
D9.3.1 – Initial Training Materials Page 1 of 59

PaaSage

Model Based Cloud Platform Upperware

Deliverable D9.3.1

Initial Training Materials

Version: 1

D9.3.1 – Initial Training Materials Page 2 of 59

D9.3.1

Name, title and organisation of the scientific repr esentative of the project's coordinator:
Mr Philippe Rohou Tel: +33 (0)4 97 15 53 06 Fax: +33 (0)4 92 38 78 22 E-mail: phillipe.rohou@ercim.eu

Project website address: http:/paasage.eu/

Project

Grant Agreement number 317715

Project acronym: PaaSage

Project title: Model Based Cloud Platform Upperware

Funding Scheme: Integrated Project

Date of latest version of Annex I against which the
assessment will be made:

03/07/2014

Document

Period covered:

Deliverable number: D9.3.1

Deliverable title Initial Training Material

Contractual Date of Delivery: 30/09/2014 (M24)

Actual Date of Delivery: 30/09/2014

Editor (s): Kyriakos Kritikos, Kostas Magoutis

Author (s): Daniel Bauer, Etienne Charlier, Jörg Domaschka, Tom
Kirkham, Kyriakos Kritikos, Kostas Magoutis, Christos
Papoulas, Michaël Van de Borne

Reviewer (s): Franky Vanraes, Stéphane Waha

Participant(s): FORTH, UULM, CETIC, STFC

Work package no.: 9

Work package title: Training and Dissemination

Work package leader: Pierre Guisset

Distribution: PU

Version/Revision: 1.1

Draft/Final: Final

Total number of pages (including cover): 59

D9.3.1 – Initial Training Materials Page 3 of 59

DISCLAIMER

This document contains description of the PaaSage project work and findings.

The authors of this document have taken any available measure in order for its content to be
accurate, consistent and lawful. However, neither the project consortium as a whole nor the
individual partners that implicitly or explicitly participated in the creation and publication of this
document hold any responsibility for actions that might occur as a result of using its content.

This publication has been produced with the assistance of the European Union. The content
of this publication is the sole responsibility of the PaaSage consortium and can in no way be
taken to reflect the views of the European Union.

The European Union is established in accordance with
the Treaty on European Union (Maastricht). There are
currently 27 Member States of the Union. It is based
on the European Communities and the member states
cooperation in the fields of Common Foreign and
Security Policy and Justice and Home Affairs. The five
main institutions of the European Union are the
European Parliament, the Council of Ministers, the
European Commission, the Court of Justice and the
Court of Auditors. (http://europa.eu.int/)

PaaSage is a project funded in part by the European Union.

D9.3.1 – Initial Training Materials Page 4 of 59

Executive Summary
A success of any platform, either commercial or research-based, cannot solely rely on
the exhibited functionality, which obviously constitutes a main differentiation point,
as such functionality needs to be complemented with sufficient documentation and
training materials which explicate the way this functionality can be exploited in the
context of the user goals and requirements. Otherwise, the user will get lost in the
overwhelm of features and capabilities of the respective platform and eventually
resort to another solution which is better documented. To this end, the purpose of this
deliverable is to provide an initial but enough set of material which will indicate the
way the PaaSage platform can be utilized in accordance to its development status. The
latter also justifies the term "initial" as the initial functionality of the platform will not
be as extended and sophisticated as possible as in its final release.

A variety of material is provided, from instructions on how to deploy and configure
the PaaSage platform or its modules, to the description of the platform's components,
to detailed processes on how users can specify their requirements in Camel in order to
be exploited by the platform according to the user purposes and goals, and down to
the ways the PaaSage's SN can be utilized in order to achieve some particular user
tasks, such as the discovery and sharing of critical knowledge which could be
exploited in the management of multi-cloud applications.

As different users might have different goals in exploiting the platform and as an
organization is made up of different types of users, the presented material is able to
target a variety of user types in the context of the possible exploitation scenarios of
the platform which include: (a) exploitation of a running PaaSage platform for
managing multi-cloud applications and (b) extension of the platform in order to
produce an added-value product which can make a differentiation in the market. The
targeted user types include: (1) business users which are guided in expressing
business requirements and organizational information in Camel, (2) application
developers which can utilize the provided documentation in order to express
application requirements as well as discover and share application design knowledge,
(3) software engineers which are supplied with useful information towards extending
the platform in order to produce added-value functionality, and (4) system
administrators which are guided in deploying and configuring the PaaSage platform.
In addition, the provided guide in using the SN can be exploited by any type of user
with the desire to discover and share any type of knowledge which can be deemed
useful towards the managing of multi-cloud applications.

The PaaSage platform is under continuous development but it will stabilize into a
final prototype at M45 with the development of the respective modules to end at M36.
In this way, it will be possible to finalize the existing material that is presented in this
document as well as provide additional material which could indicate new ways to
exploit the platform based on the extended or novel capabilities exhibited by the final
prototype. Such a material will also highlight the success under which the use-cases
have been addressed by the platform as well as the main benefits and differentiation
points of the platform. Such a material will also be extensive and clear enough to
cover all possible exploitation and utilization details such that no respective inquiries
and questions will need to be asked by potential exploiters of the platform. All this
material will be incarnated in the next and final version of this deliverable named as
"D9.3.2 - Final Training Material and Workshop Product Launch" and due in M45.

D9.3.1 – Initial Training Materials Page 5 of 59

D9.3.1 – Initial Training Materials Page 6 of 59

Intended Audience
This is a public document intended for different types of users, including business
users, application designers, IT architects, system administrators and software
engineers, depending on their intended usage of the PaaSage platform. In particular:

• business users can exploit the presented material in order to be guided in
expressing their business requirements as well as their organization's
information via the CAMEL meta-model

• system administrators can be assisted in deploying and configuring the
PaaSage platform as well as learn how to consider technical requirements and
regulations.

• software engineers can utilize the presented information in order to: (a)
express application component and quality requirements in CAMEL, (b)
extend the PaaSage platform components, and (c) produce new components
with added-value functionality.

• application developers / IT architects can be assisted in expressing application
requirements in CAMEL as well as exploiting previous application design
knowledge.

• any user type: any user can utilize the presented material in order to learn how
to use the PaaSage's Social Network (SN) for sharing application design and
technical knowledge, browsing existing applications, deploying them, and
exploiting previous application execution history and SN recommendations to
establish better application deployments.

For each type of user, different knowledge and skills are required for a better
comprehension of this document or its parts and the material it presents. Each
presented material may also interest and cater for different types of users. For even
better comprehension of the document, the prospective reader is also referred to the
description of the overall PaaSage architecture presented in Deliverable D1.6.1
[D1.6.1]. D1.6.1 provides background on the overall PaaSage architecture and the
way different modules fit in it, as well as the internal architecture of particular
PaaSage components. The reader can also refer to the separate deliverables for each
PaaSage module, i.e., D3.1.1 [D3.1.1], D4.1.1 [D4.1.1] and D5.1.1 [D5.1.1] in order
to have a complete view about the exposed functionality of each module and its
internal components. Finally, the reader can refer to the deliverable D2.1.2 [D2.1.2]
for a complete documentation of the Camel meta-model and how it can be used to
express different types of models, including those pertaining to end-user
requirements.

D9.3.1 – Initial Training Materials Page 7 of 59

D9.3.1 – Initial Training Materials Page 8 of 59

Contents

Executive Summary ... 4

Intended Audience ... 6

Contents ... 8

1 Introduction .. 11

2 PaaSage Platform Configuration & Deployment ... 15

2.1 Supported platforms & Resource Requirements ... 16

2.2 Integration environment setup (Linux) .. 17

2.3 Integration environment setup (MacOSX) .. 18

2.4 Deployment of the PaaSage platform .. 20

3 PaaSage Platform Documentation ... 21

3.1 Upperware Components .. 21

3.2 MetaDataDataBase Components ... 23

3.3 Executionware Components .. 23

4 Executionware Deployment & Usage .. 25

4.1 Installation ... 25

4.2 Configuration and Setup .. 27

4.3 Example: Deploying an Application ... 30

4.3.1 Creating a Cloud ... 30

4.3.2 Creating Hardware Configurations, Operating Systems and Locations
 32

4.3.3 Bootstrap .. 34

4.3.4 Applications, Services, and Installations .. 35

5 Camel Model Creation ... 37

5.1 Overview .. 37

5.2 Camel Modelling Process .. 38

5.2.1 Step 1: High Level Requirements Capture ... 38

5.2.2 Step 2: Detailed requirements capture ... 39

5.2.3 Step 3: CAMEL .. 40

5.2.4 Example: Simple Requirements Capture ... 42

5.2.5 Summary .. 45

6 Social Network User Guide ... 46

6.1 Site Sections ... 46

6.2 User Login / Register ... 48

6.3 Profile Configuration ... 48

6.4 User Profile .. 49

6.5 Social Network Community .. 50

6.6 Models ... 52

6.7 Components ... 55

7 Conclusion ... 57

D9.3.1 – Initial Training Materials Page 9 of 59

Bibliography .. 58

D9.3.1 – Initial Training Materials Page 10 of 59

D9.3.1 – Initial Training Materials Page 11 of 59

1 Introduction
The PaaSage product promises to differentiate by developing a platform which is
capable of managing cross-cloud applications. Such a platform could be exploited by
various organisations which might have different goals to achieve. Some
organisations might just desire to exploit the main functionality of the platform, while
others might need to adopt and possibly extend it in order to develop a cloud-based
platform in the form of a business product which can make a differentiation in the
market and thus increase its market share. However, before exploiting a platform,
sufficient documentation and training material should be in place which will indicate
the various exploitation ways of the platform and provide in details all necessary steps
and required knowledge that is needed for performing the appropriate steps towards
fulfilling these exploitation ways. This is exactly the main purpose of this deliverable:
to provide training material which can be used for the proper exploitation of the
PaaSage platform. As the platform is under heavy development, not all material is
presented but a small subset which is enough for getting acquainted with the PaaSage
platform and using it to perform cloud-based application deployments. A complete set
of training material will be presented in the next related deliverable of WP9, namely
D9.3.2, which will be available at M45 of the project when the PaaSage platform
prototype will be complete.

The set of material presented in this deliverable is separated into the following
different sections:

• Section 2 presents material which indicates how to configure, build and
deploy the PaaSage platform. This material will certainly interest
organisations which would like to create and configure their own platform
through which their applications can be deployed across different clouds. This
material is mainly intended for system admins involved in such organisations
as it contains low-level technical details which might not be understandable
e.g. by business users. However, this does not mean that other types of users
cannot exploit it to fulfil the respective task as the description of the platform
configuration and deployment process is quite straightforward.

• Section 3 supplies sufficient documentation about all the components that
comprise the PaaSage platform. Such a documentation could be quite
interesting for organisations which intend not only to exploit but also adapt
the platform for their own purposes. The respective material is more
appropriate for software engineers involved in such organisations which have
experience in developing new or modifying existing code which will expose
additional, added-value functionality.

• Section 4 focuses on a particular module of the PaaSage platform, namely the
Executionware, with the intention to exemplify how this module can be
deployed and utilized in order to enable an organisation to deploy its
applications in the cloud. The deployment process described unveils various
steps that need to be performed manually in contrast to the respective
automated execution-ware deployment process described in Section 2. The
presented material is more suited for system admins, similarly to the case of
Section 2, as it involves technical details that are more understandable and
manageable by this type of users. In addition, the content is suited for
developers and testers that aim at gathering a deeper understanding of the
interplay of software components in the PaaSage Executionware as well as of

D9.3.1 – Initial Training Materials Page 12 of 59

the low-level Executionware functionality that can be used to verify the
correct functioning of this module before linking it to the Upperware and the
meta-data database Finally, the example subsection contained in this section,
is suited for any type of user of the platform (e.g., an application owner or a
user desiring to deploy an application belonging to a specific organization)
targeting at performing application deployments in the cloud, as it shows how
to register existing cloud accounts in the PaaSage platform.

• Sections 5 and 6 play complementary roles towards enabling organisations in
providing the appropriate information as input to the platform in order to
fulfil particular organisation-required tasks, such as the deployment of
applications. In particular, Section 5 analyses how the high-level business
requirements of an organisation can be transformed into model-based
information described via the Camel meta-model (see Deliverables D2.1.1
and D2.1.2) that can be used as input to the platform for appropriately
deploying applications in the clouds as well as adapting them according to
particular scalability rules. On the other hand, Section 6 analyses the social
network perspective of the PaaSage platform by indicating how users can
specify user profiles, manage and search for application models, and exploit
knowledge which has been produced from the execution history of the same
or similar applications in order to pose in a better and more precise way their
requirements. To this end, by combining the information from these two
sections, a user will be able to perform various tasks which will enable
him/her to appropriately manage his/her applications that are deployed in the
cloud without really getting into low-level technical details at the platform
and infrastructure level. The material in Section 5 is intended to a variety of
type of users as the combination of their skills and knowledge can lead to the
transformation of high-level business requirements to requirements at the
application and infrastructure level. The material in Section 6 does not impose
particular requirements on the type of users, especially as we consider that the
social network (SN) can cater for many types of users, apart from some basic
knowledge in social networking which is not mandatory as the SN has been
designed with a user-intuitive and simple to use UI.

The types of user that can benefit from the material presented in this document are the
following:

• system admins: They can inspect the configuration and building guidelines
provided in order to build and deploy the PaaSage platform or its
parts/modules, like the Executionware. Their specialized knowledge enables
them not only to comprehend such guidelines but also to implement them by
also respecting their organisation's technical requirements, peculiarities and
regulations and bypassing any technical obstacles.

• business users: Such users, which might not have a background on IT, can
benefit from the material provided in order to obtain and share knowledge as
well as publish their application models but also to express the business
requirements for their applications which, in collaboration with other types of
users from the same organisation, can be materialized into concrete Camel
models specifying deployment, scalability, quality and security requirements
which can then be issued into the PaaSage platform for the proper
management of the respective applications in the cloud.

D9.3.1 – Initial Training Materials Page 13 of 59

• application developers / IT Architects: They can exploit the guidelines to
obtain and share application design knowledge as well as publish publication
models for their organisations. They are also guided in properly providing the
requirements for their applications in terms of concrete Camel models.

• software engineers: They can exploit the presented material in order to: (a)
extend particular PaaSage platform components, (b) produce new components
that can be fitted in the platform providing added-value functionality, (c)
develop the missing components for particular applications when the available
library of components stored in the platform cannot be used for realizing
completely the desired functionality, and (d) express application component
and quality requirements in terms of Camel models.

• simple users: They can exploit the material and especially the one provided
by the SN in order to find out applications that interest them and deploy them
in the cloud by just specifying some quality requirements, if needed, and
letting the system deriving the additional requirements and information
required for the proper deployment and management of the respective
application (e.g., from the previous execution history of the application or of
application similar to the desired one). Apart from just having a basic
knowledge of how a SN functions, no other requirement is imposed on this
type of user. It should also be noted that this user type can include the user
types mentioned above, thus actually catering for any type of user (thus could
be renamed as just user).

For each type of user indicated above, we demonstrate in the following table the
respective material that may be of interest to him/her. The rows of the table
correspond to the presented material while the columns to the respective user types.
The symbols used in the table's cell content have the following meaning: "√" means
that the material is especially targeted at the particular user type while "~" means that
the presented material could interest the respective user type.

Table 1: Mapping of presented material to targeted user types

Material System
Admins

Business
users

Application
developers

Software
Engineers

Simple
Users

PaaSage
platform

configuration
& deployment

√ ~

PaaSage
platform

documentation

~ √

Execution-
ware

deployment &
usage

√ ~

D9.3.1 – Initial Training Materials Page 14 of 59

Camel model
creation

√ √ √ ~

Social
Network User

Guide

√ √ √ √ √

As the PaaSage platform evolves, new training and documentation material will be
produced which will then be used by the above types of users as well as additional
ones in order to better exploit the PaaSage platform according to their organisations'
needs.

It should also be highlighted that apart from the documentation and user guides
provided in this deliverable, there also exists video material from which some of the
screenshots shown in the various guides/material in this document have been
extracted. This material provides a significant and complementary role with respect to
the respective material showed in this deliverable in better training the potential users
in exploiting the PaaSage platform.

D9.3.1 – Initial Training Materials Page 15 of 59

2 PaaSage Platform Configuration & Deployment

A lot of effort has been put into the automation of configuration and deployment of
the PaaSage platform so that it is as easy as possible for a newcomer to get it running.
The PaaSage platform is made out of several software components (see Section 3 for
a complete reference). Those components code is currently hosted in a Git repository
(http://git.cetic.be) located in the CETIC datacenter but it will soon be moved to a
final and permanent hosting platform. Most of component code is implemented in
Java and comes with a maven build file (pom.xml) in order to ease the build. The "jar-
with-dependencies" option is enabled into those pom.xml files, so that it can be
guaranteed that as few problems as possible occur at run time. A Jenkins1 instance is
connected to the Git repo and builds the components every time a new commit is
pushed on the origin. Next, multiple Chef2 cookbooks and recipes have been
developed in order to automate the deployment and configuration of the jar files
Jenkins builds. An additional tool, named Kitchen3, a layer on top of Chef, takes care
of the PaaSage platform VM provisioning and triggers the Chef cookbooks
installation.

In order to ease the maintenance of the components, various guidelines and best
practices have been decided:

• The PAASAGE_CONFIG_DIR environment variable stores the path to the
default PaaSage platform configuration directory, which contains the
configuration files for each component

• Each component configuration file sticks to the java properties format.

• Log files are stored in /var/log/paasage

• Java components must come with a pom.xml build file so that they can be
automatically build via Maven4

• The jar-with-dependencies option in pom.xml must be enabled so that all code
dependencies are resolved as they are shipped with their respective
components

1 jenkins-ci.org
2 www.getchef.com/chef/
3 https://docs.getchef.com/kitchen.html
4 maven.apache.org

D9.3.1 – Initial Training Materials Page 16 of 59

Thanks to this continuous integration procedure (see also Figure 1), PaaSage platform
deployments and tests are straightforward and guarantees the use of latest code
versions.

In the following, the procedure to set up the PaaSage platform on your local
workstation is analyzed for each supported platform by first explaining what these
supported platforms are and which resource requirements must be met for the local
workstation. This procedure might be modified in the near future to become more
automated and possibly signify that PaaSage can deploy itself. The latter capability
could be enabled by, e.g., describing the actual deployment requirements of the
platform in Camel and then allowing the respective deployment system to deploy the
platform in one or even multiple clouds.

2.1 Supported platforms & Resource Requirements

The currently supported platforms are Linux and Mac OS, where: (a) although any
modern Linux distribution can be exploited, the PaaSage platform deployment has

Figure 1: The PaaSage platform integration and building process

D9.3.1 – Initial Training Materials Page 17 of 59

only been tested under Ubuntu 14.04; (b) similarly, although previous Mac OS might
be exploited, only deployment on MacOSX 10.9 Maverick has been tested.

Apart from the above supported platforms, the host of the platform should preferably
have at least 4 GB of RAM, while 8 GB lead to even much better performance.

2.2 Integration environment setup (Linux)

The steps provided below must be performed to setup the integration environment in
Linux. After all these steps are performed, your workstation will be ready to launch
the PaaSage platform's VM.

1. Install Git

sudo apt-get install git

2. Download and install ChefDK (http://www.getchef.com/downloads/chef-
dk/ubuntu/).

3. Download and install VirtualBox and Virtualbox Extension Pack
(https://www.virtualbox.org/wiki/Downloads) according to you operating
system.

4. Download and install Vagrant (http://www.vagrantup.com/) according to you
operating system.

5. Install Vagrant plugins

vagrant plugin install vagrant-vbox-snapshot

6. Configure Virtualbox network

◦ Open VirtualBox -> File -> Settings -> Networks -> Host Only

◦ Edit the vboxnet0 so that: IPv4 address = 10.19.65.1 ; Netmask =
255.255.255.0; DHCP server is enabled (see Figure 2)

D9.3.1 – Initial Training Materials Page 18 of 59

7. Clone wp6_integration git repository

cd $HOME/WorkingCopies

git clone ssh://git@git.cetic.be:61011/paasage/wp6_integration.git

git checkout kitchen

export WP6_INTEG=$HOME/WorkingCopies/wp6_integration

cd $WP6_INTEG/admin

bundle install

show the list of vm that could be deployed

kitchen list

2.3 Integration environment setup (MacOSX)

The steps provided below must be performed to setup the integration environment in
MacOS. After all these steps are performed, your workstation will be ready to launch
the PaaSage platform's VM.

1. Download and install homebrew (http://brew.sh/) + the command line tools

2. Download and install ChefDK (http://www.getchef.com/downloads/chef-
dk/mac/).

3. Install VirtualBox and Virtualbox Extension Pack
(https://www.virtualbox.org/wiki/Downloads) according to your operating
system.

Figure 2: VirtualBox network settings

D9.3.1 – Initial Training Materials Page 19 of 59

4. Download and install Vagrant (http://www.vagrantup.com/) according to your
operating system.

5. Install Vagrant plugins

vagrant plugin install vagrant-vbox-snapshot

6. Configure virtualbox network

◦ Open VirtualBox -> File -> Settings -> Networks -> Host Only

◦ Edit the vboxnet0 so that: IPv4 address = 10.19.65.1 ; Netmask =
255.255.255.0; DHCP server is enabled (see Figure 3)

7. Clone wp6_integration git repository

cd $HOME/WorkingCopies

git clone ssh://git@git.cetic.be:61011/paasage/wp6_integration.git

git checkout kitchen

export WP6_INTEG=$HOME/WorkingCopies/wp6_integration

cd $WP6_INTEG/admin

bundle install

show the list of vm that could be deployed

kitchen list

Figure 3: VirtualBox network settings

D9.3.1 – Initial Training Materials Page 20 of 59

2.4 Deployment of the PaaSage platform

From a functional point of view, nothing prevents the distribution of various platform
modules on separate VMs. Every platform module or component was developed with
a share-nothing concept in mind so that each one can run separately. However, as the
project is still under development, the chef recipes have not yet been adapted to allow
such a deployment and, by the time of writing, chef deploys all platform modules and
respective components on the same Virtual Machine.The components deployed by the
current integration work which provide a basic platform functionality are provided
below:

• Adaptation manager

• CDO Server

• Cerif mapper

• CP generator

• Rule processor

• Solver to deployment

• MILP Solver

• Meta solver

• Deploy-play

• Execware frontend

• Cloudify

The following three commands trigger the PaaSage platform deployment:

cd $WP6_INTEG/admin

kitchen converge full_paasage_platform

#This will download and install a lot of things, so please be patient for the first time

kitchen login full_paasage_platform

Once you've finished working / examining the platform, you can issue:

kitchen destroy <instanceName>

to destroy the PaaSage platform's VM.

D9.3.1 – Initial Training Materials Page 21 of 59

3 PaaSage Platform Documentation
For each component that belongs to the PaaSage platform, specific documentation
information has been generated by the respective component developer in the git
repository hosting the component's code. This information includes a README file
which explicates the main functionality and the way this component can be
configured and run. Apart from this information, Jenkins was used to produce the java
documentation for each component which is made available at a specific URL for the
potential exploiters by invoking the respective javadoc module of the corresponding
code building tool (e.g., maven or sbt for scala). In the following, the section is split
into three main sub-sections, each dedicated to supplying respective component
information for each main module of the PaaSage platform, i.e., the Upperware, the
MetaDataDataBase (MDDB) and the Executionware. The basic information for each
component includes: (a) the location of the component's code in git5, (b) the
programming language used to implement the code, (c) the organisation which owns
and has obviously developed the code, (d) the URL to the java documentation of the
code, and (e) a reference to the respective deliverable where additional details about
the component are provided (as well as an architectural analysis indicating how this
component is connected with other components of the same or different module).
Moreover,

It must be noted that as the component code is still under heavy development, the
produced java documentation may not contain as much details as could be needed for
a potential exploiter. However, it is expected that as the component code gets
finalized and the code developers will have additional time to provide more focused
code comments in the places needed, the java documentation will become much
richer and quite self-explanatory.

It must also be highlighted that apart from particular exceptions, most of the code is
not mapped to a particular licence. However, it is expected that quite soon this will be
finalized and the respective licence will be included in the git repository hosting the
respective code (apart from the code itself which will probably be also annotated).
The exceptions concern: (a) the components developed by FORTH (CDO Server and
Metrics Collector) which for the moment have a proprietary licence, (b) the
components developed by ULM (Execution Engine and Executionware Frontend)
which have an Apache Public Licence 2 and (c) the Cerif Mapper developed by AGH
which has an Eclipse licence.

3.1 Upperware Components

• CP Generator

◦ Git repository:

http://git.cetic.be/paasage/wp3_profiler/tree/master/paasage-wp3-profiler/wp3-
cp-generator

5 Please be aware that the component location as well as the URL to the respective
java documentation will be modified as soon as the component code is moved to the
final hosting platform.

D9.3.1 – Initial Training Materials Page 22 of 59

◦ Programming language: Java

◦ Owning organization: INRIA Lille

◦ Code documentation:

http://jenkins.paasage.cetic.be/job/WP3_PROFILER_JAR/Javadocs

◦ Reference: PaaSage Deliverable D3.1.1 [D3.1.1]

• Rule Processor

◦ Git repository:

http://git.cetic.be/paasage/wp3_profiler/tree/master/rule_processor

◦ Programming language: Java

◦ Owning organization: STFC

◦ Code documentation:

http://jenkins.paasage.cetic.be/job/WP3_PROFILER_JAR/Javadocs

◦ Reference: PaaSage Deliverable D3.1.1 [D3.1.1]

• Upperware metamodel

◦ Git repository: http://git.cetic.be/paasage/wp3_model

◦ Programming language: Java

◦ Owning organization: INRIA Lille

◦ Code documentation:

http://jenkins.paasage.cetic.be/job/WP3_MODEL/Javadoc

◦ Reference: PaaSage Deliverable D3.1.1 [D3.1.1]

• Metasolver

◦ Git repository: http://git.cetic.be/paasage/metasolver

◦ Programming language: Java

◦ Owning organization: STFC

◦ Code documentation:

http://jenkins.paasage.cetic.be/job/WP3_META_SOLVER/Javadoc

◦ Reference: PaaSage Deliverable D3.1.1 [D3.1.1]

• MILP Solver

◦ Git repository: http://git.cetic.be/paasage/milp-solver

◦ Programming language: Scala

◦ Owning organization: AGH University of Science and Technology

◦ Code documentation:

http://jenkins.paasage.cetic.be/job/WP3_MILP_SOLVER/Javadoc

◦ Reference: PaaSage Deliverable D3.1.1 [D3.1.1]

• Solver to deployment

D9.3.1 – Initial Training Materials Page 23 of 59

◦ Git repository: http://git.cetic.be/paasage/solver-to-deployment

◦ Programming language: Java

◦ Owning organization: INRIA

◦ Code documentation:

http://jenkins.paasage.cetic.be/job/WP3_SOLVER_TO_DEPLOYMENT/Java
doc

◦ Reference: PaaSage Deliverable D3.1.1 [D3.1.1]

• Adaptation manager

◦ Git repository: http://git.cetic.be/paasage/adaptation-manager

◦ Programming language: Java

◦ Owning organization: INRIA

◦ Code documentation:

http://jenkins.paasage.cetic.be/job/WP3_ADAPTATION_MANAGER/Javado
c

◦ Reference: PaaSage Deliverable D3.1.1 [D3.1.1]

3.2 MetaDataDataBase Components

• Metadata database / CDO Server

◦ Git repository: http://git.cetic.be/paasage/cdo-server

◦ Programming language: Java

◦ Owning organization: ICS FORTH

◦ Code documentation:

http://jenkins.paasage.cetic.be/job/WP4_CDO_SERVER/Javadoc

◦ Reference: PaaSage Deliverable D4.1.1 [D4.1.1]

• CERIF mapper

◦ Git repository: http://git.cetic.be/paasage/wp4-cerif-mddb-plugin

◦ Programming language: Clojure

◦ Owning organization: AGH University of Science and Technology

◦ Code documentation:

http://jenkins.paasage.cetic.be/job/WP4-CERIF-MDDB-PLUGIN/Code_docs

◦ Reference: PaaSage Deliverable D4.1.1 [D4.1.1]

3.3 Executionware Components

• Execution engine

◦ Git repository:

D9.3.1 – Initial Training Materials Page 24 of 59

https://github.com/dbaur/cloudify/tree/2.7.0_paasage

◦ Programming language: Java

◦ Owning organization: Ulm University

◦ Code documentation: http://getcloudify.org/

◦ Reference: PaaSage Deliverable D5.1.1 [D5.1.1]

• Executionware frontend

◦ Git repository: http://git.cetic.be/paasage/execwarefrontend

◦ Programming language: Java

◦ Owning organization: Ulm University

◦ Code documentation:

http://jenkins.paasage.cetic.be/job/WP5_EXECWARE_FRONTEND_PLAY/Javadoc
s/

◦ Reference: PaaSage Deliverable D5.1.1 [D5.1.1]

• Metrics wrapper

◦ Git repository: http://git.cetic.be/paasage/metrics-wrapper

◦ Programming language: Java

◦ Owning organization: ICS FORTH

◦ Code documentation:

◦ Reference: PaaSage Deliverable 5.1.1 [D5.1.1]

D9.3.1 – Initial Training Materials Page 25 of 59

4 Executionware Deployment & Usage

As stated in Deliverable D5.1.1 [D5.1.1], the PaaSage Executionware has the primary
purpose of bringing applications to execution and to monitor their run-time
performance. Figure 4 sketches the Executionware architecture and its role in
PaaSage.

The Upperware components [D3.1.1] and the MDDB [D4.1.1] are installed at the
premises of the PaaSage operator. The PaaSage operator as well as PaaSage users
interact with these two parts in order to access PaaSage functionality. Similar, the
Executionware consists partially of components that have to be installed at the
premises of the PaaSage operator. This is the Executionware frontend and the
monitoring infrastructure. Other parts of the Executionware are then automatically
set-up by the frontend when an application is deployed through PaaSage.

Besides being integrated in PaaSage, the Executionware frontend can be used as a
stand-alone component for deploying applications. For that purpose, it comes with a
graphical, web-based user interface. This feature is useful in order to test the current
set-up and ensure the Executionware is working. This section deals with the
installation and configuration of the Executionware frontend. In contrast to Section 2,
it presents the individual technical requirements for each dependency it has. It also
instructs how to build the code from scratch. This deepens the understanding of the
overall Executionware architecture and functionality; in particular for developers and
testers. This is also the reason why this section concludes with a brief description of
how to deploy an application through the user interface.

4.1 Installation

Table 23: List of components required for running Executionware frontend

Java developers kit, SunJDK or OpenJDK Version 6 or higher

Play framework 2.3.2

Cloudify 2.7-PaaSage

Figure 4: Executionware architecture within PaaSage

D9.3.1 – Initial Training Materials Page 26 of 59

Hibernate-capable database e.g. MySQL

The Executionware frontend is implemented on top of the Play framework6 and
makes use of a Hibernate-compatible7 database. Furthermore, for deployment it uses a
customized, PaaSage-aware version of Cloudify8. In the following, we sketch the
installation of the frontend components based on an Ubuntu-based Linux using
mySQL as a database and OpenJDK 7.We assume that the application is installed by a
user myuser to an installation directory ~/install. The installation steps that have to
be performed are the following:

1. Install git:

sudo apt-get install git

2. Install OpenJDK by using your operating system mechanism:

sudo apt-get install openjdk-7-jdk

3. Install mySQL database:

sudo apt-get install mysql-server

4. Create and enter installation directory:

mkdir ~/install;

cd ~/install

5. Download the Typesafe9 reactive platform:

wget http://downloads.typesafe.com/typesafe-activator/1.2.10/typesafe-
activator-1.2.10.zip

The Executionware frontend is implemented on top of the . In the following, we
sketch the installation of the frontend components based on an Ubuntu-based Linux
using mySQL as a database and OpenJDK 7. reactive platform:

6. Extract the Typesafe platform that will result in a directory

~/install/activator-1.2.3-minimal
unzip typesafe-activator-1.2.10.zip

7. Clone the Executionware repository using git:

6 https://www.playframework.com/
7 http://hibernate.org/
8 http://getcloudify.org/
9 http://typesafe.com/platform

D9.3.1 – Initial Training Materials Page 27 of 59

git clone ssh://git@git.cetic.be:6100/paasage/execwarefrontend.git

8. Create a (so far) empty configuration file (name free to choose):

touch dev.conf

9. Download the PaaSage-capable version of Cloudify:

wget http://eladron.e-technik.uni-ulm.de/cloudify/gigaspaces.cloudify-2.7.0-
ga-b5996.tar.gz

wget http://eladron.e-technik.uni-ulm.de/cloudify/gigaspaces.cloudify-2.7.0-
ga-b5996.tar.gz

10. Unpack the archive that results in a directory:

~/install/ gigaspaces-cloudify-2.7.0-ga
tar -xzf gigaspaces-cloudify-2.7.0-ga-b5996.tar.gz

4.2 Configuration and Setup

Now that all software has been put in place, the individual components must be
configured as follows:
MySQL
In mySQL we need to set-up a database as well as a user that is allowed to access this
database.

1. Connect to database using: mysql –u root –p.

2. Create database dbName.

3. Grant all privileges on dbName.* to ‘dbUser’@’localhost’ identified by
‘dbPassword’.

Fill Config File
Open the config file (dev.conf) using your favourite editor and add the content that is
shown in Figure 5.

D9.3.1 – Initial Training Materials Page 28 of 59

Run Play Server
In order to bring up the server running the Executionware, execute the following
steps:

1. Change to the Executionware directory:

cd /home/myuser/install/execwarefrontend

2. Run the play application server:

~/install/activator-1.2.3-minimal/activator -
Dconfig.file=/home/myuser/install/dev.conf start

3. This will lead to a running PaaSage Executionware GUI that is accessible at
port 9000 and can be accessed with a browser

Secret key properties

The secret key is used to secure cryptographics functions.

If you deploy your application to several instances be sure to use the same key!

application.secret="A_VERY_SECRET_KEY"

Database configuration

db.default.driver=com.mysql.jdbc.Driver

db.default.url="mysql://dbUser:dbPassword@localhost/dbName"

Cloudify properties

Cloudify Path, directory for temporary files, tell cloudify to save files

cloudify.path = "/home/myuser/install/gigaspaces-cloudify-2.7.0-ga"

cloudify.temp = "/tmp"

cloudify.safe = true

Figure 5: Content for the configuration file dev.conf

D9.3.1 – Initial Training Materials Page 29 of 59

4. Login using the following default username/password combination:

• Login: john.doe@example.com

• Password: admin

Logging in results in an empty Executionware configuration that we will use in order
to deploy a sample application

Figure 7: Screen after first login

Figure 6: Login screen after a successful installation

D9.3.1 – Initial Training Materials Page 30 of 59

4.3 Example: Deploying an Application

This section deploys an example application using the Web-based user interface of
PaaSage’s Executionware. While this GUI-based approach is not PaaSage’s primary
approach for deploying applications, the GUI helps in order to figure out whether the
Executionware has been configured correctly and is indeed operational.

When changing to the Management view using the upper right “Management” button
in the user interface, the GUI changes and displays a left column listing the core
abstractions of the Executionware in alphabetic order. We iterate through all of them
in logical order in the following subsections. By doing this, we sketch the
functionality of each of them and create a working example.

4.3.1 Creating a Cloud

A Cloud is defined by the User credentials to access the Cloud Instance offered by a
particular Cloud provider. The cloud also has a type that is defined by the driver
used to access the Cloud.

The Cloud driver defines the software used at the server-side (e.g. Amazon EC2,
OpenStack, and Flexiant FCO), but also the URI of the service. Hence, for accessing
the PaaSage testbed provided by Flexiant, we configure a Flexiant FCO Driver as
shown in Figure 8 and a Flexiant FCO Provider as shown in Figure 9.

The Driver configuration consists of an arbitrary driver name (Flexiant CFO in the
figure) and class names for accessing various aspects of IaaS offers; in particular,
compute services, storage services, and network services. For FCO, the compute
driver is capable of handling the other aspects as well so that the remaining aspects
can be left empty. Connect to private IP denotes whether the virtual machines created
for this cloud can be accessed using a public IP or not, where the first case obviously
eases the deployment. The most important configuration property, however, is the
overrides field that defines the URI of the cloud operator.

Figure 8: The Flexiant FCO Driver

D9.3.1 – Initial Training Materials Page 31 of 59

The Provider configuration in turn comprises configuration properties regarding the
set-up of all virtual machines started in a dedicated cloud, e.g., where to get the
cloudify run-time, prefixes of virtual machines and management virtual machines. In
addition, it defines how the system deals with management virtual machines by, e.g.,
defining their total number and the memory they use.

The User entity encapsulates the access credentials to the Cloud such as user name
(called user in the GUI) and password (called apiKey). It also enables the
specification of a key file that will later be used to access virtual machines using PKI
authentication. For clouds with FCO driver, the key does not need to be set. For
Clouds based on OpenStack, this is necessary, however. The combination of Provider,
Driver, and User allows the definition of Cloud as shown in Figure 10.

In addition each clouds requires an Upload. An Upload depicts custom files that will
be used when setting up a virtual machine. They are uploaded as a zip file. There are
mainly two important files regarding the upload:

Figure 9: The Flexiant FCO Provider

Figure 10: A Cloud configuration to access the Flexiant testbed

D9.3.1 – Initial Training Materials Page 32 of 59

- bootstrap-management.sh: This file needs to be contained in every upload
zip. The bootstrap-management.sh can be downloaded from the
executionware webpage.

- Keyfile: If you want to use public/private key authentication for your
virtual machines, the private key which should be used, also needs to be
contained in the uploads zip file.

When using specific cloud providers a Network may be required. Currently, this is
true when using Flexiant and OpenStack. A Network configuration is depicted by its
unique identifier given by the cloud provider, and the cloud it belongs to. In addition a
custom configuration can be added, which can enable, e.g., the usage of floating IPs.

4.3.2 Creating Hardware Configurations, Operating Systems and

Locations

When applications are to be deployed on IaaS systems, they are to be bound to a
dedicated image that encapsulates the operating system (cf., Figure 11, Figure 12) and
in addition a hardware configuration (cf., Figure 12) that encapsulates the number of
CPUs and the available amount of memory.

The image configuration covers basic information that is required by the runtime
environment. It names the operating system contained in the image, together with the
version number and the hardware architecture the image is built for. In addition, a
username and an associated password can be set. This is used by the Executionware
runtime to get access to the running virtual machine. The remoteDirectory property
defines the directory the run-time will use for temporary files. The
initializationCommand property contains a set of commands to be executed at
bootstrap. In the example, the local IP address is set to the IP address assigned by the
cloud platform. The privileged property defines if this image requires commands to be
executed with sudo. This is mainly required for Ubuntu cloud images. The
autoRestartAgent property should be set true, as this means that the cloudify agent
installed on the machine gets automatically restarted after a reboot.

Figure 11: Image configuration

D9.3.1 – Initial Training Materials Page 33 of 59

The configuration basically defines the hardware properties of a virtual machine. In
particular, it is possible to define a set-up consisting of a particular number of CPUs
and amount of RAM. Figure shows two configurations, one with 2 CPUs and 2000
MB of memory and another one with 4 CPUs and 4000 MB of memory.

A Location denotes a particular location within a cloud. For Flexiant FCO this refers
to a virtual data centre. For Amazon EC2 this refers to an Amazon location (data
center) such as Europe, Asia, or West Coast. Regarding OpenStack, the location is not
required as it is contained in the identifiers for image and hardware.

After creating an Image, Hardware or Location, those need to be assigned to the
cloud they are available in. For this purpose, the Assign-Button (cf., Figure 12) can be
used. By giving the unique identifier of the Image, Hardware or Location Resource in
the specific cloud, the assignation can be completed (cf., Figure 13).

Figure 12: Hardware Configuration

Figure 13: Assigning the Hardware to a specific cloud

D9.3.1 – Initial Training Materials Page 34 of 59

4.3.3 Bootstrap

A Bootstrap is the action of actually activating a Cloud. This means that the
management virtual machine gets started including the remote monitoring instances
(time-series database). Besides being started, the latter is also linked with the metrics
collector (monitoring infrastructure residing at the PaaSage operator’s premises; cf.,
Figure 4) so that monitoring data reaches the meta-data database.

Figure 14 shows the creation of a Bootstrap instance. Once this is created, the Cloud
is bootstrapped and the management virtual machine is created. The result of this
action can be seen by clicking on the Jobs icon in the right top corner (c.f., Figure 15).
Here, also the output to the operation can be seen. Successful jobs are shown with a
green outline, failed jobs with a red. More details to the jobs can be seen by clicking
on the Show-Button.

Figure 14: Bootstrapping a Flexiant Cloud

D9.3.1 – Initial Training Materials Page 35 of 59

4.3.4 Applications, Services, and Installations

As described in D5.1.1 [D5.1.1], the Executionware has adapted from Cloudify the
concepts of Services and Applications. While the PaaSage Upperware and its high-
level CAMEL models abstract from this low-level Executionware-specific view,
using the Executionware directly requires to understand the difference between the
two:

An Application provides a context to a set of Services. There is no logic attached to
the Application except that it defines its Services and the interdependencies between
them. Services may depend on each other in the sense that one service needs to be
started before another one (e.g. the database needs to be started before an application
server). Figure 16 shows an application representing a Cloudify-enabled version of
the Ghost blog application10 consisting of a load balancer service, an application
server service, and a database service. All services can be scaled independently and
are further deployed independently from each other.

10 https://ghost.org/

Figure 15: Job Overview

D9.3.1 – Initial Training Materials Page 36 of 59

A Service merely consists of a name and an archive file. The archive file contains a
set of scripts that are executed at certain points in the service’s life-cycle (install,
deployment, startup, shutdown, …). The content and the structure of these files has
been described in D5.1.1 [D5.1.1].

An Installation is the deployment of a particular application. The installation view
offers an install-Button triggering the installation of the application within the defined
cloud environment. As with the Bootstrap, the process can be tracked in the Jobs view
(c.f., Figure 15).

Figure 16: An application definition consisting of three services

D9.3.1 – Initial Training Materials Page 37 of 59

5 Camel Model Creation

5.1 Overview

The main purpose of Cloud Application Modelling and Execution Language
(CAMEL) [D2.1.2] is to capture user requirements for the execution of applications in
the Cloud. CAMEL is formed via an aggregation of existing standards to capture user
requirements and maintain them through the whole Cloud application lifecycle. The
CAMEL models are created using the Eclipse IDE and stored in a central CDO
server.

The Camel Models specified in Eclipse IDE can be used to capture the main
computing requirements to be associated with the application when deployed on the
Cloud. These requirements are expected to be wide ranging and include various
perspectives on the application from different stakeholders within the organisation
that the user belongs to.

This guide shows the process of requirements capture from the various user
perspectives and how this is translated into the Eclipse CAMEL Modelling process.

Note
This guide has been written to support the first PaaSage prototype. It is expected that
significant future work will take place in the project to make the process described
below both simpler and less open ended.

Pre-Requisites
In order to follow this tutorial, you should have already set up the Eclipse CAMEL
modelling environment. Instructions on how to do this can be found in the PaaSage
CAMEL CDO tutorial by Nikolay Nikolov. In addition, some knowledge and
familiarity of the Eclipse IDE is required.

Audience
This tutorial is targeted at three types of users:

 Application Designer: This type of user is expected to have knowledge of the
main execution and deployment characteristics of the application including specific
technical requirements, such as platform and data storage and performance.

 Business User: This type of user will set the higher level business
requirements, such as Cost of application execution, and specific business
requirements, such as process data using US hosts.

 Systems Admin: This type of user will know the wider technical context from
an organisational perspective that the application should execute within.
Requirements such as the wider security policies and technical detail can be set by
this user type.

The end user which monitors the model and application execution in the Cloud could
belong to either one of the user types above depending also on the level of detail and
interference that is required. End user choice depends on the organisation's
characteristics. It is also possible that users may delegate the setting of requirements

D9.3.1 – Initial Training Materials Page 38 of 59

to one of the user types listed above, although requirements from each type of users is
needed for the PaaSage platform to provide the optimum Cloud-based application
management. The process of requirements capture is split between the perspectives of
Business Requirements, Application Requirements and Admin Requirements.

5.2 Camel Modelling Process

5.2.1 Step 1: High Level Requirements Capture

It is expected that an organisation will have a set of clearly defined business
objectives associated with the decision to port or deploy an application to the Cloud.
These objectives are likely to have formed part of an internal project / business plan
for internal approval before the decision to embrace the Cloud via PaaSage was taken.

These business driven objectives will also link to other internal documentation
relevant to the security / admin and levels of service for the application in the Cloud.
For example a typical objective could be to run the application on an EU Cloud using
specially defined Linux virtual machines at a cost lower than 1k per week. This
objective spans business (cost), admin (EU only) and application (Linux) specific
elements. This scenario will be later used in the CAMEL creation example.

In order to translate these objectives into requirements, we start with the creation of a
UML sequence diagram. This step is designed to help capture the main objectives into
requirements but also help to describe the main application and its relationship with
other entities including other computational elements and business level
organisations. It is expected that this task is approved by the main Business, Admin
and Application stakeholders linked to the deployment decision.

Resulting from this initial work a high level UML class diagram will be produced.
This diagram will represent the key requirements of the cloud-based application
deployment including specific rules and constraints linked to the provisioning of the
application.

In future developments of PaaSage it is expected that this capture phase will be
embedded into a specific PaaSage front end GUI. Here the user will select different
capture screens to describe the main business, admin and application requirements.
The PaaSage system will then automatically link the sets of requirements into the
respective CAMEL model to be exploited for the proper management of the
application in multiple-clouds.

D9.3.1 – Initial Training Materials Page 39 of 59

Figure 17: High Level Class Diagram of Deployment

The above diagram is a quite simplistic representation of the desired architecture
when the application is deployed to the Cloud. The key points here are to define what
components are to be deployed and their main characteristics and interdependencies.
Where possible each main component should be broken down into its software
requirements and performance characteristics. Boundaries of the Cloud can be used to
describe (as illustrated in Figure 17) how some deployments could be hybrid in
nature.

5.2.2 Step 2: Detailed requirements capture

Once the high level architecture and relationships between components are defined, in
order to ensure that the reasoning PaaSage conducts is suitable to the end users
additional detail is added to the model. The additional input includes the prioritization
of specific factors such as cost of storage and application execution time to aid
automated decision making by PaaSage components.

Users will be required to capture their application workflow in order to model the key
points in the application deployment and execution phases. It is expected that the
future development of the PaaSage GUI will guide the user to the specific phases and
assist them in defining the rules and constraints during this workflow creation
process. Once the user driven workflow is complete, the PaaSage components will
automatically combine it with the PaaSage lifecycle.

At this stage of the project an interactive workflow based design tool is not yet
available to allow users to interact with the possible options available for application
deployment and provisioning/execution in the cloud. The project will develop a
flexible workflow tool to capture the more detailed requirements which will support
the user in modeling their scenario’s workflow onto the standard PaaSage lifecycle
model identifying constraints / rules at the main PaaSage decision points. Figure 18
illustrates this process for a generic Cloud deployment.

D9.3.1 – Initial Training Materials Page 40 of 59

Figure 18: Simple PaaSage Lifecycle

Points A, B and C in the simple PaaSage lifecycle (depicted in Figure 18) are
typically points at which the user (or alternatively the platform produces
automatically on behalf of the user) is required to create specific input, such as
functions to aid the management of user defined rules and constraints. Users create or
assist in the creation of such an input by ranking importance of specific rules and
constraints when defined in CAMEL. It is therefore an important step to have such an
input defined before the process of CAMEL creation is started.
Point A is concerned with requirements provided by the end user in terms of priority
(e.g., cost is given higher priority than performance).

Point B is where the selection of Cloud providers takes place. Here rules could exist
that exclude specific providers or take into account specific historical actions of the
provider (stored in the MDDB [D4.1.1]) when making the choice. Utility functions
could also be expressed to guide the reasoning process towards discovering the most
optimal deployment plan according to the user requirements, constraints and
preferences. Such utility functions could be either expressed directly by the user in
case he/she is quite experienced in this matter or automatically by the system by
considering the user requirements and the priorities posed on them.

Point C is user-defined and specific to the ongoing execution of the Cloud. It could be
expressed in the form of scalability rules which indicate those conditions that when
met the end-user application should be scaled. Such a scalability rule could be
specified by the user, based on extensive testing of his/her application or on live data
received during the application execution on the Cloud. Alternatively, the system
could generate the scalability rule automatically and suggest it to the user for
confirmation based on the previous execution history in the cloud of similar or
equivalent applications.

5.2.3 Step 3: CAMEL

Once the high level requirements and more specific input within the PaaSage
engagement are defined, the process of CAMEL creation is ready to start. Following
on from the pre-requisite step of installing the CAMEL modelling environment, the
user is presented with several options when defining a CAMEL root node.

The root nodes in CAMEL are taken from specific DSLs captured in the CAMEL
modelling environment (see also Figure 19). More details about each DSL can be
found in [D2.1.2].

D9.3.1 – Initial Training Materials Page 41 of 59

Figure 19: The DSLs of CAMEL mapping to the root nodes

DSLs that the root nodes emerge from are listed below with the main areas of
information that they cover. It should be noted here that for the capturing of user
requirements, not all DSLs are actually needed. However, models for the DSLs that
are neglected in requirements capture and stored in CDO Server could be exploited
during the requirements modelling as the DSLs are aligned and mapped to each other.
For instance, when defining a specific deployment model for an application, the user
could define a requirement that a specific cloud provider's VM is used for the
deployment of a particular application component which can be linked to the
respective cloud provider capabilities description in a model defined via the
feature/provider DSL.

• CERIF: This is used to map the roles and attributes of users in the application
to be deployed in the Cloud. CERIF is actually used for describing
organisations, their respective users and user groups, and the corresponding
roles that are mapped to these users and groups. Organisations can be cloud
providers or particular companies that need to exploit the PaaSage platform
for their own needs.

• CLOUDML: This is used to model the main architectural nature of the
application and its deployment. This includes the application components and
the characteristics of the VMs, such as computational resources and operating
systems, on which these components will be deployed.

• PROVIDER/FEATURE: This is used to capture the Cloud provider
capabilities in terms of offered cloud services in a quite expressive way. It is
expected that a set of provider models will already be stored in PaaSage's
MDDB such that the end-user is not required to specify them but just
reference them when e.g. needs to express which cloud services should be
mapped to which cloud providers.

• SECURITY: This focuses on defining security controls and respective
attributes and metrics which can be used for assessing whether the respective
security requirements of the user are satisfied. It is expected that the security
controls will already be stored in PaaSage's MDDB so the user would just
have to express which controls interest him/her and what priorities it set for
their satisfaction. Such security control requirements can be used to filter the
available cloud provider space based on the providers' security control
realizations/capabilities.

• SRL: It is used for defining scalability rules which are tied to specific
applications and their respective deployments. Each scalability rule is

D9.3.1 – Initial Training Materials Page 42 of 59

expressed as a simple or complex condition on one or more QoS metrics
whose satisfaction should lead to the execution of the corresponding
scalability actions (such as scale-out) by the PaaSage platform. Obviously,
apart from widely-known QoS metric templates (already stored in PaaSage's
MDDB) which can be instantiated, the end-user has the freedom of defining
new QoS metrics and associating them to respective scalability rule
conditions.

• Type: It is used for defining the values and value types that particular CAMEL
constructs/elements can take. For instance, a value type can be bound to a
specific QoS metric in order to be able to assess whether the respective metric
monitoring values are correct.

• WSAG: This actually maps to the WS-Agreement language and thus can be
used for defining Service Level Terms as well as Service Level Objectives
(SLOs) related to the applications deployment and execution on the Cloud. We
should highlight here the connection between WSAG and SRL as SLOs can be
expressed as conditions on QoS metrics.

5.2.4 Example: Simple Requirements Capture

In order to demonstrate the process of requirements capture we have created a simple
scenario. The main outline of the scenario is explained below:

Business Requirements
Company A has a non-cloud application offered to its customers that is being
considered for migration to the cloud. The application consists of a legacy application
linked to a web based database and web server presented through a client side web
GUI (the UML diagram is expressed earlier in this document in Figure 17).

The Business User defines the core business motivational requirements for using the
Cloud. These are that Company A wants to provide greater resource flexibility to the
web server and database by provisioning via the Cloud. As a result Company A
expects to present a new charging model to its customers and reduce its own costs by
selecting the most economical options for deployment. Thus, cost is a significant
factor in the setting of the deployment to be optimized.

The Application Designer has knowledge of performance and hosting requirements
for the application. Here, the requirements, to support three levels of SLA which are
offered Company A via the application to its customers, are integrated. The SLA is
linked to application support but also storage capacity and processing power. These
factors are expressed as requirements linked to the web server and database to be
deployed on the Cloud.

The Systems Admin has knowledge of the security constraints and capabilities within
the organisation. For example what type of identity management framework can be
supported by clients. Here the requirement is provided that the system should support
that company customers (or users representing them) will use their federated identity
to gain access to the application. The client side GUI should support mobile devices.

D9.3.1 – Initial Training Materials Page 43 of 59

In terms of security, the application handles personal data and therefore appropriate
access policies need to be applied linked to national, international and domain specific
law. Taking this into account the application must be executed in the EU.

Detailed Requirements
Using the model in Figure 18, detailed requirements are formed at three points. These
are expressed in this example as simple functions which determine specific decisions
that need to be made at these points of the PaaSage Cloud lifecycle.

At Point A, the initial set of detailed requirements is the user defined priorities for the
deployment to the Cloud. In this example, the execution must be performed at the
cheapest cost possible regardless of processing time.

At Point B, user preferences are provided and linked to Cloud provider selection. In
this example, the user does not wish to use the Amazon Cloud and desires to select a
Cloud Provider with the highest user reputation mark based on feedback in the
MDDB from the Social Network.

At Point C in the example, the user monitors (with the help of the platform) the
performance of the application execution. Due to specific changing circumstances
(e.g., deterioration in application execution time due to increased load at particular
time periods during the day) the user may wish to increase the processing power given
to the application to get the application completed quicker. To this end, he/she could
feed this in the form of a scalability rule at this stage of the application lifecycle to
handle accordingly the equivalent future circumstances that are about to occur.

DSLs
In terms of each DSL, this use case/example should model the following information:

• CERIF: This is used to map the roles and attributes of the end users federated
identities to the roles and attributes of the application.

• CLOUDML: This is used to model the main deployment model capturing the
three main components above at its core as well as the requirements posed by
each of them to the respective VM.

• SECURITY: As the application processes personal data, specific encryption
and hosting requirements will have to be enforced to support the deployed
application.

• SRL: Scalability rules should be defined and enforced to ensure maintenance
of service level dictated by the respective SLA for each customer. For
example, a scale out action should be executed when the database is reaching
capacity or the component VMs run out of computational power.

• WSAG: Service level objectives (SLOs) linked to the 3 tier SLA which are
expressed via conditions on metrics that can be monitored and defined in SRL.

Model Creation
In order to set specific elements into the CAMEL, the root node is added relevant to
the specific requirement being captured. To demonstrate this, we will use an element
from the scenario described above:

Abiding by the security rules, the application should be hosted on an EU Cloud using
specially defined Linux virtual machines at a cost lower than 1k euros per week.

D9.3.1 – Initial Training Materials Page 44 of 59

From a business perspective, the focus of cost can be captured by defining a specific
requirement in WSAG indicating that the respective Attribute (defined in SRL)
mapped to cost should be restrained with a particular value (1k) and unit (euros).
Then, when the user-provided deployment model is fed into the platform, this
deployment model will become more concrete by considering the cost constraint into
account when mapping the deployment requirements to the respective capabilities of
the cloud providers which come with a particular cost.

The application perspective of specific VMs can be modelled using nodes from
CloudML. Here the most appropriate way of modelling this would be to create an
appropriate root node mapping to a Deployment Model. From this root node, child
nodes can be added such as the application components, the VMs and their
characteristics, such as required memory and storage, and the mapping of components
to VMs via hosting nodes. It should be noted here that the VMs here are described in
terms of requirements on their characteristics. However, the user has the freedom to
become even more concrete and map particular application components to VMs (or
VM types) of specific cloud providers.

From a security / administration policy, perspective root nodes from the Security
DSL, including Security Requirements that can be linked to specific security controls.
Such requirements can be ranked via user-provided properties to allow for a more
informed selection of the respective cloud providers.

The process of adding root nodes and drilling down from these nodes to add specific
detail is repeated to cover all defined requirements and create the CAMEL model for
the application as it is used in the Cloud (see also Figure 20 which shows the Camel
model specified for the example).

Functions from the more detailed requirements can be generated from the models by
adding specific constraints or rules within the definition of specific nodes. The end
result of the process is one or a set of CAMEL models stored in the CDO database.
Such models can be added to and modified over time and shared between users and
application domains.

Figure 20: The Eclipse Environment through which the Camel model of the example is
specified (and shown at the right top window in the figure)

D9.3.1 – Initial Training Materials Page 45 of 59

5.2.5 Summary

The tutorial above takes a simple view on the creation of a CAMEL model. The
process is open ended and the possibility of defining similar constraints using
different DSLs is a recognised problem. To address this problem improved integration
of DSLs and the production of the GUI-based design tools for the creation of CAMEL
is a major focus of the next phase of PaaSage work. Once this improved integration of
the DSLs takes place, an extended version of this tutorial will be produced, which will
include specific guidelines for each DSL in order to assist the user in defining the
different types of requirements for his/her application. The respective example used
throughout this tutorial will also be enriched by including particular screenshots and
steps which indicate the way particular requirements are formed in specific CAMEL
DSLs.

D9.3.1 – Initial Training Materials Page 46 of 59

6 Social Network User Guide
The PaaSage Social Network (SN) is a social platform targeting at the creation of a
community of users and developers by enabling them to exchange their experience
and knowledge with respect to the PaaSage platform. Through the PaaSage SN, users
can connect to other SN users and view their contributions, join groups, deploy
applications, navigate through historical knowledge of previously executed
application models, create application models by also utilizing useful modelling
recommendations provided by the SN as well as comment and rate such applications
models. Soon (end of M30) the SN will be available for users to create accounts and
exploit the functionality exhibited by the SN.

This section presents the basic functionality of the PaaSage Social Network and
provides an overview of the pages and the actions that a user can perform.
Furthermore, in the following subsections, all the required information about how to
use and navigate through the PaaSage Social Network is supplied.

6.1 Site Sections

The fundamental view of the Social Network Web Site is shown in . In the top-bar
navigation menu the user can navigate through the key elements of the SN, which are
the Models, Components and the Community. The Models are application models
described in the Camel Meta-model [D2.1.2], where each model includes a
description of one or more Components. The Components are individual units which
provide some functionality. Finally, the Community supplies the necessary
functionality for users to ask questions, get feedback from other users and create / join
groups. In the right corner of the top-bar navigation menu, the following shortcuts are
supplied:

 My Area The My Area section contains the user’s configurations, runs,
models, components, and credentials

 Cart The user can add to the user’s cart any model or components to
be used for the design of an application deployment model.

Notifications Any system notification to the user.

 The user
profile photo

Redirects to the user’s profile.

 Friends Redirects to the user’s friends.

 Messages The text messages sent from other users.

 Settings The user’s settings.

The Main Window displays the main information that the user wants to see according
to the user action/selection performed. For instance, if the user clicks the Community
link from the top-bar, the Main Window will contain the home page of the
community. The Sidebar section contains neighbouring information about the Main
Window and some actions that maybe the user wants to perform, such as filtering the
Main Window information.

D9.3.1 – Initial Training Materials Page 47 of 59

Finally, the last element of the page is the Footer which is kept simple and provides
the links to:

• Contact Information

• Terms of Service and

• Privacy Policy

Figure 21: Site Sections: 1) The top-bar section provides the basic navigation options. 2) The Main
Window provides the main information that the user desires to see. 3) The sidebar sections exist
basically for additional, secondary information and 4) the footer of the site

D9.3.1 – Initial Training Materials Page 48 of 59

6.2 User Login / Register

The introductory page of Social Network (SN), shown in Figure 22, has the basic
functionality for login, register and additionally some information about the SN
capabilities. If the user has an account on the SN, then he/she can log-in by typing
his/her username or email as well as password in the top right section. If the user is a
new visitor then he/she can register to the SN. The registration section is kept simple
by enabling the user to provide only the necessary details for the sign up process
(display name, email address, username and password). It must be highlighted that the
user can provide additional details in the profile settings pages which are analysed in
the following subsection. After the sign-up or log-in process, the user is redirected to
the models home page, which is analysed in the last section.

6.3 Profile Configuration

Figure 23 depicts the page of user general settings. The user can navigate to this page
either from the settings icon at the right of the top bar or from the profile page. In this
page the user can provide additional information as well as determine the privacy
level for each information provided.

In the right submenu the user can change the avatar photo on Avatar Settings section
or can change the password or other account details by navigating to the Account
Settings.

Figure 22: Log-in and Registration Page.

D9.3.1 – Initial Training Materials Page 49 of 59

6.4 User Profile

The user’s profile page is shown in Figure 24. In the top of the main page the user can
see his/her contributions, such as how many models, components, questions and
answers has contributed to the SN. Such contribution items are shown throughout all
the web site in order to incentive the user to provide feedback to the community. After
the contributions page part, the user can see his/her top contributions, nominated
according to the rating of other users. In the example page shown in Figure 24 the
user has asked three interesting questions. In the next section of the main page body,
the user can see his/her activity feed. Finally, in the sidebar section, the user can add
his/her skills (e.g., web application development) and areas of interest (e.g., servers).
When the mouse is over a tag in the skills or in areas of interest section, a remove
button appears to assist the user in deleting the desired entry/tag.

Figure 23: User General Settings

D9.3.1 – Initial Training Materials Page 50 of 59

Figure 24: User's profile page.

Figure 25 shows the user’s friends page which can be accessed by clicking the
Friends shortcut or the View All link at the bottom part of the side part of the profile
page. In this page the user can perform three actions :

• See his/her friends' profiles

• Send a message to a friend or

• Remove a particular friend from his/her friend list.
The actions Send and Remove appear when the user mouse is over a specific user.

6.5 Social Network Community

The SN Community delivers to the user the functionality provided below:

• Create, Join or Leave a group

• Ask a question or begin a topic

• Reply to a question or a topic and

• Associate models and components to a question or a reply.

D9.3.1 – Initial Training Materials Page 51 of 59

The home page of the community page is shown in Figure 26. In this page the user
can join the suggested groups, navigate through the discussion feed or find new
friends in the suggested connections section.

When a user finds and joins a group, then the outlook of the group is as the page in
Figure 27. Then, the member can do the followings actions:

• Ask questions,

• Reply to questions

• See the group members

• Invite her friends to join the group and

• See other popular groups.

Figure 25: User's Friends

Figure 26: Community Home Page

D9.3.1 – Initial Training Materials Page 52 of 59

Figure 27: A group's view

6.6 Models

All the applications live in the Models section of the SN. The home page of the
models is shown in Figure 28. In the top of the main window, the user can navigate
through recommended applications according to the tags that he/she has specified.

In the sidebar section, the user can perform the following actions:

• Search for a specific model

• Apply filters such as the deployment cloud, the cost, the response time, the
geography etc.

• Add a model to her cart

• Share a model to user’s activity feed or

• View more details about a model – full model view.

In full model view, which is the page of , the user can:

• Navigate through the past executions in Runs submenu (),

• See the components that the application is composed,

• See or add a review in Review submenu () and

• Find similar models.

D9.3.1 – Initial Training Materials Page 53 of 59

Figure 28: The home page of models.

D9.3.1 – Initial Training Materials Page 54 of 59

As mentioned above, in Figure 29 the user can see the past executions of an
application model. The user can sort the executions by time, response time,
throughput, cost, providers, or status and finally use the configuration of an execution.

Figure 29: Models: Past Executions Page Section.

Figure 30: Model's Review Page

D9.3.1 – Initial Training Materials Page 55 of 59

6.7 Components

As mentioned above, each application model is composed of one or more
components. In PaaSage's Social Network, the Chef Components have been
integrated from the Chef Repository to the SN's Elgg Database. The categories of
components are:

• Web Servers,
• Utilities,
• Programming Languages,
• Process Management,
• Package Management,
• Operating Systems,
• Networking,
• Monitoring and Trending
• Databases
• Other

Figure 31 shows the component categories of components. We can navigate there
through the Components link in the top-bar navigation menu. When the user selects a
category, he/she can see the list of components in this category as depicted in the page
of Figure 32.

Figure 31: The categories of Chef components

D9.3.1 – Initial Training Materials Page 56 of 59

Figure 32: The list of components shown for the Web Servers category

D9.3.1 – Initial Training Materials Page 57 of 59

7 Conclusion
This deliverable has provided training material and documentation which can be used
as a guide for various types of users in order to perform a variety of tasks, such as the
deployment and configuration of the PaaSage platform, the extension of its
functionality, the modelling of end-user requirements in Camel and the sharing and
exploitation of knowledge incarnated in the PaaSage's Social Network (SN).

While such a material constitutes an initial effort in guiding users how to exploit the
PaaSage platform, which is in line with the deployment status of the platform itself, it
is expected that the material will evolve as well as new material will be supplied in
the next version of this deliverable (D9.3.2 - M45). The existing material could be
enhanced as follows:

• It is expected that the PaaSage platform's deployment could be made even
more automated. In addition, it is envisaged that the configuration of the
platform will become richer even enabling the platform to be deployed in
multiple clouds, in accordance with the main objective of the whole project.
Thus, the respective documentation will be surely updated, explicating the
minimum steps to be performed for deploying the platform as well as the
various configuration points that will become available.

• As the PaaSage platform development evolves, existing components will be
modified as well as new ones will be developed. Thus, it is expected that in
the next version of this deliverable we will see an even more extensive and
richer description of even a bigger set of components of the PaaSage platform.

• Similarly to the previous point, the Executionware will be further developed,
thus expecting to include additional material pertaining to the modifications as
well as the extended functionality that will be exhibited by this PaaSage
module.

• Concerning the material in guiding users in expressing their requirements in
Camel, it is envisaged that it will be extended towards: (a) showing exactly all
the steps needed in order to specify all the requirements of the running
example and (b) explicating how the requirements of the various use-cases in
PaaSage are expressed in Camel. As Camel is an evolving language/meta-
model, we will surely see additional features of the language which will
enable to express an even more involved variety of user requirements and this
will be anticipated in the forthcoming version of this material.

• The user guide on the PaaSage's Social Network is expected to evolve in
providing particular SN exploitation scenarios which indicate how a user is
able to perform various simple or complicated tasks, such as registering
him/herself or browsing the execution history of existing applications to
discover and utilize respective optimal application deployment configurations
according to his/her requirements. It is also expected that initial usage
information (e.g., statistics) and user feedback from exploiting the SN could
be supplied, as soon as the SN launches and becomes available to the public,
for assessing whether some of the main goals of the SN are getting close to be
realized and providing additional incentives for the users to exploit it.

D9.3.1 – Initial Training Materials Page 58 of 59

The new material that we anticipate to foresee in the next and final version of this
deliverable is the following:

• Detailed documentation concerning deployment and configuration of not only
one but all modules of PaaSage (i.e., MDDB and Upperware).

• Successful use-case stories which include the description of the respective
requirements in Camel down to full exploitation of the PaaSage platform in
order to achieve the main use-case goals related to multi-cloud application
management, such as the optimal deployment of the respective application or
the runtime application adaptation based on particular scalability rules.

• Material and user guides for exploiting Camel not only in terms of expressing
user requirements but also other types of information, e.g., related to the
runtime management of an application, such as the specification of
measurement information or the adaptation history of an application. These
other types of information will also complement the documentation of the
PaaSage components as it will provide useful insight of not only the
functionality of a component but also of the way it is expected to manage the
respective models or information manipulated by it.

• More visual-based material, such as videos, which will complement the
respective description in the supplied user guides, documentations and training
materials.

In the end, the final deliverable version will be a collection of structured and both
textual and visual material which will enable users to better exploit and utilize the
PaaSage platform in many different directions but always according to their
requirements and goals. Such a material will also highlight in the best possible way
the main benefits of the PaaSage platform and its main differentiation points with
respect to the other related commercial or research offerings, thus constituting one
extended advertisement point which will eventually cater for a better and more
involved exploitation of the platform.

Bibliography
[CloudML] Nicolas Ferry, Franck Chauvel, Alessandro Rossini, Brice Morin and
Arnor Solberg. “Managing multi-cloud systems with CloudMF”. In: NordiCloud
2013: 2nd Nordic Symposium on Cloud Computing and Internet Technologies. Ed. by
Arnor Solberg, Muhammad Ali Babar, Marlon Dumas and Carlos E. Cuesta. ACM,
2013, pp. 38–45. ISBN: 978-1-4503-2307-9. DOI: 10.1145/2513534.2513542.

[D1.6.1] The PaaSage Consortium. D1.6.1—Initial Architecture Design. PaaSage

project deliverable. Oct. 2013. Available at:
http://www.paasage.eu/images/documents/paasage_d161_final.pdf

[D2.1.1] Alessandro Rossini, Arnor Solberg, Daniel Romero, Jörg Domaschka,
Kostas Magoutis, Nicolas Ferry, Tom Kirkham, Maciej Malawski, Bartosz Balis,
Dariusz Krol, Achilleas Achilleos, CloudML Guide and Assessment Report
(Extended). PaaSage Deliverable D2.1.1e, November 2013. Available at:
http://www.paasage.eu/images/documents/paasage_d211_final.pdf

D9.3.1 – Initial Training Materials Page 59 of 59

[D2.1.2] Alessandro Rossini, Nikolay Nikolov, Daniel Romero, Jörg Domaschka,
Kyriakos Kritikos, Tom Kirkham, Arnor Solberg, CloudML Implementation
Documentation. PaaSage Deliverable D2.1.2, March 2014. Available at:
http://www.paasage.eu/images/documents/paasage_d2.1.2_final.pdf

[D3.1.1] Amin Bsila, Nicolas Ferry, Kamil Figiela, Geir Horn,Tom Kirkham, Maciej
Malawski, Nikos Parlavantzas, Christian Perez, Jonathan Rouzaud-Cornabas, Daniel
Romero, Alessandro Rossini, Arnor Solberg, Hui Song, Upperware Prototype.
PaaSage Deliverable D3.1.1, March 2014. Available at:
http://www.paasage.eu/images/documents/paasage_d3.1.1_full.pdf

[D4.1.1] Kyriakos Kritikos, Maria Korozi, Bartosz Kryza, Tom Kirkham, Asterios
Leonidis, Kostas Magoutis, Philippe Massonet, Stavroula Ntoa, Antonis Papaioannou,
Christos Papoulas, Craig Sheridan, Chrysostomos Zeginis, Prototype Metadata
Database and Social Network / Prototype of Metadata Integration Extension. PaaSage
Deliverable D4.1.1, March 2014. Available at:
http://www.paasage.eu/images/documents/PaaSage-D4.1.1_final.pdf

[D5.1.1] Anthony Sulistio, Panagiotis Garefalakis, Damianos Metalidis,
Chrysostomos Zeginis, Craig Sheridan, Kuan Lu, Jörg Domaschka, Bartosz Balis,
Dariusz Król, Edwin Yaqub, Prototype Executionware and Prototype new Execution
Engines. PaaSage Deliverable D5.1.1, March 2014. Available at:
http://www.paasage.eu/images/documents/PaaSage_D5_1_1_final.pdf

