
D5.1.1/D5.3.1 – Prototype Executionware/Prototype New Execution Engines Page 1 of 66

PaaSage

Model Based Cloud Platform Upperware

Deliverables D5.1.1&D5.3.1

Prototype Executionware,
Prototype New Execution Engines

Version: 1.0

D5.1.1/D5.3.1 – Prototype Executionware/Prototype New Execution Engines Page 2 of 66

D5.1.1/5.3.1
Name, title and organisation of the scientific representative of the project's coordinator:

Mr Tom Williamson Tel: +33 4 9238 5072 Fax: +33 4 92385011 E-mail: tom.williamson@ercim.eu

Project website address: http://www.paasage.eu

Project

Grant Agreement number 317715

Project acronym: PaaSage

Project title: Model Based Cloud Platform Upperware

Funding Scheme: Integrated Project

Date of latest version of Annex I against which the

assessment will be made:

10th October 2013

Document

Period covered:

Deliverable number: D5.1.1/D5.3.1

Deliverable title Prototype Executionware/

Prototype New Execution Engines

Contractual Date of Delivery: 31st March 2014 (M18)

Actual Date of Delivery: 31st March 2014

Editor (s): Jörg Domaschka (UULM)

Author (s): Anthony Sulistio (USTUTT), Panagiotis Garefalakis

(FORTH), Damianos Metalidis (FORTH), Chrysostomos

Zeginis (FORTH), Craig Sheridan (FLEX), Kuan Lu

(GWDG), Edwin Yaqub (GWDG), Jörg Domaschka

(UULM), Bartosz Balis (AGH), Dariusz Król (AGH)

Reviewer (s): Tom Kirkham (STFC), Geir Horn (UiO)

Participant(s): Nikos Parlavantzas (INRIA), Michaël Van de Borne

(CETIC), Kyriakos Kritikos (FORTH), Loke Johannessen

(FLEX), Philipp Wieder (GWDG), Lutz Schubert

(UULM), Daniel Baur (UULM), Maciej Malawski (AGH)

Work package no.: 5

Work package title: Executionware

Work package leader: Jörg Domaschka (UULM)

Distribution: PU

Version/Revision: 1.0

Draft/Final: Final

Total number of pages (including cover): 66

mailto:tom.williamson@ercim.eu
http://www.paasage.eu/

D5.1.1/D5.3.1 – Prototype Executionware/Prototype New Execution Engines Page 3 of 66

DISCLAIMER

This document contains description of the PaaSage project work and findings.

The authors of this document have taken any available measure in order for its content to be accurate, consistent and
lawful. However, neither the project consortium as a whole nor the individual partners that implicitly or explicitly
participated in the creation and publication of this document hold any responsibility for actions that might occur as a
result of using its content.

This publication has been produced with the assistance of the European Union. The content of this publication is the
sole responsibility of the PaaSage consortium and can in no way be taken to reflect the views of the European Union.

The European Union is established in accordance with the
Treaty on European Union (Maastricht). There are currently
28 Member States of the Union. It is based on the European
Communities and the member states cooperation in the
fields of Common Foreign and Security Policy and Justice
and Home Affairs. The five main institutions of the
European Union are the European Parliament, the Council
of Ministers, the European Commission, the Court of Justice
and the Court of Auditors. (http://europa.eu)

PaaSage is a project funded in part by the European Union.

http://europa.eu/

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 4 of 66

Executive Summary
The Executionware constitutes a fundamental part of the entire PaaSage system
and its architecture. On the one hand, it is responsible for bringing applications
to execution that have been modelled and configured in PaaSage’s Upperware
component. On the other hand, the Executionware is responsible for monitoring
the execution of each individual instance of a component—taking features of the
respective cloud providers into account.

This document presents an overview and documentation for the first pro-
totype of the PaaSage Executionware implementation. It states the functional
scope of that prototype with respect to the architecture. It also introduces tech-
nologies the Executionware is built upon and describes the main Executionware
modules, namely the Executionware frontend and the Executionware time-series
database. The former serves as the primary access point for higher layers of the
PaaSage architecture, mainly the Upperware. The latter collects and accumu-
lates monitoring data and feeds it back to the meta-data database.

This document clarifies the implementation status of the M18 prototype: The
Executionware is able to receive and process deployment information from the
Upperware. It is capable of deploying an application to a single cloud which
is either an instance of OpenStack or Flexiant Cloud Orchestrator. The M18
prototype further installs a series of sensors with each deployed application and
evaluates monitoring data from a dedicated source, e.g. CPU load according to
a pre-defined metric. Finally, the evaluated monitoring information is fed back
to the meta-data database.

In addition to defining and describing the basic functionality of the M18 pro-
totype, this document investigates the extendibility of the Executionware with re-
spect to data farming and workflow processing. In particular, it clarifies the mo-
tivation for specialised flavours for dedicated Executionware entities and defines
the roadmap to their integration into the final version of PaaSage’s Execution-
ware.

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 5 of 66

Intended Audience
This deliverable is a public document intended for readers with some experience
with cloud computing and cloud middleware. It presumes the reader is familiar
with the overall PaaSage architecture as described in deliverable D1.6.1 [2].

For the external reader, this deliverable provides an insight into the Execu-
tionware sub-system of PaaSage, its architecture and its various entities. It also
describes an overview on the implementation status of the Executionware proto-
type at month M18.

For the research and industrial partners in PaaSage, this deliverable provides
an understanding of the basic design and architecture of the Executionware, its
capabilities, but also its limitations.

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 6 of 66

Contents
1 Introduction and Overview . 11
2 Summary of Executionware Architecture 11

2.1 Executionware Entities of the PaaSage Infrastructure . . 13
2.2 Entities of the Executionware Run-time System 14
2.3 Entities of the Monitoring Infrastructure 14
2.4 Interaction with Other Work Packages 15
2.5 Conclusions . 16

3 The Executionware Prototype 17
3.1 Detailed Scope of M18 Prototype 17
3.2 M18 Components . 19
3.3 Conclusions . 21

4 Technological Background . 21
4.1 Cloudify . 22
4.2 KairosDB . 26
4.3 Provisioning of Testbeds 30
4.4 Conclusions . 31

5 Application Deployment and Cloud Management 32
5.1 The Executionware Cloud Registery 32
5.2 Deployment of Applications 35
5.3 Conclusions and Status of Implementation 37

6 Application Monitoring . 37
6.1 Integration to With Executionware 38
6.2 Integration with Meta-data Database 41
6.3 Conclusion and Implementation Status 42

7 Workflow Applications . 43
7.1 The Case for Workflow Execution in PaaSage 43
7.2 The HyperFlow Platform 44
7.3 Conclusions and Implementation Status 46

8 Data Farming Applications . 47
8.1 The Case for Data Farming in PaaSage 47
8.2 The Scalarm Platform 48
8.3 Conclusions and Status of Implementation 50

9 Conclusion and Future Work 51
9.1 Summary of Implementation Status 51
9.2 Roadmap to Final Version 54

References . 57
A Executionware Frontend . 58

A.1 Implementation Aspects 58
A.2 Cloudify Cloud Configuration 58

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 7 of 66

A.3 Cloudify Recipes . 58
A.4 CAMEL-based API . 59

B Time-series Database and Monitoring 63
C Workflow Platform . 63

C.1 Provided Cookbook . 64
C.2 Usage Example . 64

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 8 of 66

Terminology
Throughout this document we use a set of terms with an overloaded meaning.
Therefore, this section aims at defining these terms for this document in a brief
and concise manner. Throughout this deliverable, all of the terms defined here
are exclusively used according to our definition and not in any other way. We
distinguish between cloud-related and application-related terminology.

Cloud Terminology

Cloud platform A cloud platform is the software run by a cloud provider.
In particular, this means that it is the platform that defines the API to interact
with any cloud provider running this platform. As the platform is something
completely passive it does, however, not define contact endpoints (e.g. URIs) to
interact with the provider. The OpenStack software suite and Flexiant’s Flexiant
Cloud Orchestrator (FCO) are examples for cloud platforms.

Cloud instance A cloud instance is an instantiated cloud platform. That means,
it defines the cloud provider and the access points (i.e. URIs) to access the ser-
vices offered by the provider. For instance Amazon EC2 is an example of a cloud
instance. Within the PaaSage consortium examples include OpenStack run by
GWDG, and FCO run by Flexiant.

Cloud A cloud is a cloud instance as seen by a particular tenant of that cloud
instance. In consequence, a cloud links a cloud instance with the necessary cre-
dentials to access the cloud instance such as username and password. While
this may seem like a unusual terminology, it fits seamlessly the requirements and
topics addressed by this document.

Application Terminology

(Software) artefact A software artefact is any entity that is required for the
execution of a component. This may be a binary, a shared library, an operating
system package installed through the package manager, a software container, a
jar file or anything the like.

(Software) component A software component is a set of artefacts that can be
brought to execution as an operating system process without any dependencies to
other components on binary level. It may depend on other components on higher
level protocols such as HTTP. Multiple components may require the same arte-
facts either by sharing (e.g. shared libraries) or by copying (e.g. configuration
files).

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 9 of 66

Application An application is a set of software components that form a func-
tional closure. The same component (e.g. a PostgreSQL database) may appear
in several applications.

Application instance An application instance is an incarnation of an applic-
ation (and hence, all its software components). The same application may be
instantiated several times; in that case, the various instances do not share any
state or properties.

Component instance A component instance is an instantiation of a software
component within an application instance. Component instances do not share
any state among each other. They may, however, cooperate with each other. For
instance, a distributed database consists of multiple instances of the database
component.

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 10 of 66

1 Introduction and Overview
The Executionware constitutes a fundamental part of the entire PaaSage sys-
tem and its architecture. Its focus is two-fold: On the one hand, it is respons-
ible for bringing applications to execution that have been modelled and con-
figured in PaaSage’s Upperware component. On the other hand, the Execution-
ware is responsible for monitoring the execution of each individual instance of a
component—taking features of the respective cloud providers into account.

This document presents an overview and documentation for the first pro-
totype of the PaaSage Executionware implementation. In order to clarify the
background, we first summarise the requirements towards and the initial archi-
tecture of the Executionware architecture as defined in deliverable D1.6.1 [2] in
Section 2.

Section 3 explicitly states the functional scope of the first prototype with re-
spect to the architecture. It also introduces the Cloudify framework that serves
as a starting point for the Executionware deployment and monitoring functional-
ity. Additionally, it describes fundamentals of KairosDB, a time-series database
that is used for processing and accumulating monitoring data. Finally, Section 3
sketches the software modules developed for the prototype and how they match
the Executionware architecture from Section 2.

Afterwards, we introduce the individual software modules in-depth and dis-
cuss their respective implementation status with respect to the M18 prototype.
Section 5 presents the Executionware frontend that the PaaSage Upperware uses
to trigger application deployment and configuration changes. The frontend also
provides a Web-based user interface for configuration purposes. Section 6 intro-
duces the implementation and technology used to realise the monitoring func-
tionality of the Executionware and its link to the meta-data database.

Section 7 and Section 8 discuss approaches of how the current architecture
may better support the existing HyperFlow workflow engine and the Scalarm
data farming framework respectively. Integrating these two platforms enables
dedicated support for workflows and data farming in PaaSage. We conclude this
document in Section 9 with re-visiting open issues and clarifying the roadmap to
the final version of the Executionware in M36. The appendix of this document
contains further technical sources of information about the developed software
modules.

2 Summary of Executionware Architecture
The PaaSage architecture as described in deliverable D1.6.1 [2] defines the role
of the Executionware in the PaaSage application life-cycle. Together with the

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 11 of 66

IDE

models

profiler

meta-data

database

reasoner adapter
dispatcher/

deployer

execution

engine

monitoring

cloud

instances

configuration phase deployment phase execution phase

model flow

data flow

Figure 1: Main PaaSage components and life-cycle direction including data and
model flow as deliverable D1.6.1 [2].

domain of PaaSage operator

metadata

database

executionware

dispatcher

OpenStack

deployer

Upperware
Flexiant

deployer

domain of cloud operator (e.g. Flexiant)

API

virtual machine

comp.

instance

inter-

ceptor

execution

engine

inter-

preter

sensors

virtual machine

accu-

mulator
filters

Figure 2: Current architecture of the Executionware together with input to and
output from other PaaSage components.

user requirements as defined in deliverable D6.1.1 [6] this tightens the overall
architecture of the Executionware. This architecture has already been specified
in deliverable D1.6.1 so that this section focuses on recapturing it. Moreover, it
identifies its individual logical entities.

Figure 1 sketches the data flow and model flow between the individual PaaS-
age components at configuration, deployment, and execution phase. It points out
that the data flow is triggered by the execution engine in the Executionware and
floats back to Upperware components via the monitoring infrastructure and the
meta-data database. All components in PaaSage’s execution phase on the right
hand side of the figure are subject to the Executionware.

Figure 2 shows the architecture derived for the Executionware. As illustrated
in the figure, the components of the Passage Executionware can be separated
into three groups. The first group forms the static part of the infrastructure that

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 12 of 66

is hosted by the PaaSage operator and is not necessarily executed in a cloud
environment. We present the entities of this group in Section 2.1. The second
group of Executionware entities is brought out in the field together with the ap-
plication’s component instances. Their main purpose is the provisioning of a
run-time environment for these component instances. The run-time entities are
subject to Section 2.2. Finally, information about the behaviour of the deployed
component instances has to be collected and further processed. This functional-
ity is realised by the monitoring infrastructure that we introduce in Section 2.3.
We conclude this section after a brief sketch of how the Executionware interacts
with other components of the PaaSage platform in Section 2.4.

2.1 Executionware Entities of the PaaSage Infrastructure
The PaaSage Executionware provides two types of entities that constitute the
static part of the infrastructure.

The Executionware entities that are part of the PaaSage infrastructure run on
the premises of the PaaSage owner and not necessarily on a cloud environment
(even though they might). The two entity types, Dispatcher and Deployer, offer
a deployment service to the components of the Upperware. In particular, the
Dispatcher entity is the only access point higher-level entities can use to deploy
PaaSage applications.

Dispatcher The Dispatcher is triggered by the Upperware on two occasions.
In case the Upperware wants to deploy a new application, the dispatcher receives
the information on what artefacts to deploy on which cloud with what configur-
ation and what scripts to run at the various lifecycle events (cf. Section 4.1). In
case the deployment of a deployed application shall be changed, the Execution-
ware receives information of what instances to shut down and what application
components to start. It is the Upperware’s task to ensure the correct order when
deploying multiple interdependent application components. The task of the Dis-
patcher is then to split up that information on a per-cloud and per-component
instance and hand it on to the Deployer responsible for that respective cloud sys-
tem. We discuss the API between Upperware and Executionware in Section 5.2.

Deployer A Deployer is capable of transferring the application configuration
to a low-level representation that can then be deployed on a cloud. That is, a
Deployer processes the data received from the Upperware (and the Dispatcher),
turns it into a configuration set-up, and finally deploys this set-up. As such, the
implementation of a Deployer may be specific to a cloud platform or to a group
of cloud platforms.

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 13 of 66

2.2 Entities of the Executionware Run-time System
In order for the system to be able to retrieve the necessary information at run
time and to act on behalf of the PaaSage system, we need several entities that
are co-located with the instantiated components instances. In particular, each
component instance is accompanied by the execution engine, the communication
interceptor (aka wrapper), and finally, a interpreter entity [2].

Execution engine The execution engine is a service co-located with every
component instance. It is not specific to the component, but it may be depend-
ent on the cloud infrastructure it is running on. The purpose of this entity is to
provide a communication endpoint under which the component instance (as well
as the virtual machine it is executed on) can be controlled and influenced.

Interpreter The interpreter sits in-between the component instance and the
cloud infrastructure. As such, it is highly dependent on the platform it is running
on, including the operating system. Its main task is to intercept all invocations
the component instance targets towards the cloud API; The component instance
may do that for multiple reasons: get monitoring data, scale out the application,
start sub-processes (as in workflow systems). In order to control the interac-
tion between the component instance and the cloud, the Interpreter appears as
the cloud operator to the component instance. That is, it has the same API as
the cloud platform. There exist multiple mechanisms to achieve that goal. For
instance library overloading, replacement of binaries, re-direction of IP traffic.
The concrete technique(s) applied by the PaaSage Executionware will be identi-
fied throughout the project. The very same mechanisms can be used to achieve
control over other interactions by the component instances such as access to the
file system.

Interceptor The interceptor sits in-between external external entities and a
component instance. As such, it controls all incoming connections and redir-
ects them to the component instance. This allows, for instance, to count the
number of concurrently connected users and open connections.

2.3 Entities of the Monitoring Infrastructure
In addition to run-time entities that shield the component instances and static
components that enable the actual deployment of applications, the Execution-
ware captures and processes monitoring data. Virtual machines running com-
ponent instances are enriched with monitoring probes as needed in order to get

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 14 of 66

information about the run-time performance of virtual machines, component in-
stance, and hence, about application instances. The additional entities employed
by the monitoring infrastructure fulfil the task of accumulating and filtering the
monitoring data. In consequence, they help to retrieve useful information from
the mere monitoring information.

Sensors Sensors are brought out in the cloud and retrieve monitoring informa-
tion. This information may either stem directly from the component instances or
virtual machines or from monitoring data provided by the cloud provider. Each
sensor emits a stream of monitoring data that reaches an accumulator or filter.
The necessary sensors are provided as specified by the deployment information
passed by the Upperware.

Accumulators Accumulators have the task of combining multiple monitoring
streams emitted by various sensors or other accumulators. They may further
perform operations on the streams such as computation of average values over
certain periods of time. Similar to sensors, an accumulator emits data. Yet, in
contrast to sensors, it may also emit more than one data stream towards different
sinks.

Filters Filters operate on a per stream basis and search for defined patterns in
that stream. Once a pattern is found, one or multiple actions associated with that
pattern are triggered as a reaction. Similar to sensors, the necessary patters are
application- and component-specific and hence, are passed to the Executionware
by the application specification.

2.4 Interaction with Other Work Packages
Within the PaaSage architecture, the Executionware solely interacts with two
other PaaSage sub-systems, namely the Upperware and the meta-data database
(MDDB). On the one hand, the Dispatcher entity of the Executionware exclus-
ively functions as a sink for the Upperware. That is, it only receives data from
the Upperware, but never directly invokes the Upperware. On the other hand, the
monitoring infrastructure functions as a data provider for the meta-data database.
The Executionware never directly retrieves data from the MDDB.

Input From Executionware

The Executionware receives invocations from the Upperware. In particular, there
are three occasions when the Upperware may contact the Executionware:

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 15 of 66

1. Deploy a new application

2. Change the deployment of an application

3. Stop the execution of an application

Section 3.1 further details the support envisaged for the M18 Prototype. The
API between Upperware and Executionware is subject to Section 5.2.

Output to Metadata Database

Besides the fact that monitoring data reaches Executionware filters and may trig-
ger Executionware-specific actions, parts of that data are also relayed to the
meta-data database. While on-line filtering enables a quick reaction to abnor-
mal conditions, having data consolidated in the MDDB, enables for off-line data
evaluation and analysis. This strategy enables the Upperware to perform queries
that are too expensive with respect to performance and time to be executed on-
line. Hence, the Upperware can draw much more detailed conclusions regarding
the overall deployment quality of an application. In addition to the monitoring
data, also events triggered by the Executionware are added to the database. This
enables the Upperware to decide on the quality of decisions taken on-line.

2.5 Conclusions
In this section, we have sketched the overall architecture of PaaSage’s Execution-
ware. We have seen that the Executionware receives input from the Upperware.
As a response to that input, it deploys a new application or changes the deploy-
ment of existing applications instances. While an application is deployed, i.e.,
available for use, all of its component instances are constantly monitored by the
Executionware monitoring infrastructure. Executionware accumulators combine
the monitoring streams emitted by different component instances. Execution-
ware filters evaluate the monitoring data and react to pre-defined patterns. In
addition, the Executionware relays all monitoring data to the meta-data database
for later offline evaluation by the Upperware. This closes the PaaSage feedback
loop (cf. Figure 1).

While the Executionware architecture and with it this section targets the over-
all Executionware functionality to be realised throughout the project run-time,
the major scope of this document is the implementation status of the Execution-
ware prototype at M18. It is the task of Section 3 to put the Executionware in the
scope of the M18 prototype. The section defines the goals for M18 and describes
the composition of the logical entities of the architecture in software artefacts.
The technical foundation of our implementation is subject to Section 4.

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 16 of 66

3 The Executionware Prototype
This section builds on the Executionware architecture as defined in Section 2
and clarifies the impact and scope of the M18 prototype. Nevertheless, the con-
tent of this section is merely a snapshot of ongoing development work in Work
Package 5 and may become outdated as the Executionware evolves towards its
final release due at M36.

For the architecture assumes a full-fledged Executionware, we first narrow
the scope of functionality envisaged for the M18 prototype (cf. Section 3.1).
Then, we define the division of the logical elements of the Executionware archi-
tecture from Section 2 into larger software modules (cf. Section 3.2).

3.1 Detailed Scope of M18 Prototype
This section defines the scope of the M18 prototype. In particular, it targets
envisaged functionality in terms of general capabilities and covered scenarios.
For specifying the capabilities, we follow the structure already known from Sec-
tion 2 so that we first discuss capabilities of the PaaSage infrastructure, followed
by those of the run-time system and of the monitoring infrastructure. The inter-
action with other PaaSage sub-systems is beyond the scope of this document, as
the integration with the other components is subject to M19–M21 (cf. Section 9).

Functionality of the Infrastructure Entities

The primary goal of the Executionware prototype is to provide a solid, yet flex-
ible, foundation for later sophisticated functionality. With respect to application
deployment, this means, that at M18, the functionality of the Executionware will
correspond to the following items:

1. The Executionware is able to receive and process deployment information
from the Upperware. Yet, it only provides this functionality as long as
the deployment targets a single application possibly consisting of multiple
components.

2. The Executionware is able to deploy this application on a single cloud.
That is, cross-cloud deployment is not supported at M18.

3. The Executionware provides deployers for clouds based on OpenStack
and Flexiant Cloud Orchestrator. Deployment may either target a Flexiant-
based or OpenStack-based cloud.

4. The M18 prototype offers a Web-based interface to register and manage
clouds, accounts, and virtual machine images.

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 17 of 66

5. The Executionware provides mechanisms for the Upperware to derive the
right virtual machine image to use for the deployment description. That
is, it enables a mapping from the OS description linux, 64-bit to image ID
XX-YYYY-ZZZ provided that the image has been registered earlier.

The requirements regarding the Executionware API and the necessary input
data received from the Executionware are further outlined in Section 5.2 and
Annex A.4.

Functionality of Runtime Entities

Regarding the runtime functionality, the goal of the prototype is to provide a
first step towards the full-fledged implementation. Therefore, our primary focus
is on the provisioning of the Execution Engine. In particular, the Execution
Engine supported by M18 is able to function as a communication endpoint for
the infrastructure entities. That is, it is be able to support all actions required by
the infrastructure components in order to support the deployment of component
instances. The realisation of other runtime entities is subject to the M18–M36
period.

Functionality of Monitoring Entities

In general, monitoring serves the purpose of retrieving information about the de-
ployed component instances and further about the resources each instance con-
sumes. Moreover, monitoring includes the retrieval of information about the
usage characteristics of particular component instances. This may, for instance,
cover how many users are accessing that instance. The M18 prototype provides
the following functionality.

1. The prototype installs a fixed set of sensors with every deployed compon-
ent instance.

2. The Executionware is able to retrieve basic environment values such as
CPU load, memory consumptions, I/O statistics of individual virtual ma-
chines and component instances.

The monitoring data obtained by the sensors is processed in two ways. First,
all monitoring information is directly filtered by the Executionware in order to
identify patterns that require auto-scalability. Second, accumulated monitoring
data is redirected to the meta-data database. In particular, the M18 prototype
provides the following functionality:

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 18 of 66

domain of PaaSage operator

metadata

database

executionware

dispatcher

OpenStack

deployer

Upperware
Flexiant

deployer

domain of cloud operator

API

virtual machine

comp.

instance

inter-

ceptor

execution

engine

inter-

preter

accumulator

sensors
frontend

time series database

TSDB

load

balancer

metrics

collector

monitoring infrastructure

cloudify filters

Figure 3: Current architecture of the Executionware and the mapping of entities
to software modules

1. The Executionware is able to redirect parts of all monitoring data to the
meta-data database.

2. The Executionware accumulates the monitoring data before relaying it to
the meta-data database.

3. The Executionware is able to trigger the scale-out of a component as the
consequence of a hit pattern. The supported patterns are limited to a
single, pre-defined monitoring source such as CPU. The necessary filter-
ing rule has to be passed by the Upperware together with the deployment
information.

4. The Executionware is able to combine all monitoring streams of a single
cloud in a single location. There reside accumulators, filters, and the link-
age to the metadata database.

3.2 M18 Components
The architecture of PaaSage’s Executionware as described in Section 2 consists
of multiple individual entities. For the implementation of the M18 prototype,
we combine multiple of these entities to two larger software modules called
Executionware frontend and a time-series database (TSDB).

Figure 3 sketches the mapping of individual entities to software modules.
In the following, we only briefly describe these modules and describe which
entities of the overall architecture they comprise. Both front-end and time-series
database are discussed in more detail in Section 5 and Section 6 respectively.

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 19 of 66

Executionware Frontend

The Executionware frontend constitutes the entry point for the Upperware. It
provides a HTTP-based interface the Upperware can use for deploying applica-
tions. In consequence, the frontend implements the Dispatcher entity as well as
the individual deployers. For the M18 prototype these are a Flexiant deployer
and an OpenStack-capable deployer. The deployment itself is realised by re-
writing and assembling the data passed from the Upperware to a valid low-level
configuration that third party tools can use to execute the actual deployment. The
Executionware uses Cloudify (cf. Section 4.1) for that purpose.

The frontend also provides a directory of clouds known to the PaaSage op-
erator. It offers a graphical user interface that the PaaSage operator may use to
register existing clouds with the Executionware. The deployment process of the
frontend will make use of this information when accessing the cloud. Before
a cloud registered with the Executionware may be used for deploying applic-
ations, it has to be bootstrapped by the frontend. During that bootstrapping,
a time-series database is installed in that particular cloud and interlinked with
other time-series databases in other clouds run by the same PaaSage provider.

Monitoring Infrastructure

The main part of the monitoring infrastructure consists of the Executionware
time-series database. The Executionware TSDB is a distributed database span-
ning multiple cloud platforms. It is particularly suited for processing large
amounts of streaming data what makes it a perfect match for dealing with the
monitoring information issued by all virtual machines and component instances.
The individual instances of the TSDB on different clouds are installed and brought
up by the frontend whenever a cloud is bootstrapped. It is also the frontend that
is responsible for ensuring that TSDBs belonging to the same PaaSage operator
find each other and form a unique cross-cloud database.

The TSDB is enhanced by a collector entity that interlinks the time-series
database with the meta-data database and further a load balancer entity that dis-
tributes queries among the various TSDB instances. While the M18 prototype
mainly uses the standard mechanisms to monitoring offered by third party lib-
raries (cf. Section 4) also used for deployment, we also provide some custom
sensors for monitoring specific data.

Other Components

Partially, the Executionware prototype builds on existing, software components
from third-party libraries. This is in particular true for the Execution Engine that

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 20 of 66

is not covered by any Executionware modules. This is because the M18 function-
ality is already covered by the software libraries the Executionware builds upon.
The same is true for the filters required to dynamically scale out applications.
We discuss all third-party libraries together with other technical background in
Section 4.

Apart from Executionware frontend and monitoring infrastructure, the Exe-
cutionware comprises two add-ons that are concerned with an efficient execution
of workflow-oriented and data farming applications. These are subject to Sec-
tion 7 and Section 8 respectively.

3.3 Conclusions
In this section, we have defined the scope and the capabilities of the M18 pro-
totype. We have further identified key entities that are required to realise this
functionality and presented how they are composed to larger software modules.
In consequence, the M18 prototype provides a solid technological foundation
that enables the development of sophisticated functionality in later stages of the
project.

While this section described a high-level view on the Executionware, Sec-
tion 5 and Section 6 provide a much more detailed and much more technological
perspective on the individual software modules. Yet, for being able to distinguish
own contributions from background technology, we first present an overview on
the technological background in Section 4 that constitutes the foundations of our
own implementation.

4 Technological Background
In this section, we present the technological background to our own implement-
ation of the M18 Executionware prototype. On the one hand, this comprises
the presentation of third party libraries and tools used by our implementation.
In particular, we discuss fundamentals of the Cloudify1 software that the Exe-
cutionware uses as its primary deployment tool (cf. Section 4.1). We further
introduce KairosDB2 that the monitoring infrastructure uses as a basis for its
TSDB solution (cf Section 4.2). On the other hand, we briefly sketch the testbeds
provided by the PaaSage consortium that we use for testing and demonstration
purposes (cf. Section 4.3).

1http://www.cloudifysource.org/
2https://code.google.com/p/kairosdb/

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 21 of 66

http://www.cloudifysource.org/
https://code.google.com/p/kairosdb/

4.1 Cloudify
Huge parts of the Executionware functionality will be based on the Cloudify
open source software framework. The decision for this library was taken for
the following reasons: First, it is open-source and its Apache 2.0 license enables
adaptation and re-use in both open source and commercial products. Second, the
general architecture of the software resembles the architecture defined for the
Executionware (cf. Section 2) so that additional functionality can be added and
integrated step-wise which enables a smooth implementation kick-off. Finally,
Cloudify comes with multiple drivers that support many existing cloud offerings.

For the Cloudify framework already provides many of the functionalities
required by the PaaSage Executionware, the Executionware relays functionality
to Cloudify wherever possible. Nevertheless, some modifications and extensions
are required to the Cloudify configuration mechanism; this is mainly caused by
the fact that Cloudify itself is not service-enabled and hence does not support
multiple users and remote access to its functionality. Furthermore, it does not
support multi-cloud applications. We discuss these issues in Section 5.

In this section, we give a brief overview on the Cloudify software. We start
with the general concepts and terminology. Then, we follow the same approach
as for the Executionware architecture and consider platform entities, runtime
entities, as well as monitoring support. Finally, we turn towards the application
model supported by Cloudify and present the lifecycle it enforces for its applic-
ations.

Concepts and Terminology

Cloudify distinguishes the main entity terms cloud, service, and application.

Cloud Similar to the definition used in this document a Cloudify cloud maps to
a cloud instance combined with access credentials. A Cloudify cloud is defined
by providing one or multiple configuration files in the Cloudify configuration
directory. This directory is then accessed by the initialisation scripts (mainly the
Cloudify shell) when starting and stopping a Cloudify cloud. The start of such
a cloud always results in the provisioning of one or more management virtual
machine(s) on the Cloudify cloud.

Management VM A management VM is a central anchor in a cloud. It provides
a Web-based GUI from which the user can see started virtual machines as well
as their monitoring data. Using the GUI, the user can scale (expand) applic-
ations or services. Further, the management VM collects monitoring data and
stores information about an application’s state. A management VM also offers a

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 22 of 66

Domain of Cloudify Operator

cloudify

configuration

Domain of Cloud Operator (e.g. OpenStack)

API

Virtual Machine

comp.

instance

Sensors

management VM

web

interf.

application

artefacts/life-

cycle scripts

cloudify

UI

USM

mon.

infrastr.

Figure 4: A schematic overview of the Cloudify run-time set-up. The system
consists of a file-based cloud configuration repository, management VMs on a
per-cloud basis, and deployed applications consisting of multiple services which
again consists of multiple instances. All instances of a single service run in a
single cloud. Furthermore, the management VM collects all monitoring data
issued by the application instances.

REST-based interface that supports the same functionality as the GUI. Amongst
others, it enables the deployment and scaling of applications.

Application A Cloudify application is a collection of services and their in-
terdependencies. In contrast to PaaSage applications, Cloudify applications are
deployed on a single cloud and do not span multiple clouds.

Service A service is the set of instances of a particular binary (such as for
instance a Web server). A service may come with several scripts to be executed
at particular points in time during the application lifecycle.

Platform Entities

Figure 4 sketches the architecture of a Cloudify run-time set-up. Similar to the
Executionware architecture, it consists of static, non-cloud entities and compon-
ents deployed in the cloud. The set of static components is comprised of the
Cloudify configuration, the user interface, and recipes. Cloudify distinguishes

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 23 of 66

two flavours of recipes. One that describes a Cloudify application and another
one that describes the individual services forming in an application.

Configuration All Cloudify configuration is file-based. That is, in order to use
and re-use a configuration, a user has to have access to the same file system. The
configuration files mainly contain the following information: (i) Which clouds
are known to the system and what is their name. Cloudify supports multiple
clouds from the same provider or from the same type as long as they are named
differently. Names can be set freely by the Cloudify operator. (ii) Each cloud
has its configuration in a single directory on disk. Within this directory reside all
binaries and configuration files for that cloud.

User interface The user interface (UI) provides access to the Cloudify con-
figuration and enables the bootstrapping of clouds and the deployment of ap-
plications (cf. Cloudify Lifecycle section below). The basic implementation of
the user interface shipping with Cloudify is shell-based and hence, hard to share
among multiple users. The user interface defines the lifecycle events for applic-
ations as discussed below.

Application recipes An application recipe defines application properties and
the services, the application depends on. The recipe gives a name to the applica-
tion and it allows the definition of environment variables shared by all of its ser-
vices. Apart from that the application recipe defines interdependencies between
the individual services. These are reflected when the application is deployed.

Service recipes The service recipe defines attributes of an individual service
(all instances of a component). This includes the definition of the service name,
the maximum and minimum possible instances running this service and actions
for lifecycle events (cf. Cloudify Lifecycle section below).

Run-time Entities

In order to be able to make use of a cloud, i.e. deploy applications on a Cloud-
ify cloud, it is necessary to bootstrap the cloud via the user interface. Cloudify
uses a cloud driver to access the API of the cloud provider and uses it to alloc-
ate one or multiple management VMs. Afterwards, the Cloudify UI connects
to the management VMs and installs the Cloudify controller components. The
most important of these components with respect to their use in PaaSage are the
Elastic Service Manager (ESM) and the REST service. Their interplay allows
deploying applications and services as outlined below. On newly allocated non-
management VMs, Cloudify installs the Universal Service Manager (USM).

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 24 of 66

REST service The REST service is provided by any management VM. It of-
fers a HTTP-based contact point for deploying new applications, deploying new
services within an application context, scaling out/in existing services or shutting
down entire services and applications.

Elastic Service Manager For any bootstrapped cloud, there is always one
ESM running on one of the management VMs. This ESM receives deployment
and scaling requests from the REST service of any management VM and maps
them to invocations of the driver of the cloud it is running in. The ESM further
provisions the necessary binaries of an application once the driver has allocated a
virtual machine for running the application and once the USM has been installed.

Universal Service Manager The USM deals with the task of managing and
monitoring service instances to be deployed at individual virtual machines. It
defines the lifecycle for services and controls its execution. Moreover, it de-
ploys monitoring probes as defined in a service recipe. Finally, it spreads the
monitoring data so that it can be processed in the management VMs.

Monitoring

Cloudify comes with built-in monitoring capabilities on both per VM and per
application basis. The request to monitor dedicated parameters is specified in a
service recipe. Cloudify uses a JMX built-in plugin that collects JMX attributes
over a JMX-RMI connection and exposes them as service monitors for each
application.

By default, monitored data can be accessed through a Web interface provided
by each management VM. This console provides a dashboard containing basic
information for the VM status, such as deployment health and resource (CPU
and memory) utilisation. In addition, it provides information about the status
of each service in the deployment, the number of service instances, a list of
machines and their services, as well as a list of application services and their
corresponding health.

Finally, Cloudify comes with support for simple scaling rules that enable a
Cloudify application to dynamically scale out (acquire more instances) and scale
in (release instances) services when configurable conditions hold. For instance,
when the number of requests to be processed by a service per interval reaches a
certain limit.

Cloudify Lifecycles

Cloudify knows three interlinked lifecycles. Those for applications, those for
services, and those for service instances. In addition, there are some lifecycle-

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 25 of 66

like features available for cloud bootstrapping. We describe each of these life-
cycles in the following paragraphs.

Application lifecycle The application lifecycle is hard-coded into Cloudify
and cannot be configured by users. The basic mechanism to trigger a state trans-
ition is to either type commands at the user interface or by accessing the REST
service of a management VM. Applications go through the four phases install
(waiting for the installation of an application), Services installation (bringing up
all services of the application in the right order), uninstall (waiting for the applic-
ation to be uninstalled), and Services uninstallation (bringing down all services
of the application).

Service lifecylce The service lifecycle defines two events, namely preService-
StartEvent called prior to starting the service instances and preStopService called
after service instances have been shut down, but before for the virtual machines
allocated by the services have been shut down.

Service instance lifecycle At each virtual machine allocated and operated by
Cloudify, the deployment process installs the Universal Service Manager (USM)
that controls the lifecycle of each service instance and moreover steers the probes
that take care of the monitoring. Figure 5 lists almost all of the lifecycle events
available for service instances and shows examples when they may be used. Note
that the events of the service life-cycle (preStartService and preStopService) are
executed prior to init and after shutdown of all service instances.

Cloud lifecycle The bootstrapping mechanism used for clouds enables the use
of lifecycle-like functionality for clouds and management VMs. By default,
Cloudify copies a boostrap-management.sh file to any management VM.
While the name of the file is fix, its content may be adapted as needed. In addi-
tion, a pre-bootstrap.sh and a post-bootstrap.sh file may be spe-
cified. These are executed prior to and after boostrap-management.sh.

4.2 KairosDB
In this section, we present basic capabilities and features of KairosDB, a Java-
based, open-source, time-series database implementation that the Executionware
uses as a key component of the monitoring infrastructure. The decision for
KairosDB was made for the following reasons: (i) In contrast to many other
time-series databases, KairosDB is open-source and hence, allows extensions

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 26 of 66

name description/example
1 init invoked when the USM starts; may be

used for validating system environment;
2 preInstall may be used to get service binaries, e.g.

by downloading
3 install may be used to unzip and install service

binaries
4 postInstall may be used to adapt configuration files

according to environment
5 preStart may be used for checking that required

operating system files are available, like
files, disk space, and port

6 start launches the external process;
mandatory event

7 startDetection may be used to notify USM that a started
event is ready for use

8 stopDetection may be used to notify USM that the ser-
vice instance has stopped, be it intended
or unintended

10 postStart may be used to register service instances
with a load balancer

11 preStop may be used to unregister service instance
at the load balancer

12 stop may be used to add manual stop logic
13 postStop may be used to release external resources
14 shutdown should be used to perform any required

cleanup before the USM instance shuts
down

Figure 5: Selected life-cycle events for service instances

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 27 of 66

and modifications. (ii) KairosDB’s main open-source competitor, OpenTSDB3,
mainly targets the generation of metric graphs. Here, data is manipulated to
make good-appearing and meaningful graphs. For example, interpolation is used
to fill in holes left by missing data points. Apart from the fact that this is not in
the primary focus of PaaSage, evaluations also show that KairosDB outmatches
OpenTSDB by far: To this end, using the default row size in OpenTSDB’s HBase
we are able to store one hour of monitoring data, while using KairosDB in com-
bination with Cassandra [10] we are able to store three weeks of data in a single
row. (ii) KairosDB’s main capabilities reflect critical requirements as defined in
deliverable D1.6.1 [2]. In particular, these capabilities are:

1. KairosDB is a fast, distributed, and scalable time series database.

2. KairosDB in combination with Cassandra supports storing at millisecond
granularity. This allows the capturing of 40, 000 points of data per second
with just a single Cassandra node.

3. KairosDB provides support for both raw data as well as aggregations.

4. KairosDB supports grouping by tags, time range, or value to get filtered
data.

5. KairosDB supports import/export of data in (compressed) JSON files.

6. KairosDB provides diagrams of the aggregated metrics.

The following sections introduce the main features of KairosDB that will be
exploited by the Executionware prototype monitoring infrastructure.

General Architecture

KairosDB is a distributed database. That is, it can be configured such that mul-
tiple KairosDB instances running on different (physical or virtual) nodes cooper-
ate and provide a common view on the data stored by all these nodes. KairosDB
uses a configurable underlying data store that is used to persistently store the
database content. Yet, KairosDB uses this datastore not only for achieving per-
sistence, but also for spreading the data across all participating nodes.

In the default configuration, KairosDB uses Cassandra [10] as its data store.
Cassandra in turn, realises a consistent hashing ring [9] to interconnect its in-
stances and to spread data.

3http://opentsdb.org

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 28 of 66

http://opentsdb.org

aggr. description
avg average value
dev standard deviation
div each data point divided by a divisor
histogram calculates a probability distribution and returns

the specified percentile for the distribution
least_squares two points for the range representing the

best fit line through the set of points
max largest value
min smallest value
rate rate of change between pair of data points
sum sum of all values

Figure 6: List of KairosDB’s built-in aggregators.

{
"cache_time": 0,
"start_absolute": 1391464800000,
"end_absolute": 1391551200000,
"metrics": [
{
"tags": {},
"name": "kairosdb.jvm.total_memory",
"aggregators": [
{
"name": "div",
"divisor": "1024"

},

{
"name": "avg",
"align_sampling": true,
"sampling": {
"value": "1",
"unit": "milliseconds"

}
}

]
}

]
}

Figure 7: Example for aggregators on the jvm.total_memory metric. First
the div aggregator divides data points of the specific time interval by 1024.
Then, avg calculates the average value of the divided data point values.

Monitoring Support

KairosDB can store data points of any type of metric. KairosDB requires the
following fields for the inserted data points: Metric name, value, timestamp, as
well as other tags to distinguish between the different measurements. The latter
may include for instance VM id, cloud provider, VM-type, application fields
name, task name.

Aggregation

KairosDB comes with a series of built-in aggregators (cf. Figure 6) that perform
an operation over all data points of a specific metric that exist in the sampling

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 29 of 66

period. All aggregators, except rate and div allow downsampling, i.e., re-
ducing the sampling rate of the data points and aggregating these values over a
longer period of time.

Aggregators can also be chained: The output of one aggregator is sent as
input to the next. The order is retrieved from a JSON file that is also used to
actually define the aggregators. For example, the JSON query file shown in
Figure 7 includes two aggregators on the jvm.total_memory metric. The
first divides data points of the specific time interval by 1024 and the second
calculates the average value of the divided data point values. In addition to
the chaining capabilities, aggregators allow an easy modification by the user
yielding added value functionality.

4.3 Provisioning of Testbeds
For the development and testing of the current prototype, two testbeds are being
provided by the consortium. GWDG and FLEX run OpenStack and Flexiant
Cloud Orchestrator (FCO) respectively. The following paragraphs provide an
overview of the size and power of the respective testbeds.

GWDG’s OpenStack Testbed

GWDG provides its in-house GWDG Compute Cloud with virtual machine im-
ages with various wide-spread Linux operating systems pre-configured for in-
stant usage. Using these images, users can create virtual machines and perform
operations on them including suspending, pausing, rebooting, and delete.

The platform further allows assigning public IP addresses to virtual machines
and to define firewall rules. Finally, the GWDG Compute Cloud also provides
basic monitoring functionalities that enable the retrieval of data such as CPU
utilization, free memory, networks I/O on a per virtual machine basis.

The PaaSage consortium has access to the two GWDG OpenStack installa-
tions running OpenStack Essex and Folsom respectively. The Essex-based Cloud
has 6 physical hosts of which 4 are available for hosting virtual machines and 2
are used for cloud infrastructure management. Each host has 64 physical cores,
totaling 384 cores. The recent Grizzly-based Cloud has 8 physical hosts total-
ing 512 physical cores of which 320 are available for running virtual machines.
Each of our physical host has 256 GB of RAM, which totals to 1536 GB for the
Essex-based cloud and 2048 GB of RAM for the Grizzly-based Cloud. GWDG
can extend its Cloud resources using hardware-on-demand basis, with 9 addi-
tional physical hosts each having 64 cores and 256 GB of RAM at its immediate
disposal. All machines are operated in the data center of GWDG in accordance
with current data protection and privacy regulations.

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 30 of 66

Flexiant Testbed (FLEX)

Flexiant built and made available a testbed in the in-house datacentre at Flexiant
premises in Edinburgh. Having an own testbed for the consortium provides the
best opportunity for PaaSage components to be integrated to the cloud orches-
tration layer, have access to platform data and to know what is happening at the
physical level with RAM, CPU and storage. Further, this allows for an easy ver-
sion upgrade when there are specific new FCO features developed that can be
used for the benefit of PaaSage or to be shown in demos.

Flexiant’s testbed consists of ten compute nodes with different hardware
equipment. While each node has two network interface cards with 1 Gigabit
Ethernet links, the memory equipment and number of cores varies: four nodes
run a quad core CPU and 64 GB RAM, two nodes run a dual core CPU with
8 GB RAM, two nodes run a dual core CPU with 16 GB RAM, one node runs
a octa core CPU with 64 GB RAM, and one node runs a single core CPU with
8 GB RAM. One network interface card of each node is linked to the SAN node,
while the other connects to the FCO server running two quad core CPUs, two
1 TB Raid-1, and 16 GB of memory. Using this hardware platform, Flexiant is
capable of running over 450 virtual machines with 8 GB of RAM allocated and
further 230 virtual machines using 4 GB of RAM.

4.4 Conclusions
In this section, we have discussed the technical foundations of the Execution-
ware implementation. In particular, we detailed the Cloudify framework that
PaaSage uses as its primary deployment tool. We conclude that Cloudify has an
architecture that resembles a lot the Executionware architecture which enables
a quick realisation of support for basic use cases as envisaged in the M18 pro-
totype. Nevertheless, Cloudify’s single-cloud capabilities and its limited service
orientation require extensions for its use in PaaSage’s more sophisticated use
cases. First and foremost the handling of PaaSage’s complex scalability rules [4]
requires a modification of Cloudify’s built-in monitoring infrastructure (cf. Sec-
tion 5). In particular, a suitable user interface has to be provided for that the
Upperware can address cross-cloud service-level objective violations.

The use of KairosDB as a time-series database provides us with a distrib-
uted, highly scalable database perfectly suited for handling monitoring data. Its
distributed nature enables that it spans multiple cloud platforms. For the M18
prototype, KairosDB was integrated into the Executionware and tightly coupled
to the bootstrapping of clouds over the Executionware frontend. Moreover it
constitutes the access point for the meta-database to retrieve monitoring data.
The use of a distributed database spreading over multiple clouds is a first step
towards the real multi-cloud capability of the Executionware (cf. Section 6).

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 31 of 66

5 Application Deployment and Cloud
Management

One of the primary tasks of the Exectionware is to bring to execution, i.e. deploy
the application description received from the Upperware sub-system. In order to
deploy a new application, the Executionware requires information on the clouds
the application shall be deployed on, basic information on the underlying exe-
cution platform, e.g. the virtual machine, consisting of operating system, type
and size of virtual machines, memory requirements, etc. It may also require
knowledge about available virtual machine images. Apparently, not all of these
selection criteria are available on all types of cloud platforms. In particular, PaaS
environments do not offer the concept of a virtual machine [8]. Nevertheless, the
Executionware has to be able to deal with all of them.

Information such as the available clouds (in contrast to cloud instances) and
the virtual machine images per cloud have to be accessible for the Upperware
so that they can be used in the reasoning process and further be integrated in the
deployment configuration passed from the Upperware to the Executionware. In
order to enable a seamless development, testing, and first integration of the in-
dividual components, the M18 prototype of the Executionware provides a cloud
registry where information about clouds and images can be stored. Section 5.1
presents a high-level view on this registry. Mainly, it outlines what information
is available. For a detailed specification of how it is accessed, we refer to the
documentation of the code.

For the deployment in the M18 prototype is based on Cloudify (cf. Sec-
tion 4.1) the data passed over the Upperware-Executionware API eventually has
to be transformed in one or multiple working Cloudify configurations. For the
concrete API to be used is dependent on deliverable D2.1.2 [4] and further, the
integration of the various PaaSage components is scheduled after M18, Sec-
tion 5.2 mainly discusses a Cloudify-like API for the Executionware and further
provides an outlook on a CAMEL-based interface. Section 5.3 concludes the
section with a summary of the current implementation status of the Execution-
ware frontend.

5.1 The Executionware Cloud Registery
As stated in the terminology section of this document, a cloud is the URI of a
cloud instance combined with the necessary credentials to access the cloud in-
stance. The frontend of the PaaSage Executionware comes with a service that
allows the registration of clouds as well as their internal properties such as avail-
able virtual machine images and selectable hardware configurations. The service
is backed by a graphical, Web-based user interface that can be used to register

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 32 of 66

Domain of PaaSage Operator

Upperware

metadata

database

Executionware

Dispatcher

Web

frontend EW DB

Flexiant

Deployer

OpenStack

Deployer

Figure 8: Overview on the basic approaches to access the Executionware (in
particular, the dispatcher) through a HTTP interface and through a Web-based
GUI. The GUI can be used to register new clouds; information on the available
operating system images and the virtual machines and so on may be added on a
per-cloud bases. The deployment (cf. Section 5.2) is exclusively dealt with over
the HTTP-based interface and does not come with a GUI.

new clouds and properties of a cloud. In addition, the interface can also be quer-
ied by the Upperware over a HTTP interface. Figure 8 sketches the static part
of the Executionware as shown in Section 2 in combination with the registry. In
the following, we present the capabilities of the registry by first dealing with the
management of clouds and then presenting the way additional mechanisms are
treated.

Managing Clouds

The interface allows the following four operations to take place for a cloud:

1. register Provides the necessary information to access the cloud. This
includes the definition of the cloud platform (currently Flexiant and Open-
Stack) and further parameters that may depend on the type (such as URI,
username, password, keypair, ...). At success, the operation returns a
unique identifier for that cloud. Figure 1 shows some of the configura-
tion properties associated with a cloud.

2. start Starts a cloud as it was defined by register. This includes
the startup of a Cloudify management VM and co-located on that virtual

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 33 of 66

property description
name the name as seen by the user
driver the driver to use for accessing this cloud;

dependent on the cloud platform to be
supported;

driver configuration configuration parameters for the driver
such as URI of the cloud instance;

#management VMs desired number of management VMs

Table 1: Some of the configuration properties associated with a cloud

machine a KairosDB instance (cf. Section 6). Only after this step applic-
ations may be deployed to a cloud. The operation results in an error when
the cloud is already started or is currently in the progress of being stopped.
Otherwise, the URIs of the management VMs are returned.

3. stop Stops the cloud. This includes the stopping of all applications (com-
ponent instances) currently deployed on that cloud. It also removes the
management VM(s) and the TSBD instance(s). This operation returns an
error when it is not possible to stop the cloud or if it has not yet been
started.

4. delete Removes the cloud from the database. This operation can only
be executed when the cloud is not started (i.e. stopped).

register and delete are purely local operations that do not interact with
any cloud provider and hence do not require Internet access. Only start and
stop have impact on the cloud platforms and may cause costs. Please note that
for the M18 prototype, we have not foreseen any update functionality.

Registering Cloud-specific Data

The Web interface enables the registration of additional data with a particular
cloud. This particularly includes hardware configurations and operating system
images. For each image, the operating system, its version, and the system ar-
chitecture have to be specified. An image may further be tagged with keywords
to identify the software bundles already installed on the image. Regarding hard-
ware configuration, it is possible to define 3-tuples on a per cloud-basis. Such a
tuple consists of #cores, the amount of RAM capacity, and the storage capacity
to be used with a virtual machine.

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 34 of 66

When deploying an application, the user has to select the cloud, the virtual
machine image to use for that application, and the hardware configuration for
the virtual machine.

5.2 Deployment of Applications
Basically, the deployment of an application is triggered by the Upperware. In
order to execute the deployment, the Upperware invokes the HTTP API of the
Executionware frontend installation. Doing so, the Upperware passes a data
structure in JSON format that describes the application, its artefacts, and the
rules necessary for monitoring. In addition, the data may contain information on
which sensors to bring out on a per-component basis.

In order to enable a step-by-step development of the Executionware soft-
ware and furthermore, enable a step-wise integration of Executionware and Up-
perware functionality, the primary interface of the M18 prototype of the Exe-
cutionware frontend is a HTTP-based wrapper around the Cloudify deployment
functionality. The definition of a CAMEL-based interface between Upperware
and Executionware has been started, but its finalisation is beyond M18. In par-
ticular, it is dependent on D2.1.2 [4]. In the following, we briefly discuss both
APIs with the Cloudify API being usable and the CAMEL-based API being in
early draft state.

Cloudify API

For deploying Cloudify recipes for both services and applications we face the
same problem as for the cloud management: Cloudify’s file-oriented interface
has to be transferred to something that is much more service-like and hence can
be used similar to the cloud API presented in Section 5.1.

For that reason, in addition to the cloud-specific data already discussed, the
Web interface of the Executionware frontend also enables the registration of
archive files, e.g. zip files, that contain a Cloudify-specific application recipe. In
order to enable the re-use of certain applications components such as a Servlet
container (e.g. Tomcat) or a database, we further allow the registration of indi-
vidual services recipes. Again, these can be registered via archive files. Then,
application recipes can reference those services.

The registration of both service and application files happens via the Web-
based user interface. In addition, the operations that work with these files, in
particular the deployment of applications, can also be triggered over the Web
interface.

In order to enable the Upperware to access the very same functionality, a
further HTTP-based interface is required. The operations that have to be offered

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 35 of 66

HTTP op URL description
POST ./ register new application/service;

requires that archive file be passed;
returns an identifier that is unique for this Exe-
cutionware instance

GET,
PUT,
DELETE

./$Id get/update/delete registered application/service,
updating may be used to re-configure the entity
updating may also be used for deployment

Figure 9: HTTP-based API for registration of Cloudify services and applications
as well as deployment and scaling of applications. The root directory ./ is
/cf/applications/ for applications or /cf/services for services.

to the Upperware include starting, stopping, and scaling of application. The
interface URIs are listed in Figure 9. A detailed specification of the data and
data format expected for each operation as well as the specification of archive
files containing recipes is subject to ongoing work.

CAMEL-based Interface

Even though the definition of the final Upperware-Executionware API has only
been targeted for the integration period (M18–M21), the work has already been
started. The basic information required by the Executionware for being able to
deploy an application comprises (i) a definition of the software artefacts being
used and how they are assembled to software components. (ii) Information and
logic of how to install and configure a software artefact. (iii) The specification
of what components shall be deployed on what cloud and how many instances
shall be used of a particular component. In addition, (iv) information on what
hardware and operating system the component shall be executed, and (v) how
component instances shall be grouped.

Then, the Executionware has to map the data received to the clouds, virtual
machine images, and hardware configurations available. For instance, a com-
ponent that requires Linux may be matched to any Linux image while those
requiring Ubuntu may be matched to any images with any Ubuntu version. Fi-
nally, the Executionware will create valid Cloudify configurations and deploy
them afterwards. In order to control the steps executed by the Executionware,
they will be reflected in the Cloudify API presented in Figure 9. A first CAMEL-
enabled version of the Executionware frontend including data and data format is
sketched in Annex A.4.

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 36 of 66

5.3 Conclusions and Status of Implementation
In this section, we have recaptured the tasks and the requirements of the Execu-
tionware frontend whose main task is to serve as an access point for the Upper-
ware in order to deploy new applications or to change the deployment of existing
applications. For the M18 prototype, we have implemented a custom, Cloudify-
compatible driver for the Flexiant Cloud Orchestrator. The other targeted cloud
platform, OpenStack, is supported out-of-the-box by the jclouds middleware
suite4 that ships with Cloudify.

In addition, we implemented a Web-based front-end in order to support the
configuration of clouds and to enable Upperware access to the Executionware
functionality. So far, a Cloudify-compatible API is implemented, while the spe-
cification of a CAMEL-compatible API is still subject to ongoing work.

Concluding, the implementation status of the Executionware frontend at M18
matches the goals sketched for the infrastructure entities in Section 3.1, namely

1. to receive deployment information using a HTTP-based interface

2. to process that deployment information and deploy applications

3. to enable deployment to a single cloud that either runs Flexiant Cloud
Orchestrator or OpenStack as cloud platform.

4. to derive the right virtual machine image and virtual machine configuration
to use from the data passed by the Upperware

Finally, the fact that Cloudify deploys a Universal Service Manager on each
acquired virtual machine, also covers the goal we defined for runtime entities,
namely to provide an entity that functions as a communication endpoint for the
infrastructure entities. Goals defined for monitoring functionality are related to
the time-series database and hence related to Section 6.

6 Application Monitoring
Beside deployment of applications, monitoring the execution of each individual
component instance and virtual machine is a core feature of the Executionware.
Here, the monitoring modules of the Executionware provides a two-fold func-
tionality. On the one hand, it has to process monitoring data on the fly so that a
quick reaction to violations becomes possible. On the other hand, it has to feed
enriched and accumulated data back to the meta-data database for a later off-line
evaluation.

4http://jclouds.apache.org/

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 37 of 66

http://jclouds.apache.org/

The use of a time-series database is useful and appropriate as particularly
time-stamped, real-time data streams as emitted by monitoring sensors are not
well-suited for the meta-data database. This is due to the following reasons: (i)
Relational databases are not efficient at handling time-stamped data [7]. (ii) The
sheer amount of data puts an unnecessary load on the meta-data database, as (iii)
the system is in almost all cases interested in obtaining statistical measures over
raw data and not on the raw data themselves [2, 6].

The primary focus of the M18 prototype is on two features: (i) the provi-
sioning of monitoring data to the time-series database. That is, probes have to be
installed at the acquired virtual machines and the monitoring data has to be tar-
geted towards the time-series database. (ii) The data arriving in the time-series
database shall be accumulated. (iii) In addition, the time-series database has to
collect and consolidate the monitoring information available in multiple clouds.
(iv) It provides a mechanism to feed collected, filtered, and accumulated data
back into the meta-data database.

The reasons for the use of KairosDB as a technical foundation for the time-
series database have already been clarified in Section 4.2. The distributed cap-
abilities of KairosDB enable an easy consolidation of monitoring data stemming
from different clouds. In Section 6.1 we discuss the integration of the time-
series database with the Executionware frontend and in Section 6.2 we consider
its interactions with the meta-data database. Section 6.3 briefly summarises the
implementation status for the M18 prototype.

6.1 Integration to With Executionware
The integration of KairosDB with the Executionware happens at several levels.
First of all, instances of KairosDB have to be installed, deployed, and configured
whenever a cloud is bootstrapped by the Executionware frontend. Then, monit-
oring data retrieved from the Cloudify sensors in a cloud have to be fed into the
time-series database. Finally, it has to be selected which data shall be aggregated
by the time-series database.

Provisioning and Bootstrapping

For the data collection part of the monitoring infrastructure has to be available
already when an application is deployed, it is only reasonable to deploy at least
one instance of KairosDB when bootstrapping a cloud via Cloudify. In order
to achieve a global view on the collected data, the TSDBs running in multiple
clouds, but owned by the same tenant have to be interconnected.

The PaaSage Executionware exploits Cloudify and other Executionware mech-
anisms for the deployment of KairosDB instances each time a cloud is started

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 38 of 66

using the Executionware frontend. Consequently, it also undeploys this instance
whenever a cloud is shutdown.

On a technical level, the Executionware provides an own application recipe
for the time-series database consisting of an application description TSBD that
depends on KairosDB and Cassandra as services. In addition, we provide recipes
for each of the two services. This enables us to use the bootstrap-post.sh
hook (cf. Section 4.1) for deploying a KairosDB instance with each management
VM.

Feeding Data to the Database

For the M18 prototype, PaaSage’s Executionware exploits the monitoring cap-
abilities provided by Cloudify (cf. Section 4.1). In particular, we use Cloudify’s
sensors to retrieve necessary data from the virtual machines and component in-
stances. In addition, each KairosDB instance is accompanied by a daemon pro-
cess whose task is to periodically collect data from the Cloudify sensors and
push that data into KairosDB.

In order to simplify the data transfer, we provide an own interface to KairosDB
that extends the basic interface and eases pushing data to and pulling data from
the database. The interface may be accessed either via telnet or via REST. Re-
garding the first interface, the syntax is concise and easy to use:

put <metric name> <timestamp> <value> <tag>+ /n

The REST API can be exploited for adding measurement data by sending JSON-
formatted data through HTTP. For adding large amounts of data it is possible to
send gzipped JSON files and upload them with the HTTP content type set
to application/gzip. The general structure of the JSON file is shown in
Figure 10. The first entry inserts three data points of one metric, while the second
adds a single data point to another metric.

Using this approach the Executionware can push both management and ap-
plication specific information into KairosDB. In addition to using the default
sensors shipping with Cloudify our approach is further open for defining custom
sensors which can then be integrated them with the Executionware and Cloudify
mechanisms. As a proof of concept, we implemented a jBoss5 monitoring plugin
that functions as a sensor for PaaSage. It supports the following metrics:

busy_t: threads currently busy with processing HTTP requests

http_t: current total number of threads resolving HTTP requests

total_t: total number of threads used by the server
5http://www.jboss.org/

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 39 of 66

http://www.jboss.org/

[
{

"name" : "CPU-usage",
"datapoints" : [

[1391464800, 87%],
[1391464920, 73%],
[1391465040, 92%]

],
"tags" : {

"Cloud_provider":"Flexiant",
"VM-ID" : "1234",
"Application_componentID":"2345"

}
},

{
"name" : "Memory-usage",
"timestamp" : 1391464800,
"value" : 469,
"tags": {

"Cloud_provider":"OpenStack",
"VM-ID" : "1235",
"Application_componentID":"2346"

}
}

]

Figure 10: General JSON structure for pushing data to KairosDB over the REST
interface. The first entry inserts three data points of a metric denoting CPU
usage, while the second entry adds a single data point to a memory utilisation
metric.

avail_m: free memory available for the JVM running the server

Data Replication

From the deployment scenario follows that there is at least one instance of
KairosDB running on each bootstrapped cloud. All virtual machines from one
cloud report their monitoring data to a TSDB running in the same cloud as they
do. In order to be able to aggregate data issued from different clouds, it is ne-
cessary to interconnect the different TSDB instances. In fact, such an inter-
connection functionality is provided by the Cassandra platform underpinning
KairosDB.

Basically, instances of Cassandra form a consistent hashing ring [9]. Fig-
ure 11 depicts such a set-up with three KairosDB instances running in three
different cloud environments namely Flexiant, OpenStack, and Amazon EC2. In
order to be equipped against failure, disconnection or user-triggered undeploy-
ment of TSDB instances it is advisable to apply data replication.

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 40 of 66

domain of FCO cloud

API

Virtual
Machine

Management VM

KairosDB

Domain of OpenStack cloud

API

Virtual
Machine

Management VM

KairosDB

Cassandra

domain of Amazon EC2

API

Virtual
Machine

Management VM

KairosDB

Cassandra

Cassandra

KairosDB

load balancer/

proxy

Meta-data

database

Metrics

Collector

Figure 11: KairosDB multi-cloud replication group with load balancer

When writing to Cassandra, the write must succeed in a set of replicas before
returning an acknowledgement to the client application. The size of the replica
set is configurable and mainly determines the consistency level of the data store.
Majority quorum is a common scenario ensuring strong consistency, yet still
tolerating some level of failure. A majority quorum is calculated as rounded:
(#instances/2) + 1

In the example of Figure 11 three instances exist so that a majority quorum
requires 2 successful reads/writes in order to tolerate the failure of one replica:
If a write occurs in the Flexiant VM either the Amazon or OpenStack KairosDB
instance has to acknowledge it before the operation is considered successful.

6.2 Integration with Meta-data Database
In order to durably persist important information and make it available to other
sub-systems of the PaaSage platform, the data contained in the TSDB instances
and shared among them finally has to be stored in the meta-data database. For
that purpose, we introduce the Metrics Collector as an additional software entity.
The Metric Collector runs in the domain of the PaaSage operator and periodic-
ally queries the REST API through a load balancer of the KairosDB instances.

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 41 of 66

For KairosDB instances are replicated, the Metrics Collector can retrieve the
required information for the whole application (spanning multiple clouds) when
querying a single TSDB instance. In order to avoid overloading a single instance
we add an HTTP load balancer responsible for balancing the HTTP read requests
according to a configurable policy (cf. Figure 11).

The data retrieved by the Metrics Collector depends on the Service Level Ob-
jectives for the specific application and its components. Such objectives map to
particular composite/aggregated metrics and thus can be used in defining which
aggregators shall be used in the time-series database instances. The tags of the
data points facilitate the retrieval of specific information such as the execution
time of a specific deployment of a multi-cloud application, the CPU utilisation
of a particular virtual machine, the availability of application components in a
time interval, etc.

6.3 Conclusion and Implementation Status
In this section, we have recaptured the motivation, the tasks, and the require-
ments for the use of a time-series database. Its main task is to collect required
monitoring data from all initialised component instances, to consolidate this data
over multiple clouds, and to finally feed back the data to the meta-data data-
base. For the M18 prototype, we have integrated the Java-based open-source
KairosDB time-series database in the Executionware environment. The Execu-
tionware frontend installs an instance of KairosDB together with an instance of
the Cassandra distributed storage on all of Cloudify’s management VMs. For
the Cassandra storage instances form a consistent hashing ring, the full data set
is available from all KairosDB instances. We further implemented the necessary
logic to feed Cloudify’s monitoring data to KairosDB and in consequence to the
Cassandra storages. We also realised the Metrics Collector component that is
responsible for pulling the data out of KairosDB and storing it in the meta-data
database. Our implementation of a jBoss sensor shows the extendibility of our
monitoring approach.

While both the Metrics Collector and the KairosDB aggregators are capable
of doing their respective work, the automisation of their configuration is still
subject to ongoing work. In particular, deriving the necessary monitoring sensors
from the scalability rules attached to application specification (cf. deliverable
D2.1.2 [4]) as well as deriving required aggregators from service level objectives
is an important task for the upcoming period.

Concluding, the implementation status of the monitoring prototype at M18
matches the goals defined for the monitoring entities in Section 3.1, namely

1. to install specified sensors.

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 42 of 66

2. to retrieve values from dedicated sensors.

3. to collect monitoring data on a per-cloud basis.

4. to provide filtered and accumulated monitoring data to the meta-data data-
base.

Even though not mentioned in this section, also the demand to support scale-
out on a per-cloud, per component instance level is realised with the current
prototype. This is due to the fact that this feature is built-in to Cloudify for
simple applications and simple scalability rules.

7 Workflow Applications
Large-scale scientific workflows, such as computational fluid dynamic (CFD)
and Molecular Docking (MD), are compute-intensive applications that consist
of many tasks with interdependencies. The requirements of workflow execution
engines make the use of cloud platforms attractive. In addition, the various op-
timisation parameters that exist in such a highly complex application values the
use of PaaSage.

In the following, Section 7.1 first discusses the case for workflow execution
in PaaSage and identifies a generic approach of how to integrate it with the other
parts of PaaSage and in particular PaaSage’s Executionware. The workflows
considered in PaaSage and hence in this document exclusively deal with AGH’s
HyperFlow workflow engine [1] that we introduce in Section 7.2. Finally, we
present the status of the current implementation efforts in Section 7.3. More
details about HyperFlow and the Montage application is available online6 and in
deliverable D2.1.1 [4]. References to the installation guidelines implementation
status are available in the Annex.

7.1 The Case for Workflow Execution in PaaSage
The requirements of workflow execution engines make the use of cloud plat-
forms attractive for various reasons: (i) The resource requirements of a work-
flow application strongly depend on the stage it is in. While computing stages
require many compute nodes, a preparation or evaluation phase may require less.
(ii) Depending on the stage of a workflow, the type of nodes required may dif-
fer. Currently, this mainly includes the amount of memory or storage capacity.
In future cloud offerings, this may also target other hardware equipment such
as GPUs available in the virtual machines. (iii) The optimisation goals for a

6https://github.com/dice-cyfronet/hyperflow

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 43 of 66

https://github.com/dice-cyfronet/hyperflow

workflow may be different, again depending on its phase. For long lasting com-
putations it is possibly not too important whether they take one week or one
week and a day. In contrast, the rendering of the results should be reactive, at
least generate smooth graphics, and allow user interactions.

All of these requirements make PaaSage attractive for workflow engines.
Mainly because PaaSage can help to provide different optimisations depending
on the workflow phase, and hence, enables the best possible execution of the
workflow. In order to unleash the power of PaaSage, two demands have to be
satisfied. First, a workflow execution engine has to be made cloud-enabled.
Second, PaaSage has to be made workflow-enabled. The purpose of this section
is to analyse how this can be done.

The cloud-enabling of applications is a rather technical task that includes the
provisioning of installation and configuration scripts that can be executed auto-
matically by the cloud deployer. The integration into PaaSage, however, has to
happen both on a conceptual and on a technical level: As stated above, the re-
quirements and specification of a workflow application may change depending
on the stage of the workflow. In particular, this means that the PaaSage optim-
isation and deployment process shall be triggered whenever the workflow enters
a new stage. At the current stage of investigation, we think that this is best
realised when the workflow execution engine emits events using the Execution-
ware’s monitoring capabilties. Such a new_stage event will eventually reach
the Upperware that will envisage a new deployment of the application.

7.2 The HyperFlow Platform
HyperFlow defines a model of computation and provides an enactment engine
for complex distributed workflows. In HyperFlow, workflow enactment, i.e. the
coordination of control and data flow between application components, is strictly
independent from execution, i.e. the actual invocation of the application com-
ponents. This is illustrated on the conceptual HyperFlow architecture in Fig-
ure 12.

A workflow in HyperFlow is defined in an abstract way—as a set of pro-
cesses performing well-defined functions and exchanging signals. It is import-
ant to note that processes, functions and signals are abstractions of the workflow
model, and should not be confused e.g. with physical OS processes. The Hy-
perFlow workflow description is independent of the runtime environment and
specific interfaces or instances of the application components.

The role of HyperFlow is to (i) process the workflow description provided
as JSON files, and further to (ii) execute the ready tasks. The instance execut-
ing tasks is referred to as the Executor. HyperFlow is designed to plug-in

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 44 of 66

Enactment Execution

API

Hyperflow

Engine

Application Flow Model

(JSON)

Cloud

Executor

Web Service

Executor

Other

Executors

Cloud

Web

Service

Figure 12: Conceptual architecture of the HyperFlow workflow engine.

Figure 13: CPIM diagram [4] showing an example deployment of the Hyper-
Flow execution components and the Montage workflow across multiple virtual
machines.

various implementations of Executors. Besides cloud executor and Web ser-
vice executor as shown in Figure 12, other available executors are the simple
Command executor that executes the task locally as a command-line program,
and AMQPExecutor that uses an AMQP broker to queue tasks from where
ExecutorWorkers retrieve and then process them.

Figure 13 presents a CPIM diagram for the Montage application (cf. deliv-
erable D2.1.1 [4]). In real-world settings this application can be easily com-
posed of a pipeline of 10,000 tasks. The HyperFlow set-up shown in the fig-
ure uses the cloud executor to run the workflow. There, the HyperFlow en-
gine shall be deployed on one virtual machine alongside its runtime compon-

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 45 of 66

ents node.js and redis. The cloud executor is composed of RabbitMQ, an
AMQP compatible message queue deployed on a separate VM, and local work-
ers (AMQPJobExecutor). Each virtual machine allocated for workers has to
contain the worker binaries as well as the application binaries; that is in this
example the Montage binaries.

HyperFlow enacts the workflow according to its description and, when the
dependencies of a given task are fulfilled and it becomes ready for execution
the HyperFlow engine generates a task specification, sends it to the RabbitMQ
queue, awaits on the same queue for the completion of the task. Local executors
on the worker nodes fetch tasks from the queue, execute appropriate Montage
components, and send a message back to the queue to notify about the of a task.

7.3 Conclusions and Implementation Status
In this section, we have discussed the support for HyperFlow-based workflows
in PaaSage’s Executionware. We argued that workflows may particularly benefit
from being used in PaaSage, because of their additional dynamic with respect
to requirements. We also discussed a general approach to support workflows
in PaaSage by first making the workflow execution engine cloud enabled and
later on exploiting PaaSage’s monitoring capabilities in order to integrate the
two systems. For PaaSage makes use of the HyperFlow workflow engine, we
further introduced the architecture of this software framework.

So far, the implementation with respect to workflow support has targeted the
goal of making HyperFlow cloud enabled. The integration with the monitoring
functionality is beyod the M18 prototype and hence, beyond the scope of this
document.

The general concept for workflow execution in PaaSage is essentially to de-
ploy the HyperFlow engine and the AMQP cloud executor as additional applica-
tion artefacts driving the execution of the application itself. In order to facilitate
deployment of HyperFlow modules onto virtual machines running on the cloud,
we have prepared a cookbook for Chef infrastructure automation system. The
cookbook contains recipes (scripts) for installation of the software modules.

The recipes are designed in such a way that they can deploy and configure all
the required software modules together with all dependencies, by starting from a
fresh operating system installation. The current version of the cookbook requires
Ubuntu 13.10 in the 64-bit version. Such an image is available out of the
box on Amazon EC2 and on Flexiant cloud. Yet, the cloud-enabled version of
HyperFlow is not per se bound to Ubuntu. By using Chef, it is straight forward
to update the recipes to be compatible with other Linux distributions, such as
Debian or RedHat, if such need arises.

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 46 of 66

The cookbook for HyperFlow modules and applications includes recipes
for the HyperFlow engine and for the AMQP executor. In addition, the cook-
book also contains recipes for the installation of example workflow applica-
tions. These include the Montage workflow that has already been presented in
D2.1.2 [4] and the MolecularDocking application developed by USTUTT.
More details on recipes are available in Appendix C.

8 Data Farming Applications
Data farming is a methodology based on the idea that by repeatedly running a
simulation model on a vast parameter space, enough output data can be gathered
to provide a meaningful insight into relations of model properties and beha-
viour. After it has been designed, a data farming experiment goes through the
two phases simulation execution and progress monitoring as well as statistical
analysis of the results. Similar to the workflow engine (cf. Section 7), each of
these phases has dedicated requirements and can hence profit from PaaSage’s
sophisticated optimisation. Besides these workflow characteristics, data farming
offers more capabilities for optimisation that we list in Section 8.1.

Afterwards, Section 8.2 presents an overview on the Scalarm7 data farming
platform provided by AGH. The Scalarm platform focuses on conducting ex-
periments that follow this data farming methodology. It provides a complete
platform for conducting such experiments with heterogeneous computational in-
frastructures. Its various features and already integratd cloud support make it
particularly suited for an integration and exploitation in PaaSage. Finally, Sec-
tion 8.3 sketches the approach of an integration and presents the implementation
status of this undertaking.

8.1 The Case for Data Farming in PaaSage
Beside the opportunities already provided by the workflow discussion in Sec-
tion 7, data farming offers even more chances to exploit the optimisation mech-
anisms provided by PaaSage.

A particular goal of the use of PaaSage for data farming experiments is on
the one hand to automatise deployment and size of the various experiments. In
addition, PaaSage can help in maximising hardware utilisation. For instance, it
may decide whether it is better according to a specified metric to run multiple
experiments parallel on a multi-core CPU or chose to acquire multiple single-
core machines. Finally, supporting cloud environments to conduct data farming

7http://www.scalarm.com/

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 47 of 66

http://www.scalarm.com/

master

part

Information

Service

Experiment

Manager
Storage

Manager

Experiment

Manager

user

admin

simulation code

experiment specs

experiment
information

scaling

rules

worker

part
infra-

structure A
Simulation

Manager

Simulation

Manager

Simulation

Manager

infra-

structure B

infra-

structure C
execution on concrete infrastructure

location

information

simulation binary output

Figure 14: The Scalarm architecture.

experiments is especially important due to reducing the necessary upfront in-
vestment in hardware and provided elasticity.

Concluding, integrating data farming with PaaSage is an important step to-
wards building a fully autonomous platform for data farming. Data farming may
particularly benefit from the conceptually unlimited pool of resources provided
by multiple clouds and the fact that PaaSage uses integrated scaling manage-
ment.

8.2 The Scalarm Platform
The Scalarm platform supports all phases of a data farming experiment, from
design through simulation execution and progress monitoring, to statistical ana-
lysis of results. It is suited for different sizes of experiments ranging from dozens
to millions of simulations while maintaining computation efficiency through
massive scalability. Finally, Scalarm is able to exploit heterogeneous computa-
tional infrastructure. It also supports private and public clouds as well as legacy
infrastructures such as Grids.

Scalarm provides two distinguishing features compared to other data farming
frameworks: First, it extends the usual batch-like experiment execution routine—
the user submits an experiment as a single package, waits for all simulations to
compute, and then analyses the obtained results—by the capability to expand
the parameter space of currently running experiments. The decision to expand
can be based on an on-line analysis of already computed simulations. Second,
Scalarm enables the adjustment of computational resources dedicate to run ex-
periments. Hence, the user may specify only a small parameter space with small
amount of resources at first, and expand it later on.

The Scalarm architecture is depicted in Figure 14. Scalarm decomposes the
functionality of supporting data farming into a set of loosely coupled services

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 48 of 66

responsible for managing. In particular, we can distinguish between the master
and the worker part of the system. The master part consists of the Experiment
Manager, Storage Manager, and Information Service. These can be located on
separate resources, e.g. on different virtual machines, but not necessarily have
to. The suggested resource configuration depends on the size of the conducted
data farming experiment. The worker part of Scalarm solely consists of the
Simulation Manager service.

Experiment Manager The Experiment Manager provides a GUI that pro-
cesses all interaction between users and the Scalarm platform. As such, it provides
a coherent view on the status and data of all running and completed data farming
experiments. It enables users to prepare, schedule, and monitor experiments or
to conduct statistical analysis on results. It is also responsible for dispatching
simulations to Simulation Managers in the worker part.

Storage Manager Other Scalarm services, mainly Experiment and Simulation
Managers use the Storage Manager as data back-end. The data stored there
includes structural information about executed simulations and experiments as
well as actual results of simulations. The Storage Manager comes with a built-in
load balancer that hides the distributed nature of the service.

Information Service The Information Service represents a well-known entity
that can be queried by all services to retrieve the location of any other service.
Therefore during a service start-up, only the location of an Information Service
instance has to be known.

Worker Service The worker service is an intelligent wrapper around the actual
simulation runs. It can be deployed on various computational infrastructures, in
particular on different cloud platforms. The Simulation Manager is designed to
operate in highly dynamic and unreliable environments and can tolerate the fail-
ure of Experiment Manager and Storage Managers instances as well as network
connectivity issues.

After having been scheduled to an execution environment such as a virtual ma-
chine, the Simulation Manager performs a four step execution loop. Once it
finishes a loop it starts over with the next one. Starting one simulation after
another reduces the resource acquisition time, e.g. virtual machine startup, and
increases the overall experiment performance. The four steps are as follows: (i)
The Simulation Manager retrieves a configuration and simulation binaries from
the Experiment Manager. (ii) The Simulation Manager obtains a simulation con-
figuration, i.e. a vector of input parameter values, which is a single element of

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 49 of 66

the experiment parameter space. (iii) The Simulation Manager executes the sim-
ulation possibly accompanied by a progress monitor. For performance reasons,
the Simulation Manager may execute one simulation with multiple input vectors
in parallel provided that sufficient CPU cores are available and machine load al-
lows for it. (iv) The Simulation Manager captures the output and uploads it to
the Experiment Manager.

8.3 Conclusions and Status of Implementation
In this section, we have discussed the case for data farming in PaaSage. We have
seen that the workflow-like stages each data farming experiment passes through
open the same optimisation potential as for workflows (cf. Section 7). At the
same time, an advanced and modern data farming framework such as Scalarm
allows optimisation capabilities beyond these of mere workflows.

In order to bring Scalarm to cloud platforms, the Ruby-based implementa-
tion of Simulation Manager was dropped and replaced by a Perl-based reimple-
mentation. This is mainly, because, Ruby interpreters is not usually installed by
default on many systems. This choice was approved by the fact that this Sim-
ulation Manager was able to run out of the box on virtual machines provided
by Amazon EC2 and the cloud testbeds within PaaSage namely OpenStack and
Flexiant.

From the PaaSage point of view, Scalarm is a single application consisting
of multiple components. Each service has different requirements with respect to
dependencies and scaling rules. The master part of the architecture coordinates
the process of a data farming experiment, while the worker part, consisting of
multiple instances of the Simulation Manager entity, is responsible for executing
the actual simulation. To enable an integration with PaaSage, initial descriptions
of each Scalarm service were prepared with the CloudML language. Due to that
it is possible to allow an automatic deployment of the whole Scalarm platform
on a static set of resources.

During an experiment, the Experiment Manager schedules Simulation Man-
ager instances onto available computational resources. Furthermore, the Simula-
tion Manager is responsible for executing user simulation on a particular compu-
tational resource, e.g. a virtual machine. As both entities share capabilities and
tasks of Executionware Dispatcher and Execution Engine respectively, they are
the primary target for an integration of Scalarm into PaaSage’s Executionware.
This is the primary goal of current development efforts.

In order to take the full advantage of functionalities offered by PaaSage,
Scalarm has to be integrated at service description, scalability, and API level.
The realisation sketch for such an integration is subject to Section 9.

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 50 of 66

9 Conclusion and Future Work
In this document we have presented fundamentals of PaaSage’s Executioware
and the current status of the Executionware implementation that is released as a
prototype at M18. In the PaaSage architecture, the Executionware’s main task
is to bring to execution, i.e. deploy, applications that have been modelled by
the application developer and optimised according to other constraints such as
policies by the Upperware. In addition, it is the Exectionware that gathers neces-
sary monitoring information, accumulates them, and finally feeds them back to
the meta-data database so that the Upperware can make use of it. The prototype
implementation is based on the open-source tools Cloudify and KairosDB.

Architecture-wise, the Executionware consists of three main parts: infra-
structure, run-time, monitoring. Entities belonging of the infrastructure part,
are hosted on the premises of the PaaSage operator and ensure that application
deployment can successfully take place. They are implemented by the Execu-
tionware frontend module (cf. Section 5). Entities belonging of the run-time
system run on the virtual machines deployed in the various clouds. Their main
purpose is to enable a remote steering of the respective virtual machine, to in-
tercept direct interactions with the cloud provider and finally, to control network
traffic.

Finally, the monitoring entities of the Executionware are concerned with
gathering monitoring data from the various virtual machines and component in-
stances. This is done through sensors deployed with the virtual machines as
well as monitoring information provided by the cloud operator. In addition, the
monitoring part is concerned with collecting all the information, aggregating the
data and eventually, feeding that data back to the meta-data database. The pro-
totype collects monitoring data in the time-series database and uses the metrics
collector component to feed it back to the meta-data database.

In addition to the basic functionality, the Executionware implementation is
extended with dedicated solutions for workflow-based applications as well as
data farming applications. In particular, initial work has been done to prepare
the HyperFlow workflow engine and the Scalarm data farming platform for an
integration with the Executionware.

9.1 Summary of Implementation Status
Table 15 lists planned features of the Executionware and also shows those fea-
tures that have already been implemented. In particular, these features cover the
scope targeted in Section 3.1. The combination of all these features enables the
use of the PaaSage Executionware in the following manner:

1. Register supported clouds and images

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 51 of 66

features of infrastructure entities status
#1 single cloud deployment done: M18
#2 cloudify-based API done: M18
#3 installation of sensors done: M18
#4 Web-based registration of clouds and images done: M18
#5 Web-based registration of application binaries done: M18
#6 Flexiant driver for Cloudify done: M18
#7 support for TSDB bootstrapping done: M18
#8 CAMEL-based API started, finishes <M24
#9 multi-cloud deployment starts > M21
#10 integration of scalability rules starts >M21
#11 installation of dedicate sensors starts >M21
#12 support for deployment changes starts >M21

features of run-time entities status
#13 basic exeution engine done: M18
#14 more sophisticated execution engine starts >M21
#15 interceptor implementation starts >M21
#16 interpretor implementation starts >M21
#17 migration support starts >M30

features of monitoring entities status
#18 single-cloud scale up of components done: M18
#19 support for multiple sensors done: M18
#20 support for basic monitoring data done: M18
#21 collect monitoring data at a single location done: M18
#22 aggregation of monitoring data done: M18
#23 simple scale out of application per cloud done: M18
#24 feed monitoring data back to meta-data data-

base
done: M18

#25 support for deployment changes >M21
#26 normalisation of monitoring data >M18, finishes <M24
#27 support scalability for monitoring infrastructure >M21
#28 derive required sensors from scalability rules >M24
#29 mechanisms to support Upperware by detecting

service level objective violations
>M24

Figure 15: Overview of planned and realised features for the Executionware core
entities.

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 52 of 66

features for HyperFlow status
#1 cloud-enablement of HyperFlow platform done: M18
#2 cloud bootstrapping functionality done: M18
#3 modelling of some use cases in CloudML done: M18
#4 integration in Executionware

monitoring infrastructure
>M21

features for Scalarm status
#5 Perl-based reimplementation

of Simulation Manager
done: M18

#6 generation of Scalarm-specific
monitoring streams

done: M18

#7 provisioning of CloudML description started
#8 support for running Scalarm

workers with OpenStack
started

#9 support for running Scalarm
workers with Flexiant

started

#10 integration in Executionware
monitoring infrastructure

>M21

Figure 16: Overview of planned and realised features for integration support for
workflows and data farming applications.

2. Bootstrapping of a distributed time-series database instance per cloud

3. Be accessible by the Upperware through a HTTP-based API

4. Deploy single applications consisting of multiple components to a single
cloud

5. Monitor the entire application and component instances based on sensors

6. Scale out components due to overload on a per-cloud basis

7. Collect and aggregate monitoring data

8. Feed back monitoring data to the meta-data database

Concluding, this functionality serves well as a solid prototype with a basic
functionality, that yet offers flexibility and the possibility for step-by-step en-
hancements for more sophisticated functionality in later stages of the project.

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 53 of 66

The provisioning of two testbeds enables that Executionware features can be
tested during the integration period M19–M21.

In parallel to the development of the first Executionware prototype, serious
efforts have been made to prepare the integration of both workflow and data
farming functionality in the PaaSage Executionware. Here, the initial work has
been to make the used platforms, i.e. HyperFlow and Scalarm, cloud-enabled
and support their deployment in cloud environments (cf. Figure 16). In partic-
ular, support for running them on Executionware’s main cloud infrastructures
OpenStack and Flexiant has been realised.

9.2 Roadmap to Final Version
Open issues and planned work can be found in any of the areas covered in this
document. We sketch them following the structure used on this document.

Testbeds

While Flexiant’s testbed is available and ready for used, there is ongoing work
in GWDG’s OpenStack platform. This work includes opening up OpenStack’s
Nova API access to clients outside the GWDG network. This is required by the
consortium in order to enable automatic control of resources by PaaSage sys-
tem components such as the Executionware. In addition, CETIC is planning to
establish another OpenStack-based testbed running the latest OpenStack release
Icehouse to be released in April 2014. Flexiant, in turn, targets the implementa-
tion of an open-source, client driver for their platform.

Infrastructure Entities

With respect to the infrastructure entities, future work will include the support
and definition of a CAMEL-based API to the Executionware frontend. This in-
cludes support for deployment changes. Moreover, realising support for multi-
cloud deployment and for extended scalability rules [4] are the natural next steps.
In particular, the provisioning of sophisticated scalability rules enables sensor se-
lection at run-time and deployment-time which may reduce the amount of overall
monitoring data.

Further tasks include the integration of frontend data store with the meta-data
database. Similar, the user interface for the registry shall be integrated with the
social network. Both, meta-data database and social network are developed in
work package 4 and described in deliverable D4.1.1 [5].

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 54 of 66

Run-time Entities

With respect to the run-time entities, the next steps include the provisioning of
basic interceptor and interpreter implementations which are unavailable at M18.
These efforts will be accompanied by the development of a more sophisticated
execution engine whose functionality is beyond what Cloudify offers. Finally,
at later stages of the project we target to realise cross-cloud migration support of
running component instances.

Monitoring Entities

With respect to monitoring entities, the primary focus will be on integrating
scalability rules. In particular, it is necessary to automatically create metrics
depending on the requirements of the particular deployment information. Also,
mechanisms have to be established that enable the Upperware to realise scalab-
ility across cloud boundaries. Finally, the scalability of the entire monitoring
infrastructure has to be tackled. This is due to the fact that a single collector
node may become overloaded when too many data providers are in the system.

Workflow Applications

The primary task of integrating the workflow engine with the Executionware
is an integration and extension of the Executionware monitoring infrastructure
such that custom, application-specific events can be (i) emitted, (ii) filtered, and
(iii) trigger custom, application-specific actions.

For the integration phase (M19–M21), we attempt to realise a Cloudify-
compatible version of the workflow engine that can be deployed using the M18
prototype. For that purpose, additional bootstrapping scripts will to be prepared.

Data Farming Applications

The integration of data farming application with our Executionware has to hap-
pen on the level of application description, scalability, and API:

A transparent deployment of Scalarm applications is only possible after each
Scalarm service has been described with CloudML [3]. Only then will the Exe-
cutionware be able to handle all actions required for the successful deployment
of the whole Scalarm platform.

So far, we have evaluated the possibilities for generating Scalarm-specific
monitoring streams. Scalarm will enable scalability by exploiting PaaSage’s
monitoring and scaling rules. We define a scalability rule for each Scalarm
service based on monitoring parameters and taking into account non-functional
parameters. As any PaaSage application component, Scalarm services generate

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 55 of 66

a stream of monitoring data that is received and processed by the monitoring
infrastructure.

Making the Experiment Manager PaaSage-aware leverages the benefits of
the API offered by the Interpreter entity. Such awareness enables the end user
to manually increase the amount of computational resources dedicated to run an
experiment as long as no global constraints (e.g., total costs) are violated.

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 56 of 66

References
[1] Bartosz Balis. “A model of computation and enactment engine for com-

plex distributed workflows”. In: EuroPar. submitted. 2014.

[2] The PaaSage Consortium. D1.6.1—Initial Architecture Design. PaaSage
project deliverable. Oct. 2013.

[3] The PaaSage Consortium. D2.1.1—CloudML Guide and Assessment Re-
port. PaaSage project deliverable. Oct. 2013.

[4] The PaaSage Consortium. D2.1.1—CloudML Implementation Documentation—
First Version. PaaSage project deliverable. Mar. 2014.

[5] The PaaSage Consortium. D4.1.1—Prototype Metadata Database and So-
cial Network. PaaSage project deliverable. Mar. 2014.

[6] The PaaSage Consortium. D6.1.1—Initial Requirements. PaaSage project
deliverable. Mar. 2013.

[7] Luca Deri, Simone Mainardi and Francesco Fusco. “Tsdb: A Compressed
Database for Time Series”. In: Proceedings of the 4th International Con-
ference on Traffic Monitoring and Analysis. TMA’12. Vienna, Austria:
Springer-Verlag, 2012, pp. 143–156. ISBN: 978-3-642-28533-2. DOI: 10.
1007/978-3-642-28534-9_16. URL: http://dx.doi.org/
10.1007/978-3-642-28534-9_16.

[8] Steffen Kächele, Christian Spann, Franz J. Hauck and Jörg Domaschka.
“Beyond IaaS and PaaS: An Extended Cloud Taxonomy for Computation,
Storage and Networking”. In: UCC 2013: IEEE/ACM 6th International
Conference on Utility and Cloud Computing. IEEE Computer Society,
2013.

[9] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew
Levine and Daniel Lewin. “Consistent Hashing and Random Trees: Dis-
tributed Caching Protocols for Relieving Hot Spots on the World Wide
Web”. In: Proceedings of the Twenty-ninth Annual ACM Symposium on
Theory of Computing. STOC ’97. El Paso, Texas, USA: ACM, 1997,
pp. 654–663. ISBN: 0-89791-888-6. DOI: 10.1145/258533.258660.
URL: http://doi.acm.org/10.1145/258533.258660.

[10] Avinash Lakshman and Prashant Malik. “Cassandra: A Decentralized Struc-
tured Storage System”. In: SIGOPS Oper. Syst. Rev. 44.2 (Apr. 2010),
pp. 35–40. ISSN: 0163-5980. DOI: 10.1145/1773912.1773922.
URL: http://doi.acm.org/10.1145/1773912.1773922.

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 57 of 66

http://dx.doi.org/10.1007/978-3-642-28534-9_16
http://dx.doi.org/10.1007/978-3-642-28534-9_16
http://dx.doi.org/10.1007/978-3-642-28534-9_16
http://dx.doi.org/10.1007/978-3-642-28534-9_16
http://dx.doi.org/10.1145/258533.258660
http://doi.acm.org/10.1145/258533.258660
http://dx.doi.org/10.1145/1773912.1773922
http://doi.acm.org/10.1145/1773912.1773922

Appendix
In this appendix, we provide technical details to the individual software modules
developed for the Executionware M18 prototype. Where applicable, we refer to
sources of available (online) documentation. We consider the individual modules
and applications one-by-one.

A Executionware Frontend
With respect to the Executionware frontend, this section details implementation
aspects and licensing schema. Furthermore, it states more technical features of
Cloudify and finally, it presents a sketch of the Executionware API as it will be
used by the Upperware.

A.1 Implementation Aspects
The Web frontend has been implemented using the Play framework8 and is ready
for use. The data is currently stored in a PostgreSQL database but will be mi-
grated to the meta-data database in later stages of the project. The description
of how to install the Executionware (including the Web frontend) will be doc-
umented in the source code repository once the Executionware frontend has
been released as open source software. The planned licensing scheme will be
an Apache 2.0 license.

A.2 Cloudify Cloud Configuration
As stated in Section 4.1, each cloud known to a Cloudify installation has its
own configuration directory that also defines the cloud’s name. Within this dir-
ectory resides a .properties file that defines environment variables and a
.groovy file that contains the actual cloud definition including available vir-
tual machine types (called templates), references to operating system images,
the configuration for the management VMs, and the cloud driver to be used.

A.3 Cloudify Recipes
The Executionware frontend enables the deployment of Cloudify recipes. As
discussed in Section 5.2 this requires that valid Cloudify recipes be registered at
the Executionware frontend first.

8http://www.playframework.com

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 58 of 66

http://www.playframework.com

/
/<appname>-application.groovy # application recipe
/<appname>-application.properties # application properties
/<service1> # directory with installation and

lifecycle scripts for service1
/<serivce...> # other service directories
/<serviceN> # directory with installation and

lifecycle scripts for serviceN
/... # other files required by the application

Figure 17: Archive file containing an application description

/
/<servname>-service.groovy # service recipe
/<servname>-service.properties # service properties
/<servname>_<lifecycl>.groovy # service lifecycle handlers
/... # other files required by the

recipe

Figure 18: Archive file containing a service description

Application recipes are stored as archive files. The structure of such a file is
as indicated in Figure 17. The /app directory contains any data and files that are
required to deploy the application including all of its services (cf. Section 4.1).

In order to re-use individual components, an application recipe may make
use of a service recipe. Again, service recipes can registered as archive files
through the Executionware frontend. The structure of such a file is as indicated
in Figure 18.

A.4 CAMEL-based API
In the following, we develop an Executionware/Upperware API that functions as
a starting point for the upcoming integration phase. The primary goal of the API
is to provide (a) a deployment mechanism that is easy to use by the Upperware
and (b) avoids duplicated functionality between Upperware and Executionware.
In particular, it does not seem reasonable to have CloudML interpretation and
parsing functionality available in the Executionware as well. In order to maintain
the service characteristics of the Executionware, all operations are offered as a
JSON/REST interface over the HTTP protocol.

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 59 of 66

HTTP op. URI description
GET /cloud/ list all available clouds
GET /cloud/$id list details for this cloud
GET /cloud?query list available clouds with queried

properties
GET /machine/ list available machines
GET /machine/$id list details for this machine
GET /machine?query list available machines with queried

properties
POST /machine/ registers a new machine template

(CPU, memory, storage configura-
tion with a particular cloud). Re-
turns a UUID for that machine.

DELETE /machine/$id deletes the particular machine tem-
plate

GET /image/ list all available images
GET /image/$id list all details for this image
GET /image?query list available images with queried

properties

Figure 19: Part of Executionware API dealing with clouds, images, and virtual
machine configurations

Dealing with Cloud Properties

In order to be able to deploy applications, it is necessary that the hardware prop-
erties of virtual machines, the images running on them, as well as the cloud they
are acquired from be specified. Figure 19 lists the API for dealing with all those
cloud-related aspects. The following paragraphs briefly discuss the respective
aspects.

Cloud Definition As stated in Section 5 the Executionware frontend comes
with a GUI-based mechanism to add clouds to a registry. In order to enable
the Executionware to make use of this registry, the Upperware interface offers a
mechanism to query and to list available cloud platforms.

Virtual Machine Configuration In addition to clouds, a IaaS-based applica-
tion requires information about available hardware configurations. In particular,
it should be possible to reference dedicated combinations of particular hardware
combinations by a common identifier. For that reason, the API of the Execution-
ware frontend enables the use of virtual machine templates that depict particular

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 60 of 66

machine properties. This enables the Upperware to register such properties with
the Executionware and further re-use them as required.

Image Definitions Finally, a virtual machine instance requires an image that
defines the file system visible by the operating system and the applications run-
ning in this virtual machine.

Dealing with Application Properties

With respect to applications we require a separate view on components, i.e. de-
ployable artefacts, on the one hand. Each of these elements is accompanied by
a set of files and life-cycle handlers. On the other hand, for deploying applica-
tions, components have to be grouped in multiple ways. First, they have to be
assigned to applications and second, they have to be bundled according to their
assignment to virtual machines. In the following, we first discuss operations to
handle components, applications, and bundles (cf. Table 20). Then, we also
consider life-cycle handlers and files (cf. Table 21). For describing the API, we
overrule the definitions of the terminology section.

Components A component is a representative for an executable entity (e.g.
a binary) that can be deployed and run. It can be enriched with various life-
cycle handlers (see below) that are used at various stages of the component’s
life-cycle. For instance for installing the correct binaries. Per se components
are fully application opaque. That is, they cannot be deployed as is, but have
to be put in the context of an application, possibly by being grouped with other
components. This is done through bundles (see below).

Applications An application defines a closure for a set of deployable and is
the primary access point for starting and stopping the entire application. The
application also defines how components are grouped (ie. which ones run on the
same virtual machine and scale out together).

Bundles A bundle denotes a group of components shall shall be deployed to-
gether on a particular cloud. For that reason, bundles always depend on an
application and further are self-contained in the sense that they can be scaled
independent from other bundles.

Handlers A life-cycle handler is an executable entity (e.g. a binary or a script)
whose purpose is to deal with a particular event at a component’s life-cycle.
Handlers are dedicated to a particular component. Yet, a component may have
multiple handlers for the same event, but different operating systems.

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 61 of 66

HTTP op. URI description
GET /component/ list all available components
GET /component/$id list details for this component
GET /component?query list all available components with

queried properties
POST /component/ add a new component to the re-

gistry
PUT /component/$id change this component accord-

ingly
DELETE /component/$id delete component and all of its

handlers
GET /application/ list all available applications
GET /application/$id list details for this application
GET /application?query list all available applications with

queried properties
POST /application/ add a new application to the re-

gistry
DELETE /application/$id delete application
GET ./bundle/ list all available bundles
GET ./bundle/$id list details for this bundle (e.g.

#instances)
GET ./bundle?query list all available bundles with

queried properties
POST ./bundle/ add a new bundle to the registry
DELETE ./bundle/$id delete bundle undeploying all of

its instances

Figure 20: Part of Executionware API dealing with binaries, recipes and applic-
ation deployment. The root for the bundle URIs are /application/$id.
The bundle information contains for instance the number of currently running
instances.

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 62 of 66

HTTP op. URI description
GET ./handler/ lists all available lifecylce handlers re-

gistered with that component
GET ./handler?query list details for this handler
POST ./handler/ add a new handler to that component
DELETE ./handler/$id delete this handler
GET ./file/ list all files registered with this com-

ponent
DELETE ./file/$id delete this file
POST ./file/ create new file (uploads the binary)
PUT ./file/$id modify this file (uploads a new binary)

Figure 21: Part of Executionware API dealing with handlers and additional files.
The root for each URI is a dedicated component: /component/$id.

File A file is a named sequence of binary data. All files registered with a
component will be copied to any location where this component is deployed.

B Time-series Database and Monitoring
KairosDB has already been installed and configured on three Flexiant FCO VMs.
The following URL directs to the web interface of one KairosDB installation (in
one of the three VMs), while the other two installations are command line based.

http://109.231.122.119:8080/
Finally, source code for inserting data in a KairosDB instance (i.e. a KairosDB

client), as well as the implementation of the Metrics Collector component that
mediates between the MDDB and KairosDB will be provided before M18.

C Workflow Platform
Installation instructions for HyperFlow9 and the AMQP executor10 are available
online together with the current version of recipes for HyperFlow deployment11.
In the following, we present some technical details on the respective deployment
recipes as well as an example for configuring an for being used with HyperFlow.

9https://github.com/dice-cyfronet/hyperflow
10https://github.com/dice-cyfronet/hyperflow-amqp-executor
11https://github.com/malawski/hyperflow-deployment

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 63 of 66

http://109.231.122.119:8080/
https://github.com/dice-cyfronet/hyperflow
https://github.com/dice-cyfronet/hyperflow-amqp-executor
https://github.com/malawski/hyperflow-deployment

C.1 Provided Cookbook
The cookbook for deployment of HyperFlow modules and applications is de-
signed to be used with chef-solo, so no installation or access to chef-server
is required. For the M18 prototype, the following recipes have been developed.

HyperFlow Engine This recipe installs the current release of HyperFlow en-
gine by downloading it from GitHub12. It installs the node.js runtime using a
third-party node.js recipe, the Redis database package as well as all pack-
ages Redis depends on. For the Redis installation, the NPM package manager
of node.js is used. An additional recipe is used to install and configure the
RabbitMQ message broker for AMQP communication.

AMQP Executor This recipe installs the current release of AMQP executor
of HyperFlow. As dependencies it installs Ruby 2.0. The executor itself is a
installed as Ruby Gem package, together with its dependencies. The recipe cre-
ates also startup scripts for cloud-init configuration system and optionally the
configuration of credentials for accessing storage for the executor.

Molecular docking This recipe installs USTUTT’s Molecular Docking ap-
plication by building it from its source code. It also installs the depending pack-
ages such as the OpenMPI13 library and the gcc compiler. Moreover, further
recipes have been created in order to install and configure additional package
dependencies such as The Persistence of Vision Raytracer (POV-Ray)14 for con-
verting the output results into image files, and the lighttpd15 web server for
downloading the output results and the image files.

C.2 Usage Example
All the recipes used by the workflow engine can be grouped in the configura-
tion files for the specific VMs. Examples of such configuration for Master and
Worker nodes are given in Figure 22.

In order to deploy the molecular docking application provided by USTUTT
using HyperFlow, a JSON description file is created, as shown in Figure 23.
From this figure, the application is composed of three stages or HyperFlow pro-
cesses that need to be run in a sequential order, i.e. (i) pre-processing; (ii) run-
ning of the application (which includes compiling the source code), and (iii)
post-processing.

12https://github.com/
13http://www.open-mpi.org/
14http://www.povray.org/
15http://www.lighttpd.net/

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 64 of 66

https://github.com/
http://www.open-mpi.org/
http://www.povray.org/
http://www.lighttpd.net/

// master
// include recipes in the runlist

"run_list": [
"recipe[nodejs::default]",
"recipe[rabbitmq::default]",
"recipe[rabbitmq::mgmt_console]",
"recipe[workflows::hyperflow-engine]"

]
}

{
// worker
// set node attributes
// "amqp_executor": {
// "AMQP_URL" : "amqp://login:password@host

:5672/vhost",
// "AWS_ACCESS_KEY_ID" : "XXXXXXXXXXX",
// "AWS_SECRET_ACCESS_KEY" : "

YYYYYYYYYYYYYYYYYYYYYYYYYY"
// },
// include recipes in the runlist

"run_list": [
"recipe[workflows::molecular_docking]",
"recipe[workflows::povray]",
"recipe[workflows::amqp-executor]",
"recipe[workflows::lighttpd]"

]

Figure 22: Example of configuration scripts for deployment of HyperFlow Mas-
ter and Worker nodes.

In the pre-processing stage, a universally unique identifier (UUID) is gener-
ated for each workflow session in order to prevent the results being overwritten,
as the MD application may run several different workflow instances with varying
input parameters. Morevoer, a new directory based on this UUID is automatic-
ally created and linked to the web server, so the user will be able to download the
results from the web browser. Then, this UUID is being passed to the next stages
in the workflow, where in the running stage, the script uploads the MD source
code to this UUID directory, compiles the code, and runs the program. In Fig. 23
line 32, the workflow needs to be run on 8 cores for 1, 000 molecules until 2 sim-
ulation end time. However, other workflows may have different parameters, as
mentioned earlier.

In the final post-processing stage, the output results are being converted to
image files by the POV-Ray library. Then, these output and image files are
bundled together as a compressed file, where it is available to be downloaded
by the user.

D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 65 of 66

1 {
2 "name": "cmd",
3 "functions": [{
4 "name": "md_preprocess",
5 "module": "functions/molecular_docking"
6 }, {
7 "name": "md_run",
8 "module": "functions/molecular_docking"
9 }, {

10 "name": "md_postprocess",
11 "module": "functions/molecular_docking"
12 }],
13 "processes": [{
14 "name": "pre-processing",
15 "type": "dataflow",
16 "function": "md_preprocess",
17 "config": {
18 "executor": {
19 "executable":

"/home/paasage/script/pre-processing.sh",
20 "args": ""
21 }
22 },
23 "ins": ["start"],
24 "outs": ["pre", "dir_uuid"]
25 }, {
26 "name": "running",
27 "type": "dataflow",
28 "function": "md_run",
29 "config": {
30 "executor": {
31 "executable":

"/home/paasage/script/run-program.sh",
32 "args": "8 1000 2"
33 }
34 },
35 "ins": ["pre", "dir_uuid"],
36 "outs": ["run"]
37 }, {
38 "name": "post-processing",
39 "type": "dataflow",
40 "function": "md_postprocess",
41 "config": {
42 "executor": {
43 "executable":

"/home/paasage/script/post-processing.sh",
44 "args": ""
45 }
46 },
47 "ins": ["run", "dir_uuid"],
48 "outs": ["post"]
49 }],
50
51 ...
52 }

Figure 23: A snippet of the JSON description for the Molecular Docking applic-
ation.
D5.1.1/D5.3.1—Prototype Executionware/New Execution Engines Page 66 of 66

