.jss.2012.07.052
http://dx.doi.org/10.1016/j.jss.2012.07.052
http://www.sciencedirect.com/science/article/pii/S0164121212002245
http://www.sciencedirect.com/science/article/pii/S0164121212002245
http://dx.doi.org/10.1109/MS.2006.61
http://dx.doi.org/10.1002/spe.2116
http://onlinelibrary.wiley.com/doi/10.1002/spe.2116/abstract
http://onlinelibrary.wiley.com/doi/10.1002/spe.2116/abstract

621. ISBN: 978-3-642-04424-3, 978-3-642-04425-0. DOI: 10 .
1007/978-3-642-04425-0_47. URL: http://link.
springer . com / chapter / 10 . 1007 / 978 - 3 - 642 -
04425-0_47 (visited on 07/08/2013).

[SDB06] Shang-Wen Cheng, David Garlan and Bradley Schmerl.
“Architecture-based Self-adaptation in the Presence of Mul-
tiple Objectives”. In: Proceedings of the 2006 International
Workshop on Self-adaptation and Self-managing Systems
(SEAMS’06). Ed. by Betty H. C. Cheng, Rogério de Lemos,
Stephen Fickas, David Garlan, Jeff Magee, Hausi Müller and
Richard Taylor. SEAMS ’06. Conference Location: Shanghai,
China: ACM, 20th May 2006, pp. 2–8. ISBN: 1-59593-403-
0. DOI: 10 . 1145 / 1137677 . 1137679. URL: http :
//doi.acm.org/10.1145/1137677.1137679 (visited on
01/04/2014).

[GPD11] Giuseppe Valetto, Paul deGrandis and Dale Seybold Jr. “Syn-
thesis of application-level utility functions for autonomic self-
assessment”. In: Cluster Computing 14.3 (Sept. 2011), pp. 275–
293. ISSN: 1386-7857, 1573-7543. DOI: 10.1007/s10586-
010 - 0130 - y. URL: http : / / link . springer . com /
article/10.1007/s10586- 010- 0130- y (visited on
30/03/2014).

[Ric58] Richard E. Bellman. “On a Routing Problem”. In: Quarterly of Ap-
plied Mathematics 16 (1958), pp. 87–90.

[Mou+06] Mourad Alia, Geir Horn, Frank Eliassen, Mohammad Ullah Khan,
Rolf Fricke and Roland Reichle. “A Component-Based Planning
Framework for Adaptive Systems”. In: On the Move to Meaningful
Internet Systems 2006: Proceedings of the OTM Confederated In-
ternational Conferences CoopIS, DOA, GADA, and ODBASE. Ed.
by Robert Meersman and Zahir Tari. Vol. Part II. Lecture Notes
in Computer Science. Montpellier, France: Springer Berlin Heidel-
berg, 29th Nov. 2006, pp. 1686–1704. ISBN: 978-3-540-48274-
1, 978-3-540-48283-3. DOI: 10.1007/11914952_45. URL:
http://link.springer.com/chapter/10.1007/
11914952_45 (visited on 12/02/2014).

[JE02] James J. Buckley and Esfandiar Eslami. An introduction to fuzzy
logic and fuzzy sets. Berlin Heidelberg: Physica-Verlag, 2002.
285 pp. ISBN: 3790814474 9783790814477. URL: http://www.
springer.com/computer/ai/book/978-3-7908-
1447-7?otherVersion=978-3-7908-1799-7.

D3.1.2 - Product Upperware Report Page 99 of 108

http://dx.doi.org/10.1007/978-3-642-04425-0_47
http://dx.doi.org/10.1007/978-3-642-04425-0_47
http://link.springer.com/chapter/10.1007/978-3-642-04425-0_47
http://link.springer.com/chapter/10.1007/978-3-642-04425-0_47
http://link.springer.com/chapter/10.1007/978-3-642-04425-0_47
http://dx.doi.org/10.1145/1137677.1137679
http://doi.acm.org/10.1145/1137677.1137679
http://doi.acm.org/10.1145/1137677.1137679
http://dx.doi.org/10.1007/s10586-010-0130-y
http://dx.doi.org/10.1007/s10586-010-0130-y
http://link.springer.com/article/10.1007/s10586-010-0130-y
http://link.springer.com/article/10.1007/s10586-010-0130-y
http://dx.doi.org/10.1007/11914952_45
http://link.springer.com/chapter/10.1007/11914952_45
http://link.springer.com/chapter/10.1007/11914952_45
http://www.springer.com/computer/ai/book/978-3-7908-1447-7?otherVersion=978-3-7908-1799-7
http://www.springer.com/computer/ai/book/978-3-7908-1447-7?otherVersion=978-3-7908-1799-7
http://www.springer.com/computer/ai/book/978-3-7908-1447-7?otherVersion=978-3-7908-1799-7

A Common Meta-Models

PaaSage App
Metamodel

CP Metamodel Type Metamodel

PaaSage Type
Metamodel

Figure 37: Meta-Models overview.

Figure 37 provides an overview of the Upperware meta-models and their
relationships.

The Constraint Problem Meta-Model (CP Meta-Model) and Types Meta-
Model enable the definition of the Cloud provider selection problem as a con-
straint problem. They are fully describes on Page 101.

The PaaSage Application Meta-Model (PaaSage App Meta-Model) and
PaaSage Type Meta-Model establish the relationship between concepts from the
Cloud and constraint problem worlds. They are fully described on Page 102.

D3.1.2 - Product Upperware Report Page 100 of 108

<<
Ab
st
ra
ct
>>

Va
lu
e

<<
Ab
st
ra
ct
>>

Nu
m
er
ic
Va
lu
eU
pp
er
w
ar
e

-v
al

ue
:lo

ng
Lo
ng
Va
lu
eU
pp
er
w
ar
e

ty
pe

:B
as

icT
yp

eE
nu

m
Co
ns
ta
nt

fro
m

<<
Ab
st
ra
ct
>>

Do
m
ai
n

-ty
pe

:B
as

icT
yp

eE
nu

m
Nu
m
er
ic
Do
m
ai
n

Ra
ng
eD
om

ai
n

<<
Ab
st
ra
ct
>>

Nu
m
er
ic
Va
lu
eU
pp
er
w
ar
e

to

va
lu

es

-lo
ca

tio
nI

d:
st

rin
g

-p
ro

vid
er

Id
:s

tri
ng

-v
m

Id
:s

tri
ng

-O
sI

m
ag

eI
d:

st
rin

g
-h

ar
dw

ar
eI

d:
st

rin
g

Va
ria
bl
e

do
m

ai
n

va
ria

bl
es

1.
.*

<<
Ab
st
ra
ct
>>

Ex
pr
es
si
on

-id
:S

tri
ng

<<
Ab
st
ra
ct
>>

CP
El
em

en
t

-o
pe

ra
to

r:O
pe

ra
to

rE
nu

m
Co
m
po
se
dE
xp
re
ss
io
n

ex
pr

es
sio

ns

ex
p2

ex
p1

2.
.*

-c
om

pa
ra

to
r:C

om
pa

ra
to

rE
nu

m
Co
m
pa
ris
on
Ex
pr
es
si
on

go
al

:G
oa

lO
pe

ra
to

rE
nu

m
G
oa
l

ex
pr

es
sio

n

G
oa
l

au
xE

xp
re

ss
io

ns
0.

.*

co
ns

tra
in

ts
0.

.*

-p
lu

s
-m

in
us

-ti
m

es
-d

iv<<
en
um

er
at
io
n>
>

O
pe
ra
to
rE
nu
m

-g
re

at
er

Th
an

-le
ss

Th
an

-g
re

at
er

O
rE

qu
al

To
-le

ss
O

rE
qu

al
To

-e
qu

al
To

-d
iff

er
en

t

<<
en
um

er
at
io
n>
>

Co
m
pa
ra
to
rE
nu
m

-In
te

ge
r

-F
lo

at
-D

ou
bl

e
-L

on
g<<
en
um

er
at
io
n>
>

Ba
si
cT
yp
eE
nu
m

-v
al

ue
:fl

oa
t

Fl
oa
tV
al
ue
Up
pe
rw
ar
e

va
lu

e
1.

.*

<<
Ab
st
ra
ct
>>

Nu
m
er
ic
Ex
pr
es
si
on

-c
om

pa
ra

to
r:C

om
pa

ra
to

rE
nu

m
Co
m
pa
ris
on
Ex
pr
es
si
on

<<
Ab
st
ra
ct
>>

Ex
pr
es
si
on

go
al

s

ty
pe

:B
as

icT
yp

eE
nu

m
Co
ns
ta
nt

co
ns

ta
nt

s

-m
ax

-m
in<<

en
um

er
at
io
n>
>

G
oa
lO
pe
ra
to
rE
nu
m

0.
.*

0.
.*

Ty
pe

 M
et

am
od

el

CP
 M

et
am

od
el

Le
ge
nd

<<
Ab
st
ra
ct
>>

Bo
ol
ea
nE
xp
re
ss
io
n

-v
al

ue
:s

tri
ng

St
rin
gV
al
ue
Up
pe
rw
ar
e

Li
st
Do
m
ai
n

va
lu

es

1.
.*

M
ul
tiR
an
ge
Do
m
ai
n

ra
ng

es2.
.*

<<
Ab
st
ra
ct
>>

Nu
m
er
ic
Ex
pr
es
si
on

-v
al

ue
:b

oo
le

an
Bo
ol
ea
nV
al
ue

-ty
pe

:B
as

icT
yp

eE
nu

m
M
et
ric
Va
ria
bl
e

m
et

ric
Va

ria
bl

es
0.

.*

-ti
m

es
ta

m
p:

lo
ng

So
lu
tio
n

Va
ria
bl
eV
al
ue

<<
Ab
st
ra
ct
>>

Nu
m
er
ic
Va
lu
eU
pp
er
w
ar
e

va
lu

e

Va
ria
bl
e va

ria
bl

e

M
et
ric
Va
ria
bl
eV
al
ue

Co
ns
tra
in
tP
ro
bl
em

-ty
pe

:B
as

icT
yp

eE
nu

m
M
et
ric
Va
ria
bl
e

va
ria

bl
e

va
ria

bl
eV

al
ue

1.
.*

0.
.*

m
et

ric
Va

ria
bl

eV
al

ue

0.
.*

so
lu

tio
ns

Bo
ol
ea
nD
om

ai
n

-v
al

ue
:in

t
In
te
ge
rV
al
ue
Up
pe
rw
ar
e

Nu
m
er
ic
Li
st
Do
m
ai
n

-v
al

ue
:d

ou
bl

e
Do
ub
le
Va
lu
eU
pp
er
w
ar
e

Fi
gu

re
38

:C
P

an
d

Ty
pe

M
et

a-
M

od
el

s.

D3.1.2 - Product Upperware Report Page 101 of 108

-M
Hz

-G
Hz

<<enum
eration>>

FrequencyEnum
-M

B
-G

B
-TB

<<enum
eration>>

DataUnitEnum

com
ponents

1..*

ContinentUpperw
are

country

continent

CityUpperw
are

CountryUpperw
are

location

<<Abstract>>
CloudM

LElem
entUpperw

are

providers
vm

Profiles

location

<<Abstract>>
CloudM

LElem
entUpperw

are

-frequency:FrequencyEnum
-cores:int

CPU

-unit:DataUnitEnum
M
em

ory
-unit:DataUnitEnum

Storage

cpu
0..1

<<Abstract>>
Num

ericValue

<<Abstract>>
ResourceUpperw

are

value

0..1
0..1

m
em

ory
storage

0..*

vm
s

0..*
-id:String
VirtualM

achine

profile

-id:String
VirtualM

achine

0..*
preferredLocations

vm

-nam
e:String

-version:String
-architecture:O

SArchitectureEnum

O
S

os
relatedCom

ponent
-typeId:int

<<Abstract>>
PaaSageCPElem

ent

-typeId:int

<<Abstract>>
PaaSageCPElem

ent

-nam
e:String

-alternativeNam
es:List

<<Abstract>>
LocationUpperw

are

-typeId:int

<<Abstract>>
PaaSageCPElem

ent
variables

0..*

-G
eoLocation

-PhysicalLocation
-VirtualLocation
-ResponseTim

e
-Provider

<<enum
eration>>

VariableElem
entTypeEnum

-And
-O

r <<enum
eration>>

LogicO
peratorEnum

goals

Type M
etam

odel

CP M
etam

odel

LegendPaaSage Application M
etam

odel

PaaSage Types M
etam

odel

0..1

-size:VM
SizeEnum

VirtualM
achineProfile

requiredProfile

0..*

0..*

-id:String
PaaSageConfiguration

-id:string
ProviderType

-id.String
Provider

type

-id:string
FunctionType

function

-cost:double
ProviderDim

ension

-relatedCloudVM
Id:String

VirtualM
achineProfile

potentialProviders

-id:String
-features:List
-m

ax:int
-m

in:int ApplicationCom
ponent

-feature:string
-rem

ote:boolean
-optional:boolean
-contaim

ent:boolean

RequiredFeature

requiredFeatures
0..*

providedBy

-id.String
Provider

provider

-id:String
-goal:G

oalO
peratorEnum

PaaSageG
oal

<<Abstract>>
ResourceUpperw

are

m
onitoredDim

ensions

-id:string
Dim

ension

preferred
Providers

1..*

-typeId:int

<<Abstract>>
PaaSageCPElem

ent

0..1 -id.String
Provider

relatedVirtualMachineProfile

-paasageType: VariableElem
entTypeEnum

-cpVariableId:String

PaaSageVariable

relatedProvider

-m
ax

-m
in <<enum

eration>>
G
oalO

peratorEnum

<<Abstract>>
CloudM

LElem
entUpperw

are

Figure
39:PaaSage

Type
and

A
pplication

M
eta-M

odel.

D3.1.2 - Product Upperware Report Page 102 of 108

B Saloon Ontology

Thing

Technical
Element

Provisioning

Countable
Concept

Application
Server

Database

Language

Framework

Countable
Concept

Tomcat

Jetty

GlassFish

Tomcat 6.0

Tomcat 7.0

Jetty 6.1

GlassFish
3.1

SQL

NoSQL

MySQL

PostgreSQL

MariaDB

MongoDB

CouchDB

Java

Ruby

PHP

Resource

Bounded
Concept

MongoDB
2.2

MongoDB
2.2.X

MongoDB
2.4.X

Database Size Quantifiable
Concept

Cloudant

Database Size

MongoDB
2.0.2

IronCache

RedisGreen

CouchDB
1.2Database Size

MongoHQ

MongoLab

MongoDB
2.2.X

MongoDB
2.4.X

MongoDB
2.0.2

Quantifiable
Concept

MariaDB
10

MariaDB
5.5

PostgreSQL
8.4

PostgreSQL
9.2

MySQL 5.5

Treasure
Data PG Backups ClearDB

MySQL Amazon RDS Windows
Azure SQL

SQL
Premium

SQL Web
and Business

DatabaseSize

Java 6

Java 7

Ruby 2.0.0

Python Python 2.7

Python
2.7.5

Python
3.3.2

PHP 5.3

PHP 5.4

Clojure Clojure
1.5.1

Tomcat
7.0.X

JavaScript

Scala

TomEE+

Spring

Node.js

Rails

Play

Play 1.2.3

Rails 3.X

Rails 4.X

Noje.js
0.4.7

Noje.js
0.6.17

Noje.js
0.6.20

Noje.js
0.84

Unit Frequency
Unit MHz

GHz

Stockage
Unit MB

GB

TB

Memory

CPU
Frequency

Bandwidth

Transfer
Rate Unit BitPerSecond

KBPerSecond

MBPerSecond

GBPerSecond
Storage

Cache

Search
Engine

Cache Cache
Service

IronCache

Cachely

MemCachier

MemCached

Search
Engine Web Solr

Flying
Sphinx

Bonsai Elastic
Search

Found Elastic
SearchThing

Provider

Provider Heroku

Google App
Engine

Windows
Azure

PostgreSQL
9.3

Heroku
Postgres 2.0

PostgreSQL

Legend

Abstract Concept

Concrete Concept

is a

uses

ElasticHosts

AmazonEC2

Virtual
Machine

OSUbuntu
Server

Virtual
Machine

OS

Windows
Server

Bounded
Concept

Quantifiable
Bounded Concept

Core
Number

Bounded
Concept

Quantifiable
Bounded Concept

Figure 40: Saloon Ontology.

D3.1.2 - Product Upperware Report Page 103 of 108

C Plan Generator Output Data Dictionary

Table 6: Data Dictionary

Object Attribute Type Opt. Description
ApplicationTask name String Application name as in

CAMEL Model, e.g. Scalarm
objType String hardcoded to "application"
description String yes Description of the application.
version String Application version.
owner String Organisation that owns this ap-

plication.
ApplicationInstance
Task

name String Application name as in
CAMEL Model appended
with Instance, e.g. ScalarmIn-
stance

objType String hardcoded to "applicationIn-
stance"

type String Application type name, i.e. the
Application name

VMInstanceTask name String VM Instance name
objType String hardcoded to "vmInstance"
type String VM/Component type name
cloud String Cloud provider name
locations String

Array
yes Cloud provider location.

driver String Driver class for a particular
cloud provider. Note that the
value may be an empty String.

endpoint String Endpoint for the cloud pro-
vider

credential Json
object

This currently contains two
key-value pairs : username and
password Strings

vmType String VM flavour name
providedHostInstances String

Array
Array of provided host in-
stance names

providedCommunica-
tionInstances

String
Array

yes Array of provided communic-
ation instance names

VMTypeTask name String VM Type name
objType String hardcoded to "VM"
osImage String yes OS image name. An object

only contains either osImage
or os. Not both.

D3.1.2 - Product Upperware Report Page 104 of 108

Table 6: Data Dictionary

Object Attribute Type Opt. Description
os String yes OS name. An object only con-

tains either osImage or os. Not
both.

os64bit boolean yes True if IS is 64bit, else false.
This is an attribute of os.

configName String yes (Configuration) name
downloadCmd String yes (Configuration) download

command
configureCmd String yes (Configuration) configure

command
installCmd String yes (Configuration) install com-

mand
startCmd String yes (Configuration) start com-

mand
StopCmd String yes (Configuration) stop command
uploadCmd String yes (Configuration) upload com-

mand
providedHosts String

Array
Array of provided host names

providedCommunica-
tions

String
Array

yes Array of provided communic-
ation names

ComponentInstance
Task

name String Internal component instance
name

objType String hardcoded to "internalCom-
ponentInstance"

type String Internal component type name
providedHostInstances String

Array
yes Array of provided host in-

stance names
requiredHostInstance String Required communication in-

stance name
providedCommunica-
tionInstances

String
Array

yes Array of provided communic-
ation instance names

requiredCommunica-
tionInstances

String
Array

Array of required communica-
tion instance names

ComponentTypeTask name String Internal component type name
objType String hardcoded to "internalCom-

ponent"
configName String yes (Configuration) name
downloadCmd String yes (Configuration) download

command
configureCmd String yes (Configuration) configure

command

D3.1.2 - Product Upperware Report Page 105 of 108

Table 6: Data Dictionary

Object Attribute Type Opt. Description
installCmd String yes (Configuration) install com-

mand
startCmd String yes (Configuration) start com-

mand
StopCmd String yes (Configuration) stop command
uploadCmd String yes (Configuration) upload com-

mand
providedHosts String

Array
yes Array of provided host names

requiredHost String Required host name
providedCommunica-
tions

String
Array

yes Array of provided host names

requiredCommunica-
tions

String
Array

Array of required communica-
tion names

CommunicationIns-
tanceTask

name String Communication instance
name

objType String hardcoded to "communica-
tionInstance"

type String Communication type name
providerInstance String Communication provider in-

stance name
providerCompInstance-
Task

String yes ComponentInstanceTask
name - owner of the provider-
Instance

consumerInstance String Communication consumer in-
stance name

consumerCompInstance-
Task

String yes ComponentInstanceTask name
- owner of the consumer-
Instance

CommunicationType
Task

name String Communication type name

objType String hardcoded to "communica-
tion"

communicationType String LOCAL, REMOTE, ANY
provider String Provider name
providerCompType-
Task

String yes ComponentTypeTask name -
owner of the Provider

providerPort int Provider port number
providedPortconfig-
Name

String yes (Configuration) name

providedPortdownload-
Cmd

String yes (Configuration) download
command

D3.1.2 - Product Upperware Report Page 106 of 108

Table 6: Data Dictionary

Object Attribute Type Opt. Description
providedPortconfigure-
Cmd

String yes (Configuration) configure
command

providedPortinstallCmd String yes (Configuration) install com-
mand

providedPortstartCmd String yes (Configuration) start com-
mand

providedPortStopCmd String yes (Configuration) stop command
providedPortupload-
Cmd

String yes (Configuration) upload com-
mand

consumer String Consumer name
consumerCompType-
Task

String yes ComponntTypeTask name -
owner of the Consumer

isMandatory boolean True if consumer depends on
this communication, else false

consumerPort int Consumer port number
requiredPortconfig-
Name

String yes (Configuration) name

requiredPortdownload-
Cmd

String yes (Configuration) download
command

requiredPortconfigure-
Cmd

String yes (Configuration) configure
command

requiredPortinstallCmd String yes (Configuration) install com-
mand

requiredPortstartCmd String yes (Configuration) start com-
mand

requiredPortStopCmd String yes (Configuration) stop command
requiredPortupload-
Cmd

String yes (Configuration) upload com-
mand

HostingInstanceTask name String Hosting instance name
objType String hardcoded to "hostingIn-

stance"
type String Hosting type name
providerInstance String Hosting provider instance

name. The provider could
be of type VM or an Internal
Component.

providerCompInstance-
Task

String yes ComponentInstanceTask
name - owner of the provider-
Instance

consumerInstance String Hosting consumer instance
name

D3.1.2 - Product Upperware Report Page 107 of 108

Table 6: Data Dictionary

Object Attribute Type Opt. Description
consumerCompInstan-
ceTask

String yes ComponentInstanceTask name
- owner of the consumer-
Instance

HostingTypeTask name String Hosting name
objType String hardcoded to "hosting"
provider String Provider name
providerCompType-
Task

String yes ComponentTypeTask name -
owner of the Provider

providedHostconfig-
Name

String yes (Configuration) name

providedHostdown-
loadCmd

String yes (Configuration) download
command

providedHostconfigu-
reCmd

String yes (Configuration) configure
command

providedHostinstall-
Cmd

String yes (Configuration) install com-
mand

providedHoststartCmd String yes (Configuration) start com-
mand

providedHostStopCmd String yes (Configuration) stop command
providedHostupload-
Cmd

String yes (Configuration) upload com-
mand

consumer String Consumer name
consumerCompType-
Task

String yes ComponentTypeTask name -
owner of the Consumer

requiredHostconfig-
Name

String yes (Configuration) name

requiredHostdown-
loadCmd

String yes (Configuration) download
command

requiredHostconfigu-
reCmd

String yes (Configuration) configure
command

requiredHostinstall-
Cmd

String yes (Configuration) install com-
mand

requiredHoststartCmd String yes (Configuration) start com-
mand

requiredHostStopCmd String yes (Configuration) stop command
requiredHostupload-
Cmd

String yes (Configuration) upload com-
mand

D3.1.2 - Product Upperware Report Page 108 of 108

	Introduction
	Upperware Architecture Overview
	Overview
	ZeroMQ
	Upperware Meta-Models

	Upperware Meta-Models
	Types and Constraint Problem Meta-Model
	PaaSage Type and Application Meta-Models
	Example

	Profiler
	CP Generator Model-to-Solver
	Rule Processor
	Summary

	Reasoner
	Learning Automata (LA) based Assignments
	MILP Solver
	CP Solver
	Greedy Heuristics
	Simulator Wrapper
	Meta-Solver
	Utility Function Generator
	Flexiant Utility Function Cost Trigger
	Solver-to-deployment

	Adapter
	Adaptation Manager
	Plan Generator
	Application Controller
	SRL Adapter
	Executionware Client

	Conclusion
	References
	Common Meta-Models
	Saloon Ontology
	Plan Generator Output Data Dictionary

