
1

PaaSage

Model Based Cloud Platform Upperware

Deliverable D8.2.1

Open Source Prototype System

Version: 1.0

2

Project Deliverable
Name, title and organisation of the scientific representative of the project's coordinator:

Philippe Rohou, European Project Coordinator, ERCIM, +33 4 97 15 53 06, +33 6 28 47 40 72

Project website address: http://www.paasage.eu

Project

Grant Agreement number 317715

Project acronym: PaaSage

Project title: Model Based Cloud Platform Upperware

Funding Scheme: Integrated Project

Date of latest version of Annex I against which the

assessment will be made:

10 April 2014

Document

Period covered: Period II

Deliverable number: D8.2.1

Deliverable title Open Source Prototype System

Contractual Date of Delivery: 30 September 2014

Actual Date of Delivery: 7 October 2014

Editor (s): Geir Horn

Author (s): Daniel Baur, Amin Bsila, Kamil Figiela, Geir Horn, Tom

Kirkham, Kyriakos Kritikos, Nikos Parlavantzas, Daniel

Romero, Alessandro Rossini, Anthony Sulistio, Robert

Viseur

Reviewer (s): Pierre Guisset

Participant(s):

Work package no.: WP8

Work package title: Exploitation

Work package leader: Stéphane Waha

Distribution: Public

Version/Revision: 1.0

Draft/Final: Final

Total number of pages (including cover): 29

http://www.paasage.eu/

3

DISCLAIMER

This document contains description of the PaaSage project work and findings.

The authors of this document have taken any available measure in order for its content to be
accurate, consistent and lawful. However, neither the project consortium as a whole nor the
individual partners that implicitly or explicitly participated in the creation and publication of this
document hold any responsibility for actions that might occur as a result of using its content.

This publication has been produced with the assistance of the European Union. The content of this
publication is the sole responsibility of the PaaSage consortium and can in no way be taken to reflect
the views of the European Union.

The European Union is established in accordance with the
Treaty on European Union (Maastricht). There are currently
28 Member States of the Union. It is based on the European
Communities and the member states cooperation in the
fields of Common Foreign and Security Policy and Justice
and Home Affairs. The five main institutions of the
European Union are the European Parliament, the Council
of Ministers, the European Commission, the Court of Justice
and the Court of Auditors. (http://europa.eu)

PaaSage is a project funded in part by the European Union.

http://europa.eu/

Contents

1 Architecture 5

2 Scope of Prototype 8
2.1 Introduction . 8
2.2 Components . 10

3 Installation 24

4 Use of the prototype 25

5 Licence and conditions 25
5.1 The PAASAGE platform license . 25
5.2 Governance . 27

6 Conclusion 28

Executive Summary

This document is a introduction to the PAASAGE software platform and the various components developed
for the first PAASAGE prototype. It presents the overall objectives of the software and the global architecture,
before presenting the minimal work flow implemented for the first prototype. It is not a complete guide to the
PAASAGE software, because the real deliverable documented by this brief guide is a prototype, i.e. it is the
software itself that is the deliverable.

Intended Audience

This document is written for an application developer who wants to download and test the PAASAGE software
for cloud deployment. It aims at providing the necessary overview to understand PAASAGE and its objectives,
and the context of the developed prototype, without any knowledge required of other PAASAGE deliverables.
However, the extensive background necessary to fully understand the components and the implementation is
found in the related and referenced PAASAGE deliverables.

Structure of the document

A summary of the PAASAGE’s software architecture is given first, before the scope of the first prototype is
presented together with the implemented components. Then there is a section describing how to install the
PAASAGE virtual machine and the dependencies, and how to run PAASAGE on an application model.

4

1 Architecture

The PAASAGE perspective is to be a tool for an application developer to master the complex and often error
prone task of deploying an application to the Cloud. The application developer could learn the interface and
features of one Cloud provider, but it will be very costly to master the development to many providers. It is a
real challenge to orchestrate the simultaneous deployment to many different Clouds at the same time as would
be the case if some parts of the application can only run on private Cloud resources for confidentiality reasons
while one would like to use public Cloud providers for application scalability. The main objective of PAASAGE

is to assist the developer with difficult deployment scenarios through autonomic cloud deployment. Figure 1
shows a very high level view of PAASAGE and the scope covered by the project.

Application Software

Deployment
model

Automatic model
transformations

Model

Commercial Clouds

Deployed
application

Pa
aS

ag
e

CAMEL

Figure 1: The scope of PAASAGE is to extend the application model with platform annotations and user’s goals
and preference to a Cloud Application Modelling and Execution Language (CAMEL) model, which is then
transformed by PAASAGE to a deployed application in one or more Clouds. Proprietary elements that stays
proprietary throughout the use of the open source PAASAGE platform are indicated in red.

To support the developer, PAASAGE needs not only a model of the application to be deployed, but models
of the features of the available Cloud platforms, and goals and preferences to be satisfied by the deployment
like response times or deployment cost budgets. These different models are specified in domain specific lan-
guages (DSLs) commonly referred to as the CAMEL model. CAMEL integrates the various DSLs using the
Eclipse Modelling Framework1 (EMF) on top of the Connected Data Objects2 (CDO) persistence solution to
maintain model information between different application deployments. The CDO repository is referred to
as the metadata database, and the intention is that different PAASAGE users will be able to form a “social
network” and exchange models, e.g. one user has developed a parametrised model for a particular Cloud pro-
vider which can be shared with the other users of the PAASAGE and immediately allows all PAASAGE users
to deploy to this Cloud provider. Please refer to the PAASAGE Deliverable D2.1.2 CloudML Implementation
Documentation (First version) [1] for further details on the modelling concepts, and Deliverable D4.1.1 &
D4.1.3 Prototype Metadata Database and Social Network and Integration Extension [2] for information on the
metadata database.

The application’s CAMEL model is first transformed by what is referred to as the upper ware. The main
purpose of this set of components is to derive a specific deployment configuration satisfying all the constraints
and goals for the deployment set by the user in the CAMEL model. This implies selecting one or more Cloud
providers and generating the necessary deployment scripts. These scripts are then passed to the PAASAGE

execution ware responsible for instantiating the different parts of the application on the selected Cloud providers
1http://www.eclipse.org/modeling/emf/
2http://www.eclipse.org/cdo/

5

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/cdo/

and monitor a set of defined metrics in order to make autonomous scalability decisions within the boundaries
of the deployment configuration. If the application execution triggers conditions that cannot be satisfied by the
current deployment configuration, the execution ware will pass control back to the upper ware to find a better
configuration for the current application context. The monitored metrics will subsequently be consolidated as
statistical knowledge in the metadata database to guide the decisions on future deployment configurations.

Legacy application

CAMEL Model

New application

P
aa

Sa
ge

In
te

gr
at

ed
 D

ev
e

lo
p

m
en

t
En

vi
ro

n
m

e
n

t

Speculative
profiler

Speculative
profiler

Intelligent
reasoner

Extra functional
adaption

Design time
optimisation loop

M
etad

ata

Community
expertise

Platform specific
mapping

Execution
monitoring

Execution
control

Execution environments

Metadata sharing

Metadata collection
Execution
optimisation loop

• CloudML artefact model
• Saloon platform models
• WS Agreement goals and preferences

Figure 2: The overall PAASAGE architecture and workflow. Yellow parts are concerned with modelling, blue
parts are the upper ware, orange parts are the persistent metadata structure, green parts are the execution ware.

This feedback loop controlling the application deployment is depicted in Figure 2 showing the PAASAGE

work flow and the different logical parts of the upper ware and the execution ware. The upper ware consists
of a profiler whose task is to combine information from the different CAMEL DSLs and produce a consistent
model based profile of the deployment scenarios. This model is passed on to the reasoner part that finds a
deployment configuration that satisfies all constraints and optimises3 the goals set for the deployment by the
developer. The adapter produces the Cloud platform specific deployment scripts. It also maintains a casual
connection between the running application and the model, and reacts to context changes by issuing commands
to keep the deployment within the current deployment configuration found by the reasoner. The execution
ware has one part taking care of the actual mapping of the deployment configuration onto the Cloud platforms
chosen by the reasoner. This includes setting up the necessary resources and installing both the monitoring
infrastructure and the application components. The execution is then monitored and based on the observed
values, the execution control will then make autonomous scalability decisions within the boundary conditions
given by the deployment configuration, or pass control back to the upper ware to produce a new deployment
configuration that better suits the current execution context.

Several components have been identified in order to implement the upper ware in a flexible way. The
architecture of the upper ware is shown in Figure 3, and the different components are described in PAASAGE

Deliverable D3.1.1 Prototype Upperware Report [3]. Similarly, the architecture of the execution ware is shown
in Figure 4, and the detailed description of these components can be found in PAASAGE Deliverable D5.1.1
& D5.3.1 Prototype Executionware, Prototype New Execution Engines [4] It should be noted that realising the
complete architecture is work in progress, and that a subset of these components have been implemented to
produce the first prototype, as described in the next section.

3Note that PAASAGE will iteratively optimise the found solutions, so the “optimal” solution is here to be understood as the best
solution found so far.

6

s

32 32 32

CP Generator
Model-to-Solver

Meta
Solver

Utility function
Generator

Solution
Evaluator

LA based
allocator

CP Solver Heuristics

Deployment
Specification

Target
Configuration

(CPSM, elasticity
rules)

Metadata
database

Solver-to-
deployment

IDE

ConP
Description

Provisioning
Model
(CPIM)

Architecture
Platform
Model

Application & Resource Model

Rule
Processor

ConP
Description

Plan
Generator

Adaptation
Manager

ExecutionWare

Application
Controller

Rules

Actions

Monitoring info

Reconfiguration
actions

Current
Configuration

c

SLA, Goals
Elasticity Rules

…

Metadata
database

Simulator
Wrapper

Cloud
simulator

Cloud
Simulator

Metadata
database

Figure 3: The full architecture of the PAASAGE upper ware with links to the other parts of the PAASAGE work
flow.

Metadata
database

Interceptor/
Wrapper

cloud
system

Deployer
Deployer

Module
Instance

Interpreter
deployer instantiate

Execution
Engine

API
calls

per cloud/ module
configuration

Adaptation
Manager

pull
data

cloud
specific
calls

Application
Controller

Reasoner
additional

rules

status
information

status
information

Target Configuration
(CPSM, elasticity rules)

dispatcher

User/other
module

access

Monitor

Figure 4: The full architecture of the PAASAGE execution ware with links to the other parts of the PAASAGE

work flow.

7

2 Scope of Prototype

2.1 Introduction

The prototype consists of the components that are strictly necessary to realise the autonomic deployment flow,
and even for these components some have reduced functionality. The reason for this is that the focus in the
first year of PAASAGE was on defining an architecture for the autonomic deployment system, followed in the
second year by the definition of the interfaces and the testing of component integration and their capability to
manipulate the involved CAMEL DSLs. The focus has been to establish the PAASAGE platform, and ensure that
the use case partners of PAASAGE can start developing and modelling their PAASAGE managed applications.

The components of the prototype release are shown in Figure 5. The components are integrated around the
CDO server, which is considered to be fully functional in this release. Even though it can be expanded, the
main task is an integration with the monitoring sub-system.

R
ea

so
n

er

CAMEL editor
Alessandro Rossini

CP generator
Daniel Romero

Rule Prosessor
Anthony Sulistio

Metasolver
Tom Kirkham

MILP Solver
Kamil Figiela

LA Solver
Geir Horn

Solver to Deployment
Amin Bsila

Adaptation Manager
Nikos Parlavantzas

Executionware Frontend
Daniel Baur

Execution Engine
Daniel Baur

Monitoring Infrastructure
Daniel Baur

CDO Server
Kyriakos Kritikos

P
ro

fi
le

r

Execution ware

Figure 5: The components of the PAASAGE open source prototype, and their interaction through the CDO
server storing the original CAMEL model and all the modifications done to this model by the upperware com-
ponents. The indicated persons are the lead developers of each component responsible for the component’s
open source sub-project.

The profiler part is supported by the CP Generator and the Rule Processor. The first component reads the
CAMEL model and converts it into a constraint programming model by defining the variables of the model,
their domains, and the constraints that must be satisfied by the deployment. The Rule Processor checks all
constraints of the CAMEL model and sets the domains of the variables accordingly. It also removes redundant
variables and constraints from the model, e.g. if the model defines that only virtual machines of a given size
should be used, only providers offering such virtual machines can be selected and all other providers must be
removed from the domain for the ’provider’ variable.

The reasoning engine is supported by four components in this release: The Meta Solver, the MILP Solver,
the LA Solver, and the Solver to Deployment. The Meta Solver analyses the model and selects the solver most

8

suited for the problem. If the problem is linear in its constraints and utility function, the MILP Solver will be
used, otherwise the LA Solver will be used. The two solvers are therefore interchangeable but with different
characteristics. In the future it is envisioned that PAASAGE can support other solvers in addition to these two.
It could also happen that the Meta Solver will be able to decouple the problem into a linear and a non-linear
part, and use the solvers in parallel. The ’utility function’ can be any way of evaluating a candidate deployment,
for instance a Cloud simulator or even a real world test deployment, as indicated in Figure 3. The Meta Solver
consequently informs the solvers how deployment candidates should be evaluated. Once a solution has been
found, the Solver to Deployment component converts the solver output to Cloud Provider Specific Models
(CPSM) for the providers involved in the proposed deployment.

The adapter part is currently supported only by the Adaptation Manager component. It takes the CPSMs,
produces and validates a configuration plan, and sends this plan to the execution ware.

The execution ware is supported by three components in this release: The Front End, the Engine, and
the Monitoring Infrastructure. The Front End receives the deployment plan from the adapter and enacts the
deployment of the application on the selected providers. The control is then passed to the Engine that interacts
with the Cloud providers, acquires the virtual machines, configures them and launches the user application
on the set of virtual machines. Once the machines are running, the Monitoring Infrastructure takes over and
collects sensor data for the running application, triggering re-configurations if necessary.

9

2.2 Components

CAMEL Editor
The CAMEL Editor allows specifying CAMEL models, which encompass provisioning and deployment tem-
plates, requirements and constraints, service-level objectives, scalability rules, and other information required
to execute multi-cloud applications, as well as profiles of organisations and cloud providers that will host these
multi-cloud applications.
The current implementation of the CAMEL Editor is based on the Eclipse4 platform and provides a tree-based
editor to specify CAMEL models, which are either serialised in XMI format or persisted into the Metadata
Database through the CDO Server interface. The tree-based editor can be executed on any desktop operating
system supported by Eclipse and the Java Virtual Machine, i.e., Windows, Mac OS X, and GNU/Linux. Both
an installation tutorial5 for the CAMEL Editor and the technical documentation6 for CAMEL are available.
Note that the current implementation is generated automatically from the CAMEL metamodel by the Eclipse
Modelling Framework7 (EMF). As such, the current implementation relies on existing source code from the
Eclipse project and no additional source code besides the one in the CAMEL metamodel has been developed
for this component.
Input parameters
No input parameter is consumed by the component. However, the user of the CAMEL Editor has to specify
the configuration of the CDO Server when installing.
Output parameters
No output parameter is produced by the component. However, the resulting CAMEL model can either be
serialised in XMI or persisted into the Metadata Database.
External dependencies
Library Description License Availability
EMF Eclipse Modelling Framework EPL 1.0 www.eclipse.org

Known limitations
This component currently only supports the abstract syntax of CAMEL . Support for a concrete syntax of
CAMEL, either in the form of a text-based or graphical syntax, will be added at a later stage in the project.

4http://www.eclipse.org
5git.cetic.be/paasage/camel/raw/master/documents/CAMELTreeBasedEditorInstallation.pdf
6git.cetic.be/paasage/camel/raw/master/documents/CAMELTechnicalDocumentation.pdf
7http://www.eclipse.org/modeling/emf/

10

www.eclipse.org
http://www.eclipse.org
 git.cetic.be/paasage/camel/raw/master/documents/CAMELTreeBasedEditorInstallation .pdf
git.cetic.be/paasage/camel/raw/master/documents/ CAMELTechnicalDocumentation.pdf
http://www.eclipse.org/modeling/emf/

CP Generator Model-To-Solver
The CP-Generator Model-To-Solver component produces a CP Model and a PaaSage Application
Model from a CAMEL Model. The CP Model represents the selection of Cloud Providers for an application
as a constraint problem, i.e., as a set of variables and constraints. The PaaSage Application Model defines
relationships between concepts in the CAMEL Model and the CP Model. Furthermore, the CP-Generator
Model-To-Solver preselects Cloud provider candidates according to resources required by an application
and described in the CAMEL Model. The component is defined in a maven project. This means that de-
pendencies retrieval, compilation execution and generation of an executable Jar file is done through maven
plugins.
Input parameters
ModelId A string that represents the identifier in CDO Server of a CAMEL Model related to the applic-

ation being deployed.
OutputPath A string that represents an absolute file system path where a file containing the GenModeId

will be created.
Output parameters
GenModels A list containing the PaaSage Application (0) and CP (1) Models. The list is stored in CDO

Server.
GenModelsId A string representing the identifier of GenModels. The string is stored in the file system using

OutputPath as target.
External dependencies
Library Description License Availability
Saloon PaaS-
age 1.0

Library for searching valid configura-
tions in Provider Models

MPL2.0 http://saloon.gforge.
inria.fr/repositories/
releases/

log4j 1.2.17 Logging library for Java Apache
License 2.0

http://logging.apache.org/
log4j/1.2/

JUnit 4.8.2 Framework to write repeatable tests EPL 1.0 http://junit.org/

Commons io
1.4

Library of utilities to assist with devel-
oping IO functionality.

Apache
License 2.0

http://commons.apache.org/
proper/commons-io/

Known limitations
The current version process the CAMEL Model part related to Provider Models and Deployment.

11

http://saloon.gforge.inria.fr/repositories/releases/
http://saloon.gforge.inria.fr/repositories/releases/
http://saloon.gforge.inria.fr/repositories/releases/
http://logging.apache.org/log4j/1.2/
http://logging.apache.org/log4j/1.2/
http://junit.org/
http://commons.apache.org/proper/commons-io/
http://commons.apache.org/proper/commons-io/

CDO Server
CDO is a persistence and distribution framework for EMF-based applications which provides both client and
server functionality for the storage, updating and retrieval of models. CDO exhibits various interesting features,
such as multi-user or transactional access, parallel evolution, scalability, collaboration, data-integrity and fault-
tolerance. To this end, CDO technology was chosen for realizing the Metadata DataBase (MDDB) module of
the PaaSage platform.
Based on the above decision, a component encapsulating the functionality of a CDO server has been realized
which provides a model repository, backed-up by an underlying database, which is responsible for the storage
of models specified in any meta-model of EMF Ecore as well as their querying and retrieval in the form of a
java domain object.
Various types of model repositories are supported by a CDO server but the most important ones are the DBStore
and HibernateStore. Both types of stores can connect to a variety of databases but they support different
querying languages. A DBStore supports SQL while a HibernateStore supports HQL. Both types of stores
enforce a particular default mapping from the meta-models for which models need to be stored to the respective
database schema. However, this behavior can be modified. In a DBStore, EAnnotations can be used on
meta-model elements to explicate the way these elements will be mapped. In a HibernateStore, mappings
described through JPA annotations as well as some Hibernate-based extensions can be enforced. Apart from
this difference, DBStore supports additional CDO features than a HibernateStore, such as the proper support
of branches.
This CDO-server component can be exploited in two possible ways:

1. via the graphical environment of Eclipse where a CDO Session can be opened and then support either
CDO transactions or views. CDO transactions are more appropriate for the storage and updating of
models, while CDO views are more appropriate for querying the models stored in the CDO server.

2. programmatically via the CDO Client, a component which has been developed in order to interact with
the CDO Server to be used in the code of the PaaSage component developers. This component provides
an interface through which CDO transactions or views can be opened and closed, models can be queried
with one or more languages (depending also on the type of the store realized by the CDO server), models
can be stored and models or objects can be deleted. A detailed documentation of this component is
available in the PAASAGE repository8

To be continued...

8git.cetic.be/paasage/cdo_client/raw/master/documents/CDOClientDocumentation.pdf

12

 git.cetic.be/paasage/cdo_client/raw/master/documents/CDOClientDocumentation.pdf

...CDO Server
This component can be configured in many ways which include the configuration of the underlying database,
the port on which to listen for incoming connections by clients, the name of the respective repository and
its type. All this information can be configured via a .properties file whose structure and content is quite
comprehensive. The properties that can be configured are the following:

• dbtype - The type of the database. Until now, HSQLDB and MySQL are supported as the underlying
databases.

• dburl - The URL through which the server can connect to the underlying database

• username - The username for establishing the connection to the database

• password - The password for establishing the connection to the database

• repository - The name of the repository to be created

• storetype - The type of the repository to be created. CDO supports various stores but for now only
the DBStore (enabling posing SQL queries in various types of databases) and HibernateStore (enabling
posing HQL queries to a variety of databases) are supported.

• port - The number of port to which the server listens for incoming connections by clients.

Input parameters
No input parameter is needed for the component to function. The information necessary is obtained from a
.properties file.
Output parameters
As this is a server, no output parameters are produced. Actually, the models stored are entered into databases,
so the server updates these databases and the corresponding db files.
External dependencies
Library Description License Availability
Eclipse Various Modules of the Eclipse Frame-

work
Eclipse Pub-
lic Licence
(EPL)

www.eclipse.org

Javax Java libraries for annotation and injec-
tion

BCL www.java.com

DOM4j Java Library for working with XML,
XSLT and XPath with full support for
DOM, SAX and JAXP

BSD http://dom4j.sourceforge.
net

Hibernate Hibernate Java Database LGPL 2.1 or
ASL 2.0

hibernate.org

MySQL MySQL Database GPL www.mysql.com

Known limitations
This component can be fully used.

13

www.eclipse.org
www.java.com
http://dom4j.sourceforge.net
http://dom4j.sourceforge.net
hibernate.org
www.mysql.com

Rule Processor
The Rule Processor receives a list of potential Cloud providers provided by the Profiler based on requirements
specified by the application designer via the IDE. The Rule Processor checks these providers against imple-
mentation specific rules in the Metadata Database (MDDB). These rules are the base rules of the system and
are expressed in terms of performance and data processing constraints associated with the specific instance of
the PaaSage platform.
The Rule Processor verifies that the list of possible deployments or cloud providers satisfy all the given con-
straints from the data in the MDDB. Deployments formed by the Rule Processor take into account the con-
straints and details of the implementation in the MDDB. For example, the Rule Processor could have a require-
ment that data is processed in a specific territory. The MDDB could contain SLA specific data from associated
service providers that fulfil this rule, and thus it is added to the list of deployments. If during this phase the
Rule Processor encounters a requirement that can not be fulfilled by the PaaSage instance, the Rule Processor
returns to a error message containing this detail to be fed back to the application designer.
Input parameters
ModelId A string that represents the identifier in CDO Server of the generated CP model.
Output parameters
Error mes-
sage

If a requirement that can not be fulfilled.

External dependencies
Library Description License Availability
WSAG4J
Client 2.0.0

WS-Agreement for Java framework BSD license http://wsag4j.sourceforge.
net/site/index.html

log4j 1.2.17 Logging library for Java Apache
License 2.0

http://logging.apache.org/
log4j/1.2/

JUnit 4.8.2 Framework to write repeatable tests EPL 1.0 http://junit.org/

Known limitations
Currently, it prints to stdout the information related to the model stored in the CDO server.

14

http://wsag4j.sourceforge.net/site/index.html
http://wsag4j.sourceforge.net/site/index.html
http://logging.apache.org/log4j/1.2/
http://logging.apache.org/log4j/1.2/
http://junit.org/

Meta Solver
The MetaSolver Component acts as a gateway / decision point before the process of Solving. Taking the CDO
model as refined by the Rule Processor the MetaSolver evaluates the model to determine if the model presents
a linear or non linear problem. This process is assited by the use of role in the PaaSage architecture by CPML.
If the problem is non linear Solvers are invoked for non linear problems by the metasolver and if the problem
is linear the same process is done for linear solvers.
The Solvers currently used are the LA Solver and MILP Solver. It is expected as the project progresses that
more Solvers will be added and the MetaSolver will select one or more Solvers per problem. The Meta Solver
could also break the problem up and send sub-problems to different solvers. However in its current state the
Solver invokes either one of the two solvers with a specific set of shell commands relevant to the appropriate
solver. Errors generated by the MetaSolver are written in a Java log.
Input parameters
Parameter 1 The location of the CDO Server.
Parameter 2 The name of the CDO Model to be used, these are input as Java arguments.
Output parameters
Parameter 1 Choice of Solver and message indicating the result of the invocation i.e. pass / fail
Parameter 2 It is expected that the Solvers will generate new output and write directly to the CDO server.
External dependencies
Library Description License Availability
Library 1 Numerical library MIT www.numlib.org

Library 2 XML LGPL2.0 www.openXML.org

Library 3 COIN Mathematical Processing Library GPL3.0 https://projects.coin-or.
org/Cmpl

Known limitations
The component uses CPML to assess if the problem is linear, if not we assume it is non linear rather than
having a separate check for this. The MetaSolver is limited to the use of the two solvers of this prototype.

15

www.numlib.org
www.openXML.org
https://projects.coin-or.org/Cmpl
https://projects.coin-or.org/Cmpl

Mixed Integer Linear Program solver
The MILP solver receives the definition of a constraint problem from the CDO server. The model is then
translated to the mathematical notation in CMPL. The challenge is not only to translate the model, but also to
convert the mathematical expressions into equivalent and valid formats. The CMPL mathematical modelling
system is then used to solve the problem using an open source solver, such as Cbc. The optimal values found
by CMPL are saved back to CDO.
Input parameters
Model A string that represents the identifier in CDO Server of the model that is subject to be optim-

ised.
Output parameters
CP solution Values of variables in the model stored in CDO are updated.
Text Debug output from CMPL and solver.
External dependencies
Library Description License Availability
CMPL Coliop/Coin Mathematical Program-

ming Language
GPLv3 http://www.coliop.org

jCMPL Coliop/Coin Mathematical Program-
ming Language

LGPLv3 http://www.coliop.org

Scala Scala standard library BSD-style http://www.scala-lang.org

Typesafe
Scala Log-
ging

Logging library Apache 2.0 http://github.com/
typesafehub/scala-logging

Typesafe
Config

Configuration management Apache 2.0 http://github.com/
typesafehub/config

Logback
Classic

Logging backend Dual: EPL
1.0 and
LGPL 2.1

http://logback.qos.ch

Known limitations
Only linear problems are supported.

16

http://www.coliop.org
http://www.coliop.org
http://www.scala-lang.org
http://github.com/typesafehub/scala-logging
http://github.com/typesafehub/scala-logging
http://github.com/typesafehub/config
http://github.com/typesafehub/config
http://logback.qos.ch

Learning Automata based solver
The Learning Automata (LA) based solver searches for a solution to the constraint deployment problem using
Learning Automata to learn the best values of the discrete variables in the model and a non-linear solver to
solve for the continuous variables conditioned on the discrete variables. The background and algorithm can be
found in PAASAGE deliverable D3.1.1.
Each discrete variable is assigned a learning automaton. Without any a priori knowledge about the value of
a discrete variable, any assigned value from the variable domain can be as good as every other value, and
the learning automation initiates the search with a uniform probability vector over all possible values in the
variable’s domain. If there is knowledge in the metadata database indicating that some values in the domain
may work better than others, then this initialisation will be non-uniform with the value probabilities reflecting
the relative goodness of the values in the variable’s domain. This will start the search making it more likely to
choose previously good assignments for a variable.
The LA will then interact iteratively in a game where each play involves every automaton assigning a value for
its discrete variable according to its probability distribution over the variable’s domain, and then the value of the
utility function is assessed after solving for the continuous variables. The objective is to learn the assignments
that maximises the utility in the long run. The problem is stochastic because the utility function can be based
on measured values that may change over time, e.g. the cost of a virtual machine with a Cloud provider. Thus,
evaluating the utility twice for the same assignment of variables, may give two different utility values.
The benefit of this approach is that the solver can keep on running, always returning the best known solution
as soon as a solution better than the current is found. The solver will receive updated metric values from the
execution ware, and immediately take them into consideration in the next play of the assignment game. The
found solution will therefore be adaptive to the current execution context of the application, and application
deployment can take place with an initial solution and then be adapted by the adapter component as better
deployment configurations become available.
The CAMEL model of the application is converted into a set of variables, their domains and initial values
are retrieved from the CDO server, if such values are available. The constraints are also taken from the CDO
model. The variables, the constraints, and the utility function is then compiled and linked with the solver. This
implies that there is one solver for each model, and if the model changes, the currently running solver must be
stopped and recreated for the possibly new variables, constraints, and utility function. This process is described
in deliverable D3.1.1.
Input parameters
IP address A textual IP address for the Metrics Collector that receives the measurements from the run-

ning application and updates the metric values in the metadata database. It also publishes the
measured values to any solver subscribing to these updates.

ModelId A string that represents the identifier in CDO Server of a Camel Model related to the applica-
tion being deployed.

Output parameters
None The solver will write back to the CDO server the assigned variable values and the correspond-

ing utility as soon as a feasible solution satisfying all constraints is found.
External dependencies
Library Description License Availability
NLopt Open-source library for non-linear op-

timisation, providing a common inter-
face for a number of different free op-
timization routines available online as
well as original implementations of vari-
ous other algorithms. Provided as a
standard package for most Linux distri-
butions

LGPL http://ab-initio.mit.edu/
wiki/index.php/NLopt

To be continued...

17

http://ab-initio.mit.edu/wiki/index.php/NLopt
http://ab-initio.mit.edu/wiki/index.php/NLopt

...Learning Automata based solver
Theron A lightweight C++ concurrency library

based on the Actor Model
MIT http://www.theron-library.

com/

ZeroMQ A message queue library providing
sockets that carry atomic messages
across various transports like in-process,
inter-process, TCP, and multicast. Ver-
sion 3 or higher is required and this
is provided as a standard package with
most Linux distributions

LGPv3 http://zeromq.org/

zmqpp C++ binding for ZeroMQ as a ’high-
level’ library that hides most of the
C-style interface the core ZeroMQ
provides. Must be cloned from the Git
repository

MIT https://github.com/zeromq/
zmqpp

Known limitations
The source code is released as part of the prototype and the interface has been tested to ensure that the solver
is correctly built for a given model. However, the metric collector part is not implemented as a part of this
prototype, and the solver has therefore not been tested as part of this release.
The utility function must currently be created manually, and it is a topic for the research in the next years
of PAASAGE how a good utility function can be derived automatically from the information in the CAMEL
model.

18

http://www.theron-library.com/
http://www.theron-library.com/
http://zeromq.org/
https://github.com/zeromq/zmqpp
https://github.com/zeromq/zmqpp

Solver to deployment
Solver-to-deployer is a glue layer between the Reasoner and the Adapter. It participates to lowering the
dependencies of solvers to the remaining of PAASAGE. Upper ware metamodels aim at enabling interactions
between the Profiler and the Reasoner while lowering dependencies to CAMEL. Solvers produce solutions
using these upper ware metamodels. The main objective of the Solver-to-deployment component is to
translate the output of the Solvers into the Deployment Model CPSM.
Input parameters
SolutionModelIdA string that represents the identifier in CDO Server of a Camel Model related to the solution

being deployed.
OutputPath A string that represents an absolute file system path where a file containing the deployable

model will be created.
Output parameters
GenModels The CloudML model of the deployable solution.
External dependencies
Library Description License Availability
log4j 1.2.17 Logging library for Java Apache

License 2.0
http://logging.apache.org/
log4j/1.2/

Commons io
1.4

Library of utilities to assist with devel-
oping IO functionality.

Apache
License 2.0

http://commons.apache.org/
proper/commons-io/

Known limitations
The current version generates a CloudML deployable model.

19

http://logging.apache.org/log4j/1.2/
http://logging.apache.org/log4j/1.2/
http://commons.apache.org/proper/commons-io/
http://commons.apache.org/proper/commons-io/

Adaptation manager
The purpose of the Adaptation Manager is to transform the currently running application configuration
into a target configuration in an efficient and safe way. The component operates as follows: (1) it loads the
target deployment model from the CDO server, (2) it produces and validates a reconfiguration plan, and (3) it
executes the reconfiguration plan through interacting with the execution ware. Interactions with the execution
ware are based on a REST API.
Input parameters
ModelId A string that represents the identifier in the CDO Server of the Camel Model representing the

target deployment.
URL The URL of the Executionware Frontend
Output parameters
REST-
Interface

Uses the REST Interface to interact with Executionware

External dependencies
Library Description License Availability
log4j 1.2.17 Logging library for Java Apache

License 2.0
http://logging.apache.org/
log4j/1.2/

minimal-json
0.9.1

JSON parser and writer for Java Apache
License 2.0

https://github.com/
ralfstx/minimal-json

Http Com-
ponents
4.3.3

Tools for HTTP and associated proto-
cols

Apache
License 2.0

http://hc.apache.org/

JUnit 4.11 Framework to write repeatable tests EPL 1.0 http://junit.org/

Commons
CLI 1.2

Parsing command line options Apache
License 2.0

commons.apache.org/cli/

Known limitations
The component currently performs initial application deployment, rather than dynamic reconfiguration.
Moreover, there is currently no plan validation.

20

http://logging.apache.org/log4j/1.2/
http://logging.apache.org/log4j/1.2/
https://github.com/ralfstx/minimal-json
https://github.com/ralfstx/minimal-json
http://hc.apache.org/
http://junit.org/
commons.apache.org/cli/

Executionware Frontend
The Executionware Frontend is the entry point for the upper ware. It provides a REST-based interface which
can be used by the upper ware to instruct the underlying Execution Engine. The provided graphical Web-
Interface may also be used manually to configure the Execution Engine and provide additional information
required for the deploying process. It configures the Execution Engine via low-level configuration files.
Input parameters
Web Inter-
face

The Executionware Frontend offers a web interface for configuring the basic parameters for
the Execution Engine. The web interface is also used for entering user and cloud specific
information like user accounts.

REST-
Interface

The REST-Interface offers the capabilities of the Execution Engine to the Adaption Manager
of the Upperware.

Output parameters
File System
& Command
Line

The Executionware Frontend communicates with the Execution Engine by using the file sys-
tem (configuration files) and the command line.

REST-
Interface

The REST-Interface provides the Execution Engine with the information stored within the
Executionware Frontend.

External dependencies
Library Description License Availability
Hibernate
Entityman-
ager

Database LGPL 2.1 http://www.hibernate.org

Apache
Commons

Helper Apache
License 2.0

http://commons.apache.org/

Apache
Commons

Helper Apache
License 2.0

http://commons.apache.org/

MariaDB
Java Client

Database LGPL 2.1 https://mariadb.com

Zip4j Helper Apache
License 2.0

http://www.lingala.net/
zip4j/

Java Ham-
crest

Testing BSD www.hamcrest.org

Halbuilder JSON/REST Apache
License 2.0

http://gotohal.net/

Known limitations
As the Executionware Frontend is a frontend to the Execution Engine, its limitations are given by the Execution
Engine. All features currently offered by the Execution Engine are supported by the frontend.

21

http://www.hibernate.org
http://commons.apache.org/
http://commons.apache.org/
https://mariadb.com
http://www.lingala.net/zip4j/
http://www.lingala.net/zip4j/
www.hamcrest.org
http://gotohal.net/

Execution Engine
The Execution Engine is responsible for the orchestration of the different clouds, meaning that it aquires the
needed virtual machines of the defined cloud providers and installs the application on them. The Execution
Engine uses a modified version of the open-source software Cloudify for this purpose. It is configured by the
Executionware Frontend via low-level configuration files and instructed via the command line.
Input parameters
File System The Execution Engine receives its configuration from the Executionware Frontend via the file

system. The communication is based on *.groovy files in the DSL of cloudify.
Command
Line

The Execution Engine receives commands via command line calls executed by the Execution-
ware Frontend.

Output parameters
Cloud API The Execution Engine calls the different cloud provider APIs via an abstraction layer support-

ing several cloud middlewares.
Installer The applications are installed via SSH-connections to the created virtual machines.
External dependencies
Library Description License Availability
Cloudify 2.7 Cloud Orchestration Apache

License 2.0
http://getcloudify.org/

Known limitations
The current prototype of the Execution Engine has the following limitations:

1. The Execution Engine is currently able to handle the deployment of one application, which however may
consist of several (possibly interdependent) components.

2. The Execution Engine is able to deploy the application to a single cloud. This means that cross-cloud
deployment is currently not supported. Multi-cloud functionality is available though.

3. The Execution Engine’s deployment is tested with OpenStack and Flexiant Cloud Orchestrator. While
the support of other cloud providers is provided by its abstraction layer, the support remains untested to
the current time.

4. The Execution Engine is able to execute the initial deployment. Also internal scaling (scale-in, scale-
out) of single application components is supported. Yet, the platform lacks sophisticated support for
redeployment.

22

http://getcloudify.org/

Monitoring Infrastructure
The monitoring infrastructure is responsible for monitoring the metrics defined in the application model and
to communicate them to the other components of the PaaSage architecture via the MDDB. The monitoring
infrastructure consists of several components:

TSDB The time series database (TSDB) is distributed database suited for processing the large amount of
sensor data collected by the agents. It stores the collected data for use of the other components.

Agents The monitoring agents are responsible for collecting the sensor data. They implement probes for
monitoring basic data about the execution environement on the virtual machine. In addition they offer
an interface for the reporting of application specific data. The thereby collected sensor data is sent to the
TSDB.

Collector The collector is responsible for interlinking the time-series database with the meta-data database
(MDDB).

Input parameters
Sensors The sensors implemented in the monitoring agents aquire basic monitoring data of the execu-

tion environement on the virtual machines.
Sensor Inter-
face

The sensor interface offers an interface where applications can report application-specific
monitoring information.

Output parameters
Monitoring
Data

The collector provides the MDDB with the monitoring data stored in the TSDB.

External dependencies
Library Description License Availability
kairosdb Time-Series Database Apache

License 2.0
https://github.com/
kairosdb

kairosdb-
client

Client for kairosdb LGPL2.0 https://github.com/
kairosdb

Cloudify 2.7 Cloud Orchestration Apache
License 2.0

http://getcloudify.org/

Known limitations
While the prototype is fully functional regarding the monitoring workflow, it only implements sensors for basic
monitoring data.

23

https://github.com/kairosdb
https://github.com/kairosdb
https://github.com/kairosdb
https://github.com/kairosdb
http://getcloudify.org/

3 Installation

The installation of the PAASAGE components has been verified on computers supporting the following minimal
configuration:

• A modern Linux distribution. Note however that the PAASAGE prototype has only been tested under
Ubuntu 14.04; or

• MacOSX 10.9 Maverick;

• In both cases at least 4GB RAM is minimum, 8GB RAM is recommended.

From a functional point of view, nothing prevents the distribution of various components on separate virtual
machines (VMs). All components were developed with a share-nothing9 concept in mind so that each one can
run separately. However, as PAASAGE is in progress, the chef recipes have not yet been adapted to allow
such a deployment and, at the time of writing, chef deploys all components on the same Ubuntu 14.04 Virtual
Machine:

1. Install Git on the machine

sudo ap t−g e t i n s t a l l g i t

2. Download and install ChefDK10

3. Download and install VirtualBox and VirtualBox Extension Pack11 according to the operating system.
Note that VirtualBox is provided as a package for Oracle Linux, Debian based Linux, and RPM based
distributions like Fedora and Red Hat Enterprise Linux (RHEL). For these distributions only a repository
file needs to be installed, and then VirtualBox can be installed and kept updated with the standard package
manager on the system.

4. Download and install Vagrant12 according to the operating system.

5. Install Vagrant plugins

v a g r a n t p l u g i n i n s t a l l v a g r a n t−vbox−s n a p s h o t

6. Configure Virtualbox network:

a) Open VirtualBox→ File→ Settings→ Networks→ Host Only

b) Edit the vboxnet0 so that: IPv4 address = 10.19.65.1 ; Netmask = 255.255.255.0; DHCP server is
enabled (see Figure X)

7. Clone the PAASAGE Git repository13. Currently this repository is located on a Git server provided by the
PAASAGE partner CETIC. The following shows how it can be installed to a folder WorkingCopies on the
host work station.

cd $HOME/ WorkingCopies
g i t c l o n e s s h : / / g i t @ g i t . c e t i c . be : 6 1 0 1 1 / p a a s a g e / w p 6 i n t e g r a t i o n . g i t
g i t c h e c k o u t k i t c h e n
export WP6 INTEG=$HOME/ WorkingCopies / w p 6 i n t e g r a t i o n
cd $WP6 INTEG / admin
bu nd l e i n s t a l l

8. Verify the list of PAASAGE Virtual Machines (VMs) that can be deployed by the following command
9http://en.wikipedia.org/wiki/Shared_nothing_architecture

10http://www.getchef.com/downloads/chef-dk/ubuntu/
11https://www.virtualbox.org/wiki/Downloads
12http://www.vagrantup.com
13The PAASAGE consortium is currently in the process of moving the code to a publicly available repository. Please contact the

PAASAGE’s Open Source Manager Geir Horn at Geir.Horn@mn.uio.no for status and access details.

24

 http://en.wikipedia.org/wiki/Shared_nothing_architecture
http://www.getchef.com/downloads/chef-dk/ubuntu/
https://www.virtualbox.org/wiki/Downloads
http://www.vagrantup.com
Geir.Horn@mn.uio.no

k i t c h e n l i s t

9. The workstation is now ready to launch the PaaSage platform VMs. Trigger the deployment by the
following commands, and note that this will download and install a lot of things, so please be patient for
the first time

cd $WP6 INTEG / admin
k i t c h e n c o n v e r g e f u l l p a a s a g e p l a t f o r m
k i t c h e n l o g i n f u l l p a a s a g e p l a t f o r m

10. After finishing working with PAASAGE, the platform can be exited and destroyed by the following com-
mand

k i t c h e n d e s t r o y f u l l p a a s a g e p l a t f o r m

4 Use of the prototype

Once the PAASAGE platform is up, using to the installation instructions of the previous section, PAASAGE can
be executed in order to process an application deployment. In this respect, a “master script” has been developed,
which aims to instantiate the various components of the PAASAGE work flow.

In future versions, the starting point to launch a PAASAGE deployment run will be integrated in a graphical
front-end. However, at the time of writing, the simplest way to achieve this is to log into the PAASAGE platform
and execute the so called master script using the following commands.

k i t c h e n l o g i n f u l l p a a s a g e p l a t f o r m
cd / e t c / p a a s a g e /
. / m a s t e r s c r i p t . sh APPLICATION MODEL URL

The script takes one parameter: the Uniform Resource Locator (URL) to the application model given as an
Extensible Markup Language (XML) Metadata Interchange (XMI) file in CAMEL format. Once executed, the
script downloads the XMI file, and loads it into the metadata database. Then, the various PaaSage components
are sequentially called in order to process the model and deploy the application.

5 Licence and conditions

5.1 The PAASAGE platform license

PaaSage is a committed open source project and all code necessary for running the platform must be available
as open source, even if it constitutes development prior to PaaSage. Many of the PAASAGE components are
enhancements and innovations involving existing open source modules and projects. The PAASAGE members
wish to favour the creation of source code commons, but avoid the problems of “virality” that cause incom-
patibility problems between software components. The following principles have therefore been set for the
adoption of an open source license in PAASAGE:

1. The chosen license should be compatible with the licenses currently in use by the PAASAGE partners for
their open source projects being enhanced through PAASAGE. The currently used licenses are: Apache14,
LGPL3.015 and Eclipse16.

2. The license should protect the investment we have done in PAASAGE and should therefore be “weak co-
pyleft”17, i.e. if someone improves the PAASAGE platform code, these improvements should be released
back as open source for others to use.

14http://opensource.org/licenses/Apache-2.0
15http://opensource.org/licenses/LGPL-3.0
16http://opensource.org/licenses/EPL-1.0
17http://en.wikipedia.org/wiki/Copyleft

25

http://opensource.org/licenses/Apache-2.0
http://opensource.org/licenses/LGPL-3.0
http://opensource.org/licenses/EPL-1.0
http://en.wikipedia.org/wiki/Copyleft

3. The chosen license should not restrict commercial use of PAASAGE, and should permit PAASAGE soft-
ware to be integrated with commercial closed source software whether it will be simple use of the PAAS-
AGE platform or linking other libraries with PAASAGE.

The open source cloud computing projects landscape is characterised by the weight of initiatives hosted by
Apache Foundation. The Apache license is also used by other organisations such as Appscale18 or Red Hat19.
As a consequence, the Apache license is often used in “Infrastructure as a Service” (IaaS) and “Platform as
a Service” (PaaS) projects. Although it is widely used in open source cloud project, the permissive Apache
license does not satisfy the constraints expressed for the PAASAGE project.

An additional requirement for the selection of a common PAASAGE license was that it should be well know
in the developer communities to facilitate easy adoption of the PAASAGE code base. The choice was therefore
confined to the the list of recommended licenses that is published by Open Source Initiative20 leading to a
choice among four licences:

GNU Lesser General Public License (LGPL) Version 2.1 suffers a lack of clarity due to the distinction between
dynamic or static linkage. The last version, version 3.0, clarify the point by removing that distinction.
The LGPL is compatible with the widely used GPL.

Mozilla Public License (MPL21 was created by Netscape in order to protect the Mozilla projects and to sim-
plify the use of third-parties modules that are under various free and proprietary licences. The MPL
1.1 is incompatible with the widely used GPL. The new MPL 2.0 was written with the compatibility
problem in mind.22 The MPL 2.0 license can be compatible with MPL 1.1 and GNU licenses, which is
acknowledged23 by the Free Software Foundation (FSF).

Common Public License (CPL) or Eclipse Public License (EPL) The EPL is an evolution of the CPL24. It
is a file-based weak copyleft license that is associated to the Eclipse projects. The EPL is incompatible
with the widely used GPL.

Common Development and Distribution License (CDDL) 25 was created by Sun Microsystems. It is in-
spired by MPL. The added value of the license compared to the widely used MPL is unclear.

The LGPL 3.0 license is stronger in terms of reciprocity and responsibility to contribute to the development.
However some companies could be afraid by the “GNU” label. The MPL 2.0 license is easier for the cre-
ation of combined works that contain files with various licenses. In consequence, MPL 2.0 has been adopted
unanimously as the common licence for PAASAGE.

Note that this does not prevent partners of PAASAGE or users of PAASAGE to replace PAASAGE com-
ponents with commercial components for better performance as per the third principle above. It also does not
prevent partners to the PAASAGE project to sell packaged versions of PAASAGE, or provide services on the
PAASAGE platform.

The chosen open source license must be referenced in the source code. The developers have to indicate
the license in the source code of the software. The original text is written in a file that is named LICENSE or
LICENSE.txt26 in the root directory of the source code. Each source file should contain the following text as
part of the file header:

18www.appscale.com
19www.redhat.com
20http://opensource.org/licenses
21http://opensource.org/licenses/MPL-2.0
22https://www.mozilla.org/MPL/2.0/FAQ.html
23https://www.gnu.org/licenses/license-list.html#MPL-2.0
24http://www.ibm.com/developerworks/library/os-cpl.html
25http://opensource.org/licenses/CDDL-1.0
26This file can be copied from https://www.mozilla.org/MPL/2.0/index.txt

26

www.appscale.com
www.redhat.com
http://opensource.org/licenses
http://opensource.org/licenses/MPL-2.0
https://www.mozilla.org/MPL/2.0/FAQ.html
 https://www.gnu.org/licenses/license-list.html#MPL-2.0
http://www.ibm.com/developerworks/library/os-cpl.html
http://opensource.org/licenses/CDDL-1.0
https://www.mozilla.org/MPL/2.0/index.txt

Copyright (C) 2014 NAME <EMAIL COMPANY.EXT>
OPTIONAL CONTACT DETAILS

This Source Code Form is subject to the terms of the
Mozilla Public License, v. 2.0. If a copy of the MPL
was not distributed with this file, You can obtain one at
http://mozilla.org/MPL/2.0/.

5.2 Governance

Governance in of software projects can be defined as “the complex process that is responsible for the control
of project scope, progress, and continuous commitment of developers” [5]. In particular, the scope and purpose
of the “governance model” for an open source project can be defined as follows27:

“A governance model describes the roles that project participants can take on and the process
for decision making within the project. In addition, it describes the ground rules for participa-
tion in the project and the processes for communicating and sharing within the project team and
community. In other words it is the governance model that prevents an open source project from
descending into chaos.”

— Ross Gardler and Gabriel Hanganu

Owing to its importance, the governance of open source projects has attracted the interest of the manage-
ment science community and software communities alike. In the interest of keeping this document brief, a full
survey of the literature is omitted, and the interested reader is referred to the extensive literature reviews in
Capra et al. [6] and O’Mahony [7].

The traditional view is that highly structured development projects, based on disciplined adherence to
defined methodologies and development plans is the best way to increase development efficiency. However,
over the last decade this view has been challenged by agile methodologies based on informal governance and
autonomous coordination among the developers. Open source projects projects receive contributions from a
community of developers over which traditional project management methodologies cannot be applied. Gov-
ernance of open source projects and agile software development therefore has much in common. However, as a
research project PAASAGE has clear plans and responsibilities, and clear deliverables. The governance model
must reconcile these two perspectives on the PAASAGE’s code base.

The good news is that the extensive study of 75 major open source projects undertaken Capra et al. leads
them to conclude that a larger degree of openness in the governance leads to better code produced, however at
the expense that the development effort is higher [6]. This can intuitively be explained by the fact that open
governance requires better defined and complete modules interacting through well defined interfaces, but it
takes longer to develop such complete components.

O’Mahony has identified five core principles that participants to open source projects value as essential to
good community management [7]. Owing to the fact that the PAASAGE open source project will be the only
place where the project code will be developed after month 24 of the project, these principles will be adhered
to on a sliding scale ranging from full project control until now up to full community control two years after
the end of the project, i.e. in four years from now.

The governance model will be revised annually. The PAASAGE project has appointed Geir Horn from the
University of Oslo to be the Open Source Manager until the end of the project, and he is responsible for the
annual revisions of the governance model. The initial model described here will be in effect during the first year
as an open source project, i.e. until October 2015, and confirms as follows with O’Mahony’s five principles:

Independence is currently not possible as the code is strictly linked to the European research project PAAS-
AGE, and it is backed by the organisations contractually co-funded as part of this project. However, a
research project is not a legal entity and no agreements exists or shall exist among the PAASAGE partners

27http://oss-watch.ac.uk/resources/governancemodels

27

http://mozilla.org/MPL/2.0/
http://oss-watch.ac.uk/resources/governancemodels

that will allow them to keep control over the open source PAASAGE project beyond the project period.
Thus the PAASAGE open source project will gradually gain independence from the PAASAGE research
project as more developers from the community participates to the maintenance and evolution of the code
base.

Pluralism is already in place as each of the prototype components and each of the components of the full
PAASAGE architecture have different owners as indicated in Figure X. Some of these components exists
as open source projects with separate communities outside of PAASAGE. There is consequently no single
organisation or person that can claim the ownership of the code base.

Representation will be detailed in the future versions of the governance models. Currently, each component in
the PAASAGE Open Source Project has a named developer assigned and this developer represents other
external developers in the PAASAGE Hackers’ meetings deciding on future development directions.

Decentralised decision making is ensured by the developers assigned as responsible for their component lead-
ing the development of the component and deciding on the implementation details of the component
jointly with other external community developers contributing to the component. The fundamental regu-
lation is that the developer who contributes the most, will also have the most to say over the components
future evolution.

Autonomous participation is ensured since the PAASAGE developers now working on the code are named
individuals, albeit paid by their organisations under the PAASAGE research project contract. External
developers are granted the rights to download, test, and use the PAASAGE code base. The PAASAGE

team of developers commit to react timely to any bugs detected by external code users. Furthermore,
individual developers are invited to contribute to improving the PAASAGE code base; however, until
October 2015, contributions will be monitored by the component owner who autonomously decides
whether the provided contribution can be included into the component. It is envisaged that after October
2015 external developers will be accepted as part of the PAASAGE development team by the Hackers’
meeting after nomination by the component owner, after which there will be no distinction between the
type of developer involved and working to maintain and enhance the PAASAGE open source code base.

6 Conclusion

This brief guide documents the components developed for the PAASAGE prototype, and gives instructions on
how to install and run the prototype software, which is the actual deliverable.

28

References

[1] A. Rossini, N. Nikolov, D. Romero, J. Domaschka, K. Kritikos, T. Kirkham and A. Solberg, “D2.1.2 –
CloudML Implementation Documentation (First version)”, PaaSage project deliverable, Apr. 2014.

[2] K. Kritikos, M. Korozi, B. Kryza et al., “D4.1.1 – Prototype Metadata Database and Social Network”,
PaaSage project deliverable, Mar. 2014.

[3] A. Bsila, N. Ferry, K. Figiela et al., “D3.1.1 – model based cloud platform upperware”, PaaSage project
deliverable, Mar. 2014.

[4] J. Domaschka, A. Sulisto, P. Garefalakis, D. Metalidis, C. Zeginis, C. Sheridan, K. Lu, E. Yaqub, B. Balis
and D. Król, “D5.1.1/D5.1.3 – Prototype Executionware/Prototype New Execution Engines)”, PaaSage
project deliverable, Mar. 2014.

[5] Patrick S. Renz, Project Governance - Implementing Corporate Governance and Business Ethics in Non-
profit Organizations, ser. Contributions to Economics. Physica Verlag Heidelberg, 260 pp., ISBN: 978-3-
7908-1927-4.

[6] Eugenio Capra, Chiara Francalanci and Francesco Merlo, “An empirical study on the relationship between
software design quality, development effort and governance in open source projects”, IEEE Transactions
on Software Engineering, vol. 34, no. 6, pp. 765–782, Nov. 2008, ISSN: 0098-5589. DOI: 10.1109/
TSE.2008.68.

[7] Siobhán O’Mahony, “The governance of open source initiatives: what does it mean to be community
managed?”, Journal of Management & Governance, vol. 11, no. 2, pp. 139–150, 1st May 2007, ISSN:
1385-3457, 1572-963X. DOI: 10.1007/s10997-007-9024-7.

29

http://dx.doi.org/10.1109/TSE.2008.68
http://dx.doi.org/10.1109/TSE.2008.68
http://dx.doi.org/10.1007/s10997-007-9024-7

