
D4.1.1 – Prototype Metadata Database and Social Network Page 1 of 104

PaaSage

Model Based Cloud Platform Upperware

Deliverable D4.1.1 / D4.3.1

Prototype Metadata Database and Social Network / Prototype of Metadata
Integration Extension

Version: 1

D4.1.1 – Prototype Metadata Database and Social Network Page 2 of 104

D4.1.1 / D4.3.1
Name, title and organisation of the scientific representative of the project's coordinator1:

Mr Tom Williamson Tel: +33 49238 5072 Fax: +33 4 92385011

E-mail: tom.williamson@ercim.eu

Project website2 address: http:/paasage.eu/

Project

Grant Agreement number 317715

Project acronym: PaaSage

Project title: Model Based Cloud Platform Upperware

Funding Scheme: Integrated Project

Date of latest version of Annex I against which the

assessment will be made:

31/10/13

Document

Period covered:

Deliverable number: D4.1.1 / D4.3.1

Deliverable title Prototype Metadata Database and Social Network /

Prototype of Metadata Integration Extension

Contractual Date of Delivery: 31/03/2014 (M18)

Actual Date of Delivery:

Editor (s): Kyriakos Kritikos

Author (s): Kyriakos Kritikos, Maria Korozi, Bartosz Kryza, Tom

Kirkham, Asterios Leonidis, Kostas Magoutis, Philippe

Massonet, Stavroula Ntoa, Antonis Papaioannou, Christos

Papoulas, Craig Sheridan, Chrysostomos Zeginis

Reviewer (s): Arnor Solberg, Jörg Domaschka

Participant(s): Alessandro Rossini, Daniel Romero

Work package no.: 4

Work package title: Communications Hub

Work package leader: Kostas Magoutis

Distribution:

Version/Revision: 1.0

Draft/Final:

Total number of pages (including cover):

1
 Usually the contact person of the coordinator as specified in Art. 8.1. of the grant agreement

2
 The home page of the website should contain the generic European flag and the FP7 logo which are available in

electronic format at the Europa website (logo of the European flag:

http://europa.eu/abc/symbols/emblem/index_en.htm ; logo of the 7th

FP: http://ec.europa.eu/research/fp7/index_en.cfm?pg=logos). The area of activity of the project should also

be mentioned.

http://europa.eu/abc/symbols/emblem/index_en.htm
http://ec.europa.eu/research/fp7/index_en.cfm?pg=logos

D4.1.1 – Prototype Metadata Database and Social Network Page 3 of 104

DISCLAIMER

This document contains description of the PaaSage project work and findings.

The authors of this document have taken any available measure in order for its content to be
accurate, consistent and lawful. However, neither the project consortium as a whole nor the
individual partners that implicitly or explicitly participated in the creation and publication of this
document hold any responsibility for actions that might occur as a result of using its content.

This publication has been produced with the assistance of the European Union. The content
of this publication is the sole responsibility of the PaaSage consortium and can in no way be
taken to reflect the views of the European Union.

The European Union is established in accordance with
the Treaty on European Union (Maastricht). There are
currently 27 Member States of the Union. It is based
on the European Communities and the member states
cooperation in the fields of Common Foreign and
Security Policy and Justice and Home Affairs. The five
main institutions of the European Union are the
European Parliament, the Council of Ministers, the
European Commission, the Court of Justice and the

Court of Auditors. (http://europa.eu.int/)

PaaSage is a project funded in part by the European Union.

http://europa.eu.int/

D4.1.1 – Prototype Metadata Database and Social Network Page 4 of 104

Executive Summary
The Metadata Database (MDDB) is an important component of the overall PaaSage

platform architecture, fulfilling mainly two roles: (a) storing the information required

for the correct functioning of the other PaaSage components and (b) is leveraged as an

indirect way of communication between two PaaSage components. The MDDB stores

all information modeled by the Domain-Specific Languages (DSLs) exploited in the

context of PaaSage project, and includes additional aspects such as execution histories

of applications, descriptions of organizations, cloud providers and roles, and

provisioning of triggering rules, among others. A key objective for the MDDB is to

ensure the linkage of these additional aspects to the concepts in the respective DSLs.

The social network infrastructure described in this deliverable is another important

component of the overall PaaSage platform architecture, forming an interface between

the PaaSage system and its users, and fostering a community of stakeholders that

interact with PaaSage by providing and retrieving knowledge in the area of cloud

software engineering.

This deliverable describes the first MDDB prototype architecture and implementation

of the respective components, including the social network infrastructure. It describes

the mapping between the information modeled in the DSLs and the MDDB schema

and the corresponding tables and columns by providing particular visualizations of the

mappings. It also provides examples of how particular models conforming to these

DSLs are mapped to MDDB content. Finally, it presents results from the evaluation of

specific components to highlight different aspects of their performance.

This deliverable describes in detail the current development status of the MDDB

prototype and the components that comprise it, the status of the internal integration

effort, and the remaining work to be performed through Month 36 of the project. The

MDDB prototype offers the overall functionality planned to date, comprehensively

covering the information needed to enable the project use-cases. The path towards

integration between the various components of the MDDB relies on the principle of

clear separation of responsibilities between components.

Overall, the consortium has put significant effort in realizing the MDDB prototype

with satisfactory results. While more work lies ahead, the current status forms a solid

basis for the project. The implementation plan offers a clear path to further enhancing

and finalizing the development of the MDDB and social network prototype.

D4.1.1 – Prototype Metadata Database and Social Network Page 5 of 104

Intended Audience
This is a public document intended for readers with expertise in cloud computing and

relational database modelling. The reader is also referred to the description of the

overall PaaSage architecture presented in Deliverable D1.6.1 [D1.6.1]. D1.6.1

provides background on the overall PaaSage architecture and the way different

modules fit in it, as well as the internal architecture of particular PaaSage

components. In D4.1.1, the reader is introduced to the functionality implemented in

the M18 prototype of the MDDB and the social network infrastructure and the next

steps in completing the features and functionality planned for M36.

D4.1.1 – Prototype Metadata Database and Social Network Page 6 of 104

Contents

Executive Summary ... 4

Intended Audience ... 5

1 Introduction .. 7

2 Architecture.. 8

3 Metadata Database Design & Implementation .. 11

3.1 Relational Database – Core Design ... 11

3.1.1 CAMEL.. 13

3.1.2 User, Role and Organization Aspect - CERIF 14

3.1.3 Application Specification & Deployment Aspect - CloudML 23

3.1.4 Cloud Provider Profiling Aspect - Saloon ... 31

3.1.5 Scalability Rule Aspect .. 37

3.1.6 User Requirements and Monitoring Aspect - WS-Agreement 44

3.1.7 Security Requirements, Capabilities and Policies Aspect 53

3.1.8 Mapping Considerations .. 65

3.2 Security, Privacy & Trust for MDDB Prototype... 70

3.3 Scalability, Availability ... 71

4 Knowledge Base Design & Implementation.. 72

5 Social Network Design & Implementation .. 77

5.1 Core Design ... 77

5.2 UI design ... 82

5.2.1 Header .. 82

5.2.2 Models: Home .. 83

5.2.3 Components: Home ... 87

5.3 Identity Management for Social Network Prototype 88

6 Prototype evaluation .. 90

6.1 MDDB performance .. 90

6.2 MDDB – Hibernate-Based Object-Relational interface 92

6.3 KB Performance .. 96

6.3.1 Results for First Test - Sparsely Populated MDDB 98

6.3.2 Results for Second Test - Highly Populated MDDB 98

7 Path to Final Prototype (M36) ... 100

8 Conclusion ... 103

Bibliography .. 103

D4.1.1 – Prototype Metadata Database and Social Network Page 7 of 104

1 Introduction
The Metadata Database (MDDB) is an important component of the overall PaaSage

platform architecture designed to store the information required for the correct

functioning of the other PaaSage components and acting as an indirect way for

PaaSage component communication. The MDDB integrates a number of Domain-

Specific Languages (DSLs) exploited in the context of PaaSage. It further integrates

the DSLs with other information such as execution histories of applications,

descriptions of organizations, cloud providers and roles, and provisioning of

triggering rules. A key concern for the MDDB is to ensure that all information is

appropriately inter-related and cross-linked in a consistent manner.

The intent of this deliverable is to provide a comprehensive and detailed exposition of

the development status of the MDDB prototype, including design principles, its

architecture, an analysis of the functionality of the respective components, and an

initial evaluation. This deliverable also provides a roadmap based on which features

and functionality planned for the project period up to M36 will be realized.

In Section 2 the main architecture of the MDDB prototype is presented along with a

high level description of the functionality provided by the respective MDDB

components. Sections 3-5 are dedicated to a detailed exposition and analysis of the

design rationale and functionality of the main components of the MDDB prototype,

which are the relational database, knowledge base, and social network infrastructure.

Section 3 discusses the principles and methodology used to design the MDDB

schema. It describes the main information aspects covered by this schema and how

different parts of it map to corresponding DSL languages. Examples are provided

focusing on a scenario involving the SensApp application and describing how the

information from models complying to the DSLs is mapped to the respective MDDB

content. Next, Section 3 discusses issues concerning the enforcement of a security

layer over the MDDB and analyzes in detail the respective security components and

their implementation. Moreover, there is a discussion on how the DSL-to-MDDB

mappings can be realized according to the type of mappings induced and the current

technology available. Finally, Section 3 discusses methods to achieve scalability and

high availability in the MDDB.

Section 4 presents the Knowledge Base, a component that enables various PaaSage

components and modules to derive additional, added-value facts from the MDDB.

The analysis concentrates on the design rationale, the criteria for selecting particular

implementation technologies, and the design and realization of a particular API

through which the PaaSage components can interact and obtain the derived facts.

Section 5 focuses on the Social Network (SN), one of the most important components

of the MDDB, constituting one of the main information entry points for the users as

well as the place for knowledge-sharing and exploitation of the platform's main

functionality. Section 5 describes the details of the SN's back-end design and

implementation. Next, the design of the SN's UI is analyzed by describing the design

rationale and the main UI mockups. Finally, the section focuses on detailing the main

mechanisms for enforcing authentication as well as a secured access to the

functionality exhibited by the SN.

Section 6 presents a preliminary experimental evaluation of different aspects of the

performance of the MDDB components in different scenarios and discusses the

D4.1.1 – Prototype Metadata Database and Social Network Page 8 of 104

results produced. Some of these results provide valuable insight into the need for

slight design adjustments of some components so as to optimize them. Finally,

Section 7 supplies a roadmap for organizing and realizing the remaining work towards

the final MDDB prototype, while Section 8 concludes this deliverable.

2 Architecture

Figure 1 - The architecture of the MDDB System

The architecture of the MDDB can be seen in Figure 1. It comprises various

components which exhibit particular functionality and which cooperate with each

other in order to achieve common goals. The MDDB components are the following:

 The social network (SN) which is responsible for the sharing of knowledge

between PaaSage users and the PaaSage platform. The SN is actually the main

point of interaction between users and the PaaSage platform where users can
create application models, issue queries as well as populate the MDDB,

deploy applications in the Cloud, add rules to the Knowledge Base (KB) and

issue queries for retrieving high-level knowledge. Apart from this, users can

perform usual tasks in SNs such as join groups, participate in discussions in

blogs, send messages to each other as well as manage their profiles.

 Attached to the SN is the Identity Provider (IDP) which is a module

responsible for the management and identification of users and their

information. IDP is a realization of Single-Sign On (SSO) functionality which

enables users to authenticate themselves and obtain authentication tokens

which can then be passed to another security layer (PEP/PDP) which is

D4.1.1 – Prototype Metadata Database and Social Network Page 9 of 104

responsible for the authorization of users based on their requests and the

policies imposed on the required resources.

 The Policy Enforcement and Decision Points (PEP/PDP), as already indicated,
are responsible for the authorization of user requests. PEP will be responsible

for obtaining the user request and transforming it into the appropriate format

that can be properly processed by the PDP as well as enriching it through

obtaining additional user information from the MDDB. On the other hand,

PDP will be responsible for identifying the appropriate resource policies based

on the user requests and evaluating them in order to assess whether access to

the resources will be granted. PEP/PDP is the main security layer through

which any component (internal to MDDB or a PaaSage component) can

interact with the MDDB components in order to obtain access to the

appropriate functionality. For instance, as it can be seen from Figure 1, three

main PaaSage components (Reasoner, ExecutionWare and Profiler) interact

with the MDDB components (namely KB, Analytics Module and MDDB

layer) through PEP/PDP.

 The Knowledge Base (KB) is the model responsible for deriving new, high-

level knowledge from the information stored in the MDDB layer which can

assist in performing particular tasks, such as application matching that can be

exploited for instance in order to obtain information for new applications from
the information already stored for old applications that match them. Such

information is exploited both by internal MDDB components, such as the SN

(for e.g., assisting in the design of CloudML models), as well as external

PaaSage components/modules, such as the Profiler (e.g., for obtaining useful

profile information for new applications from old ones).

 The Analytics Module (AM) is responsible for performing analytics over

performance data stored in the MDDB layer concerning the execution history

of cloud-based applications deployed through PaaSage. Such analytics can

involve the statistical processing of huge amount of information in order to

provide insights about the performance of an application in terms of high-level

metrics. This information can be of great value to many components and

modules of the PaaSage platform, such as the Profiler (e.g., enrich the profile

of an application) or the Reasoner (e.g., exploit this information for better

matching performance requirements to capabilities).

 The MDDB layer is the place where all of the cloud-based application
management information is stored and can be accessed through standard SQL

queries or the object-relational interface. Such information can, then, be

exploited in order to perform various application management tasks, such as

the deployment and adaptation of cloud-based application. Moreover, it can be

used for the (indirect) communication between PaaSage components/modules

where one component can store information which the other component can

exploit in order to perform its required functionality/tasks. At the conceptual

level, MDDB exploits a particular database schema which is responsible for

integrating as well as mapping the various DSLs and the main CAMEL

language used in the project. At the physical layer, the information stored

based on this schema is physically distributed into various database stores

which are integrated and synchronized with each other.

D4.1.1 – Prototype Metadata Database and Social Network Page 10 of 104

One of the main benefits of the MDDB system is that it offers four different ways

through which different types of PaaSage users can interact with it:

1. Through UI interfaces of the Social Network. This way is more appropriate for

application developers/modellers who would like to model their application,

have access to the PaaSage's main functionality, input content to the system

(e.g., organization description and policies) and share knowledge.

2. Via plain SQL queries. This way is appropriate both for application

developers/modellers who would like to examine in more detail the content of

the MDDB and for PaaSage developers in the realization of their components

by posing particular SQL queries which would be used as valuable input for

the proper support of a component's particular functionality.

3. Through the KnowledgeBase which builds upon the content of the MDDB to

derive added-value facts. This way is appropriate for both application

developers/modellers, as they obtain through the Social Network important

support for their modelling and deployment tasks as well as for the PaaSage

developers who obtain support for realizing the functionality of particular

components, such as the Reasoner through obtaining the knowledge of best

deployments for particular applications.

4. Via an object interface through which PaaSage users can perform different

types of queries (HQL or SQL), obtain the respective information in terms of

domain-specific objects, manipulate and update this information and store it

back to the MDDB. Such an interface is beneficial for PaaSage users and

developers which tend to exploit Ecore-based DSLs, such as CloudML or

Saloon. Currently, this interface relies on the Hibernate technology which

enables a one-to-one mapping between the MDDB and the respective domain

objects. This will be modified through exploiting hibernate or JPA annotations

in order to enable a different mapping that is required between the DSLs and

the MDDB. An analysis of technologies which could be used to realize the

required DSL-to-MDDB mappings is provided in Section 3.1.8, while an

evaluation of the query performance of the 1-1 hibernate-based mapping is

supplied in Section 5.2. Section 7 as well as Deliverable D2.1.2 [D2.1.2]

explain what decisions have been made for selecting the particular mapping

technology that will be used in the course of this project.

Based on the above analysis, it is apparent that each MDDB component has a specific

role and functionality to offer to the MDDB module/prototype and that it securely

cooperates or draws content from other MDDB components via the exploitation of a

sophisticated security layer. The latter layer is also responsible for ensuring that

appropriate authentication and authorization activities are pursued to secure the access

of MDDB components for other components/modules requests. The distribution at the

physical layer of MDDB also ensures that the vast MDDB content is timely accessed

by any component of the PaaSage platform and that it is distributed in such a way that

no physical MDDB store/DB becomes a bottleneck.

D4.1.1 – Prototype Metadata Database and Social Network Page 11 of 104

3 Metadata Database Design & Implementation

3.1 Relational Database – Core Design

The MDDB schema is regarded as the place where all PaaSage incoming or produced

information is stored and the medium through which PaaSage components and

modules can indirectly communicate. In addition, this schema is considered to be able

to capture all the information from the main DSLs used in the project, thus actually

being a superset of all these DSLs.

The decision of choosing a relational database relied on the fact that relational

database management systems have been used across many decades and constitute

quite mature technology with quite satisfactory and scalable performance. Moreover,

by exploiting object-to-relational solutions, we will be able to easily realize the

required mapping between the DSLs used in PaaSage and the MDDB.

The design of the MDDB schema was performed in such a way that not only all the

necessary information is captured but also there is no redundancy and that any type of

information from any DSL is captured by it. The relationships between cloud entities

were also reviewed so as to create the respective association tables and avoid any

wrong modelling of information as well as data redundancy and duplication. An

iterative model for producing the schema was followed which relied on the fact that

each time a different information aspect was on focus but also on being able to handle

any changes that had occurred for particular, evolving DSLs, such as CloudML. Each

time a particular information aspect was covered in the schema, a cooperative action

with respective WP2 partner organizations (responsible for the corresponding DSL)

took place in order to validate it and ensure that all required information was covered,

especially in terms of the various use-cases that will be supported in the project.

When a particular information aspect was more or less finalized, then the mapping

from/to the respective DSL was also designed in a visual way as another validation

step to ensure that not only all DSL information is covered but that it can also be

easily mapped. The realization of these mappings is on-going but it will be based on

the decisions made and the subsequent selection of the appropriate tools which will

ensure that they are performed in a proper and correct way.

Based on the above methodology, a set of MDDB incomplete schema versions were

produced and circulated to all PaaSage partners and a first, stable and complete

MDDB schema release was finally developed before M18 which can now be tested as

well as used for the storage of all related PaaSage information and the indirect

communication between PaaSage components. As already indicated previously, some

of the DSLs still evolve, so this means that the first stable MDDB schema version will

be modified in the near future when new versions of the DSLs will be produced. As

we expect that no serious modifications will take place (just small modifications or

extensions) for these DSLs, then it will be a quite easy task to update the respective

MDDB schema part. The corresponding mapping specifications will also be updated,

if needed. Based on our previous expectation, this will be again an easy task as only

the parts of the mapping that correspond to the modified information at the DSL level

will need to be adjusted.

D4.1.1 – Prototype Metadata Database and Social Network Page 12 of 104

Information Aspect DSL

Users, roles and organizations CERIF
3
 [CERIF]

Applications specification & deployment CloudML [CloudML]

Cloud providers & their offerings Saloon [Saloon]

User requirements and

execution/monitoring/assessment

information

WS-Agreement [WS-Agreement]

Security requirements, capabilities and

policies

(under-design) Security DSL, XACML

Scalability rules Scalability & event DSL

Table 1 - The information aspects covered by MDDB schema and the respective DSLs for each

aspect

The main aspects of information that are captured by MDDB and particular DSLs

(covered in detail in the remaining sub-sections), are depicted in Table 1 and are

shortly analyzed as follows:

 users, roles and organizations: Here CERIF plays the major role as a DSL
capable of capturing the required information. Through CERIF, not only

information about the main entities (i.e., users, roles and organizations) is

covered but also cloud-related information, such as which data centre

belongs to a cloud provider, as well as information about the roles played by

users or user groups and the related domain-specific policies in terms of

resource usage.

 applications specification & deployment: CloudML is the main DSL to cover
this information through its cloud-provided independent specifications which

are able to model applications and their constituting software components as

well as the dependencies between these application components. It is also

able to map application components to configuration information as well as

to the cloud provider services (VMs, PaaS) on which they will be deployed.

The MDDB schema models this information in such a way that it can be re-

used in the specification of other applications as well as to correlate user

requirements with the deployments that they have driven.

 cloud providers and their offered services: Saloon is the DSL which is able to

describe rich and quite expressive feature models that are ideal for

expressing the variability offered in terms of services for cloud providers.

The MDDB schema, although not being able to employ the same structure

for describing this information, it is able to cover all the necessary

information as well as include additional, added-value one mainly

concerning a fair and uniform rating of the cloud services offered according

to one or more aspects, such as CPU, memory, IO and network.

 user requirements and monitoring/assessment information: User requirements
are mainly expressed through IT SLOs that are usually part of SLAs. Here

WS-Agreement is envisioned as the DSL which is able to cover all the

3
 www.eurocris.org/cerif

http://www.eurocris.org/cerif

D4.1.1 – Prototype Metadata Database and Social Network Page 13 of 104

related information, such as the parties involved, the agreed service levels in

terms of SLOs and the penalties incurred when these SLOs are violated. As

no monitoring/assessment information is actually covered by WS-

Agreement, the MDDB schema was designed to also cover the missing

information in terms of the metrics that are involved in the SLOs as well as

the monitoring information produced at run-time during application

execution and respective assessment information in terms of evaluating the

agreed SLOs between the application user and cloud provider.

 security requirements, capabilities and policies: As security requirements and
capabilities are not actually covered by any DSL, MDDB schema was

designed such that the respective information was covered in terms of which

high-level security controls are required and provided by cloud users and

providers, respectively. A new security DSL is also designed according to

this purpose to also cover this information but its design will be finalized

after M18. While CERIF is the main point where policies can be extracted

from organizations, there is a need for a DSL that is actually used for the

enforcement of these policies. To this end, XACML is exploited and the

MDDB schema again has guaranteed that all respective policy information is

covered in a flexible way such that one policy can be related to more than

one actions that can be performed by a particular role on more than one

resources.

 scalability rules: As generic rule languages can be exploited to express
scalability rules, the PaaSage project can select one of them for this purpose

with the main exception that a rich event meta-model/DSL is required so that

complex events can be really expressed as well as all the required event

details. To this end, a concatenation of a rule and event DSL is being

proposed in Deliverable D2.1.2 [D2.1.2] and MDDB schema again has been

realized to cover all the respective information as well as information

concerning the triggering of rules by concrete events and the actual actions

performed.

In the following, Section 3.1.1 is dedicated to analyzing the CAMEL language under

design which is expected to be a superset of all the DSLs exploited. Next, Sections

3.1.2 to 3.1.7 focus on shortly analyzing all the DSLs, with greater detail attributed

mainly to the ones with which integration with MDDB is expected to have matured

more by M18. Each sub-section also analyzes the way the MDDB schema covers the

required information, even the one missing from the respective DSL, and finally

presents a visual proposition for mapping at the schema level the MDDB with this

DSL. Finally, the last sub-section (Section 3.1.8) is dedicated to reviewing mapping

techniques that could be used for realizing the proposed mappings between the DSLs

and the MDDB.

3.1.1 CAMEL

CAMEL (Cloud Application Modelling Language) is an ontology-based schema that

is designed to be a superset of the DSLs used in PaaSage. CAMEL is formed at run

time and spans the main Cloud lifecycle phases of Configuration, Deployment and

Execution. CAMEL is a reflection of the live state of a PaaSage application and

works as an envelope grouping data from specific DSLs throughout the lifecycle.

D4.1.1 – Prototype Metadata Database and Social Network Page 14 of 104

The main PaaSage architectural components are the Profiler, Reasoner and Adaptor.

Each component handles and transforms CAMEL at each lifecycle phase. At the

Profiler level, user requirements are expressed as DSLs in PaaSage. The Reasoner

populates the CAMEL DSLs with potential infrastructure/deployment solutions and

the Adaptor selects a specific target infrastructure/deployment solution and adds DSL

information specific to application execution in that environment.

The DSLs are explained in more detail within this document as well as in D2.1.1

[D2.1.1] and the architecture document D1.6.1 [D1.6.1]. The main DSLs will be

mapped at the schema and content level with MDDB, and as CAMEL is a superset of

these DSLs, the live data from CAMEL will be eventually integrated with MDDB.

The latter will enable CAMEL data that are stored in the MDDB to be exported and

exploited by the various PaaSage components. For instance, CAMEL application data

from previous executions would be analyzed at the DSL level, thus allowing decision

making in the Reasoner component where (execution) data from previous applications

is used to Reason and Simulate potential solutions for new or existing applications.

While CAMEL is being designed and realized, we believe that by being able to map

the main DSLs to CAMEL, we will be also able to map CAMEL data to MDDB as

the latter will require just adjusting the current mappings as well as producing new

ones just for the information that might be not captured by the DSLs but only by

CAMEL. To this end, we leave the integration/mapping of CAMEL to MDDB as a

future task that will be implemented after M18 and will be documented in the next

deliverable of WP4.

3.1.2 User, Role and Organization Aspect - CERIF

The main goal of Task 4.3 in PaaSage is to enhance the metadata collection by

integrating additional third-party information sources with Metadata Database. This

activity was introduced with the extension of PaaSage. The first prototype focused on

integrating CERIF (Common European Research Information Format) in order to

improve user and organization modelling within MDDB to better support social

network platform, accounting and security features of entire PaaSage platform.

3.1.2.1 Extension and Integration of MDDB with CERIF

CERIF is a modelling framework for describing organizations, people, projects and

other aspects related to research domain. It is a EU recommendation
4
 for information

systems related to research databases, in order to standardize research information and

foster research information exchange. Within Task 4.3 of PaaSage, a selected subset

of CERIF has been integrated with MDDB for the purpose of improved user and

organization modelling.

3.1.2.1.1 CERIF Overview and Advantage for PaaSage

CERIF is a conceptual model with some meta-modelling features, allowing for very

detailed description of organizations, users, publications, facilities and research

projects. It consists of a data model, a metadata model and an XML exchange model.

4
 http://cordis.europa.eu/cerif/

D4.1.1 – Prototype Metadata Database and Social Network Page 15 of 104

The data model is defined using an entity-relationship model in a highly normalized

manner, which enables efficient representation and storage in relational databases.

Figure 2 presents the general overview of CERIF concepts and their relations. The

relations in CERIF are represented using separate tables (called link entities), not only

to allow many-to-many relationships, but to also allow for adding provenance

information to relations such as annotating relations with custom types or adding

temporal information (start date and end date) to them.

The metadata model, called CERIF Semantic Layer, provides means to annotate

entities and relations with custom or third-party taxonomies. The taxonomy entries

can only be added to link entities (both unary and binary) through the special cfClass

attribute that allows identifying both the class term as well as the taxonomy identifier,

which allows mixing several taxonomies in a single CERIF model.

Furthermore, in order to enable easier information exchange, CERIF provides an

XML exchange model
5
, which allows encoding of subsets of CERIF repositories in

XML for importing and exporting CERIF data between repositories in a feasible way.

The main difference between relational and XML models is that in XML the entity

relations can be represented by embedding tags within the relations' parent entities.

Figure 2 - High level view of CERIF entities

6

From the point of view of PaaSage, several use cases for improving metadata

representation in the project using CERIF have been analysed including:

 Advanced users/organization modeling

5
 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.6/CERIF_1.6_2.xsd

6
 http://cerifsupport.org/cerif-in-brief/

D4.1.1 – Prototype Metadata Database and Social Network Page 16 of 104

 Trust, reputation, roles

 Accounting, billing

 Provenance tracking, usage statistics

 Resource discovery

In particular, the following CERIF entities were identified as potentially useful for

PaaSage:

1. cfCountry – identification of countries

2. cfClass, cfClassification – provide means for adding or referencing existing

classification schemes with entities in CERIF (for instance we can have some

classification for services, organisations or people which is not part of the

CERIF metamodel), the core of the CERIF Semantic Layer

3. cfCurrency – useful for accounting/billing

4. cfDublinCore – provides means for adding Dublin Core metadata to CERIF

entities

5. cfEAddr – electronic address

6. cfEquip – equipment information, could be used for information about

organisations hardware resources

7. cfFacil – organisations facilities

8. cfFedId – federated identifier, provides the means for creating globally unique

ID’s for entities (which otherwise are only unique within a single DB)

9. cfIndic – indicator entity (e.g. ratio of some sort)

10. cfMeas – abstract measurement entity

11. cfMetrics – metrics entity

12. cfOrgUnit – entity for modelling organisations and organisation units

13. cfPAddr – postal address, relates to organisations and persons

14. cfPers – person entity

15. cfQual – qualification attributes of a person, can be used for trust/reputation

16. cfSrv – service entity

17. cfResultProduct – data sets produced by applications

The most important of these entities for now correspond to the modelling of users and

organizations. In particular, it has been decided that the MDDB schema will be

extended with additional entities for organization and user modelling inspired by

CERIF schema and XML exchange format will be used to import CERIF data into

MDDB.

In order to identify formally how CERIF model overlaps and complements the

MDDB, an analysis of the MDDB (and CAMEL in general) with respect to CERIF

has been performed. It is summarized in Table 2. As it can be seen, CERIF provides

extensive means for describing user/organization modelling aspects, but also some

other conceptual domains, such as services, measurements, indicators, and products,

which, if necessary, could be added in the future by creating the appropriate mapping

against the MDDB schema.

D4.1.1 – Prototype Metadata Database and Social Network Page 17 of 104

Table 2 - Conceptual correspondence between CERIF, MDDB and CAMEL

D4.1.1 – Prototype Metadata Database and Social Network Page 18 of 104

3.1.2.1.2 Specification of MDDB Schema Extensions

The MDDB extensions based on CERIF are focused on improving the user and

organization modelling aspects in PaaSage. At the centre of the extended schema is

the concept of ‘user’ which represents any user which has access to the PaaSage

system, either through the social network, Eclipse-based editors or any other way

(e.g., the object-relational interface for PaaSage developers).

An overview of MDDB extensions include:

• Additional external identifiers can be assigned to users (e.g., SAML2,

OpenID, Social logins, etc.)

• Support for different types of external identifiers through a separate table:
user_identifier_type

• Users can belong to multiple organisations with different roles

• User can be organized in groups such that these groups can also be assigned to
specific roles for a particular organization

• Data centres can have locations

• cloud_provider is a subtype of organisation, i.e., it’s primary key is inherited
from table organisation and is used as relationship id for physical_node and

platform_as_service

• VM types (mapping to cd_vm_type table) are now associated to a data centre
owned by the respective cloud provider. This is a design choice selected for

two main reasons: (a) different performance has been demonstrated for the

same VM types in different cloud provider data centres and (b) different

pricing is induced for the same VM type in different data centres of the same

cloud provider.

• A separate location table is used to list data centre locations.

• cloud_provider can have several boolean attributes depending on the type of

services offered: public, IaaS, PaaS, SaaS which can be useful for classifying

providers

• Multiple roles per user are possible through user_has_role relationship

• Basic RBAC (Role Based Access Control) through tables role, permission,
and action

• Permissions assign to a role the right to perform one or more actions (see also
permission_action table used to associate a permission to more than one

actions) on one or more resources and are issued by organizations

• Resources can be organized in groups such that we can create permissions also

for these groups. To this end, resource groups are also (a special type of)

resources. Thus, all entities for which permissions can be created have been

made sub-entities of the resource entity/class.

• Table allowed_actions has been created in order to list all types of actions that
can be allowed on a particular resource. This table can be used as a guide for

developing permissions but also as a validation tool in order to discard invalid

permissions in terms of the actions that they allow on the designated

resources.

D4.1.1 – Prototype Metadata Database and Social Network Page 19 of 104

A detailed mapping between the considered subset of CERIF and MDDB is defined in

Table 3. Several of the attributes required by MDDB (for instance role name or cloud

provider type) are not directly represented in CERIF but can be inferred if CERIF

entities are annotated with a proper taxonomy. Figure 3 presents the entity-

relationship diagram of the new tables introduced in the MDDB.

MDDB Table Attribute CERIF property

user

Lastname cfPers::cfPersName::cfLastNames

Firstname cfPers::cfPersName::cfFirstNames

Email cfPers::cfPers_EAddr::cfEAddr::cfURI

(select proper attributed based on cfClass)

www cfPers::cfPers_EAddr::cfEAddr::cfURI

(select proper attributed based on cfClass)

Login -

organization

Name cfOrgUnit::cfOrgUnitName

www cfOrgUnit::cfOrgUnit_EAddr::cfEAddr::cfURI

postal_address cfOrgUnit::cfOrgUnit_PAddr::cfPAddr

Email cfOrgUnit::cfOrgUnit_EAddr::cfEAddr::cfURI

cloud_provider

Public (decide based on cfClass if available)

Paas (decide based on cfClass if available)

Iaas (decide based on cfClass if available)

Saas (decide based on cfClass if available)

location

City cfPAddr::cfCityTown

Country cfPAddr::cfCountryCode

contry_code cfPAddr::cfCountryCode

Latitude cfPAddr_GeoBBox::cfGeoBBox::cfSBLat

cfPAddr_GeoBBox::cfGeoBBox::cfNBLat

Longitude cfPAddr_GeoBBox::cfGeoBBox::cfWBLong

cfPAddr_GeoBBox::cfGeoBBox::cfEBLong

Address cfPAddr::cfAddrline1, …, cfPAddr::cfAddrline5

data_center
Name cfFacil::cfFacilName

location_id cfFacil::cfFacil_PAddr

user_identifier

_type

Name cfFedId::cfClass::cfURI

Description cfFedId::cfClass::cfClassDescr

user_external

_identifier

external_identifier cfFedId::cfInstId

role Name cfPers::cfPers_Class::cfClass

D4.1.1 – Prototype Metadata Database and Social Network Page 20 of 104

(identify role depending on taxonomy)

issued_by -

user_has_role
Start cfPers::cfPers_Class::cfStartDate

End cfPers::cfPers_Class:cfEndDate

user_group
Name cfPers::cfPers_Class::cfClass

(identify role depending on taxonomy)

user_group

_has_role

Start cfPers::cfPers_Class::cfStartDate

End cfPers::cfPers_Class:cfEndDate

Table 3 - CERIF to MDDB detailed mapping

Figure 3 - User and organization modelling entities in MDDB

3.1.2.2 Prototype integration of Metadata Database with CERIF repositories

The prototype mapping from CERIF to MDDB has been realized in the form of a

command line tool develop in the Clojure language executable through Java Virtual

Machines. The tool allows to import user and organizational models represented in

CERIF XML exchange format with optional CERIF taxonomies for inferring

additional information (such as organization types or user roles) during data

conversion process. An example mapping from a simple user model (Figure 4) and

taxonomy (Figure 5) to the respective SQL code to be executed over MDDB (Figure

6) is provided to showcase the functionality of the tool.

D4.1.1 – Prototype Metadata Database and Social Network Page 21 of 104

Figure 4 - Example organization description in CERIF

…

<cfPAddr>

<cfPAddrId>131.1</cfPAddrId>

<cfCountryCode>PL</cfCountryCode>

 <cfAddrline1>Nawojki 11</cfAddrline1>

 <cfPostCode>30-095</cfPostCode>

 <cfCityTown>Krakow</cfCityTown>

</cfPAddr>

…

<cfOrgUnit>

 <cfOrgUnitId>123</cfOrgUnitId>

 <cfAcro>CYFRONET</cfAcro>

<cfOrgUnit_Class>

 <cfClassId>CAMEL.IaaSCloudProvider</cfClassId>

 <cfClassSchemeId>CAMEL</cfClassSchemeId>

 </cfOrgUnit_Class>

 <cfOrgUnit_PAddr>

 <cfPAddrId>131.1</cfPAddrId>

 <cfClassId>aaa</cfClassId>

 <cfClassSchemeId>bbb</cfClassSchemeId>

 </cfOrgUnit_PAddr>

</cfOrgUnit>

…

<cfPersName>

<cfPersNameId>persname-id1</cfPersNameId>

 <cfFamilyNames>Fontnot</cfFamilyNames>

 <cfFirstNames>Todd</cfFirstNames>

</cfPersName>

<cfPers>

 <cfPersId>pers-id1</cfPersId>

 <cfGender>m</cfGender>

 <cfPers_Class>

 <cfClassId>CAMEL.Administrator</cfClassId>

 <cfClassSchemeId>CAMEL</cfClassSchemeId>

 </cfPers_Class>

 <cfPersName_Pers>

 <cfPersNameId>persname-id1</cfPersNameId>

 </cfPersName_Pers>

 <cfPers_EAddr>

 <cfEAddrId>ToddMFontenot@dayrep.com</cfEAddrId>

 <cfClassId>35d43364-2160-4b6c-a487-5019458321e8</cfClassId>

 <cfClassSchemeId>05cc5ff9-bc58-4743-ab59-46e5013e0039</cfClassSchemeId>

 </cfPers_EAddr>

 <cfPers_OrgUnit>

 <cfOrgUnitId>123</cfOrgUnitId>

 <cfClassId>ebd55ab0-1cfc-11e1-8bc2-0800200c9a66</cfClassId>

 <cfClassSchemeId>e9616dbd-0d38-4b7d-a6cd-3c4df1e95462</cfClassSchemeId>

 <cfStartDate>2012-06-01T00:00:00</cfStartDate>

</cfPers_OrgUnit>

</cfPers>

D4.1.1 – Prototype Metadata Database and Social Network Page 22 of 104

…

<cfClassScheme>

<cfClassSchemeId>CAMEL</cfClassSchemeId>

<cfName cfLangCode="en" cfTrans="o">CAMEL</cfName>

<cfDescr cfLangCode="en" cfTrans="o">PAASAGE CAMEL schema in CERIF.</cfDescr>

<cfClass>

<cfClassId>CAMEL.Role</cfClassId>

<cfTerm cfLangCode="en" cfTrans="o">Role</cfTerm>

<cfDef cfLangCode="en" cfTrans="o">Users role</cfDef>

</cfClass>

<cfClass>

<cfClassId>CAMEL.Administrator</cfClassId>

<cfTerm cfLangCode="en" cfTrans="o">Administrator</cfTerm>

<cfDef cfLangCode="en" cfTrans="o">Users role</cfDef>

<cfClass_Class>

 <cfClassId2>subClassOf</cfClassId2>

 <cfClassSchemeId2>RDFS</cfClassSchemeId2>

 <cfClassId>CAMEL.Role</cfClassId>

<cfClassSchemeId>CAMEL</cfClassSchemeId>

</cfClass_Class>

</cfClass>

<cfClass>

<cfClassId>CAMEL.Developer</cfClassId>

<cfTerm cfLangCode="en" cfTrans="o">Developer</cfTerm>

<cfDef cfLangCode="en" cfTrans="o">Users role</cfDef>

<cfClass_Class>

<cfClassId2>subClassOf</cfClassId2>

<cfClassSchemeId2>RDFS</cfClassSchemeId2>

<cfClassId>CAMEL.Role</cfClassId>

<cfClassSchemeId>CAMEL</cfClassSchemeId>

</cfClass_Class>

</cfClass>

<cfClass>

<cfClassId>CAMEL.CloudProvider</cfClassId>

<cfTerm cfLangCode="en" cfTrans="o">CloudProvider</cfTerm>

<cfDef cfLangCode="en" cfTrans="o">Cloud provider type of

organization</cfDef>

</cfClass>

<cfClass>

<cfClassId>CAMEL.IaaSCloudProvider</cfClassId>

<cfTerm cfLangCode="en" cfTrans="o">IaaSCloudProvider</cfTerm>

<cfDef cfLangCode="en" cfTrans="o">IaaS Cloud provider type of

organization</cfDef>

<cfClass_Class>

<cfClassId2>subClassOf</cfClassId2>

<cfClassSchemeId2>RDFS</cfClassSchemeId2>

<cfClassId>CAMEL.CloudProvider</cfClassId>

<cfClassSchemeId>CAMEL</cfClassSchemeId>

</cfClass_Class>

</cfClass>

…

Figure 5 - Excerpt form CERIF taxonomy representing CAMEL entities

D4.1.1 – Prototype Metadata Database and Social Network Page 23 of 104

3.1.3 Application Specification & Deployment Aspect - CloudML

CloudML (Cloud Modeling Language) is a domain-specific language (DSL) for

modelling and enacting the provisioning and deployment of multi-cloud applications.

With CloudML we can specify the topology of virtual machines and applications

components.

CloudML proposes two levels of abstraction for the provisioning and deployment

models of applications. The Cloud Provider-Independent Model (CPIM) expresses the

provisioning and the deployment of a multi-cloud application in a cloud (provider)-

independent way. On the other hand the Cloud Provider-Specific Model (CPSM)

refines the CPIM in order to express the provisioning and deployment of the

application in a single or multi-cloud setting (for one or more specific cloud

providers).

The CloudML language includes the following concepts:

- Cloud: a collection of virtual machines offered by a cloud provider

- Virtual machine type and virtual machine instance where the latter represents

an instance of the former. A virtual machine type refers to a generic

description of a virtual machine, while an instance of a VM type maps to a

specific instantiation of a VM including specific configuration information.

- Application component which represents a reusable type of application

component, while an application component instance represents an instance of

an application component. Similarly to the specification of VM information,

the description of an application component stays at a generic level while the

specification of its respective instances involves particular configuration

information.

- Port which represents an interface of a feature of an application component.

This interface may be offered or required by an application component.

- Relationship representing a relationship between ports of two application

components (which can be of communication or containment type).

The MDDB schema is capable of capturing all of the above information as it includes

a set of tables which can be used to capture information about cloud providers and the

virtual machines that they offer, the application characteristics, requirements and

structure as well as the resources used by an application according to its deployment

…

INSERT INTO `role`

VALUES (25,'CAMEL.Administrator'),(26,'CAMEL.Developer');

INSERT INTO `organization`

VALUES (11,'CYFRONET',NULL,'Nawojki 11, 30-095, Krakow',NULL);

INSERT INTO `user`

VALUES (11,'Fontnot','Todd','ToddMFontenot@dayrep.com',NULL,'pers-id1');

INSERT INTO `user_has_role`

VALUES (11,25,NULL,NULL,NULL);

INSERT INTO `user_works_for_organization`

VALUE (11,11);

…

Figure 6 - Excerpt of SQL updates on MDDB based on example CERIF description

D4.1.1 – Prototype Metadata Database and Social Network Page 24 of 104

plan. The next sub-section demonstrates the mapping between CloudML and the

MDDB schema.

3.1.3.1 Running/Mapping example

In this section we demonstrate the usage of CloudML and the mapping of its data in

the MDDB using the CloudML running example of SENSAPP described in

deliverable D2.1.1 [D2.1.1]. This example will be used across the whole Section 3.1

to demonstrate the mappings also for the other DSLs that are going to be used by the

project.

In Figure 7, we can see the software components constituting the SENSAPP

application, as described with the CPIM visual syntax of CloudML. These

components are the servlets Dispatcher, Notifier, and Admin and MongoDB. The

servlets are hosted by generic servlet containers, which in turn are contained in

generic virtual machines. The Dispatcher depends on MongoDB. The communication

between these components is mandatory. In addition, the Dispatcher and MongoDB

have to be deployed on the same virtual machine. Finally, the Dispatcher

communicates with Notifier, while the Admin communicates with MongoDB. The

latter communications are optional.

Figure 7 - Sample CPIM model of CloudML for SENSAPP

Figure 8 shows a subset of the MDDB tables that can store the information described

previously with the CloudML visual syntax. In particular, the generic abstract

structure of the application can be modelled using the tables on the first rectangle at

the upper left corner of the figure. These tables are the software_component (refers to

a more abstract description of the application’s software components, e.g., a generic

D4.1.1 – Prototype Metadata Database and Social Network Page 25 of 104

servlet component) and application ones which are used to model applications and

their corresponding components, respectively. A software component is characterized

by its id, name, (textual) description, and tag (could map to a taxonomy node for

software component types). On the other hand, an application has an id, name and

version, while it belongs to a certain user. Based on the latter modelling, we capture

the versions of a particular applications in order to have a clear view of how an

application evolves and what are the main benefits of this evolution in terms of

performance with respect to specific deployment solutions. Apart from these two

tables, there is also the application_components table which associates software

components to applications as there can be an M-to-N relationship between these two

entities. This also enables the re-use of components across different applications.

Figure 8 - Part of the MDDB schema used to capture CloudML information

In the considered (running) example, the software components of the application

include the Dispatcher, Notifier, and Admin servlets as described in the CPIM of

CloudML. Each software component may depend on or require other software

components. As these are types of component dependencies, we have decided to

model this relationship with the table component_dependency which specifies if the

component dependency is mandatory (see is_optional attribute of the table) signifying

that the required component has to be deployed before the component that requires it.

In addition, properties requires_local and requires_remote of the table specify if the

components should or should not be contained on the same virtual machine. Please

have in mind that a false value on one of these two properties does not map to a true

value for the other. Thus, if property requires_local has a false value, this means that

the application user does not require that the respective components should be

deployed on the same virtual machine, so the PaaSage reasoner is free to take any

possible decision concerning the placement of these components. As different types of

dependencies may exist (e.g., communication and containment), a particular column

(type) has been inserted in the component_dependency table to capture a dependency's

type. Please bare in mind that the component containment dependency type is

considered as a mandatory requirement which must lead to the collocation of the

D4.1.1 – Prototype Metadata Database and Social Network Page 26 of 104

related components in the same VM. Another important feature of a software

component regards its scalability policy. For instance, in the running example, we

could have two scalability policies: (a) one dictating that a particular component (i.e.,

the Dispatcher and the MongoDB) can scale horizontally from 1 to 8 instances, (b)

and another one signifying that the Notifier component must scale vertically using

VMs with 2 to 4 virtual cores, respectively. To capture this information in the MDDB,

we use the table scalability_policy and associate it with a specific component of the

application though component_scalability table, where the first table includes all the

appropriate scalability policy information, such as the scaling type (horizontal or

vertical) and the minimum and maximum amount of instances. This design enables

specifying scalability rules/policies irrespectively of any software component and

then linking them together via a specific association, thus properly capturing this M-

to-N relationship between scalability rules and software components.

According to CloudML, the CPIM model has to be refined into CPSM in order for the

application to be properly deployed. This CPSM specifies the provisioning and

deployment in a cloud provider-specific way. Figure 9 shows a particular deployment

of the SENSAPP application specified graphically via CloudML. The executionware

deploys the application according to the depicted CPSM model, creating instances of

each software component.

Figure 9 - A snapshot of the CPSM at run-time

These instances have more specific description and configurations than the ones able

to be specified in the generic software_component table. To this end, the MDDB

schema includes the tables software_component_instance and

software_component_config, depicted in the second (green) rectangle of Figure 8,

which are dedicated to modelling information regarding software component

instances and their configurations. Through the latter table, we also assist the user

(e.g., the one that does not own the application but intends to run it) in re-using

configurations for components in application deployment and not creating them from

D4.1.1 – Prototype Metadata Database and Social Network Page 27 of 104

scratch. Each software instance realizes a specific abstract software component (e.g.,

a Tomcat application server realizes a generic servlet container). As a result it inherits

its properties as well as its (component) dependencies. However, there can also be

dependencies between component instances that have not been captured in the higher-

level of the respective components. To this end, a new table has been created, named

as component_inst_dependency, with identical content with respect to the

component_dependency table with the sole exception that this table references

component instances and not components. We should also mention that we consider

component and component instance dependencies as application requirements and

thus a specific column mapping to a foreign key to the requirements table has been

created.

CloudML also specifies the VMs on which the application is deployed along with the

cloud providers that offer them. On the right part of Figure 8, in the third rectangle,

the respective MDDB tables are depicted which are used to fully include this type of

information. The cloud_provider table stores information about cloud providers

regarding whether they offer public or private cloud services. The table includes a

reference to the respective organization (as a cloud provider is usually an

organization) which models additional information, such as the organization's name

and location. Information about a virtual machine instance, such as its name, IP

address and lifetime is stored in the vm_instance table, while the VM instance

configuration properties are modelled through the table vm_config. Each node/VM

instance can belong to particular cloud-dependent and cloud independent (VM) types

(see tables cd_vm_type and ci_vm_type, respectively, where "cd" stands for cloud

dependent and "ci" for cloud independent). The cd_vm_type table specifies real-world

VM types offered by a Cloud provider (actually one or more data centres of the

provider) (see Section 3.1.4), including the description of the various possible VM

properties. On the other hand, ci_vm_type table stores provider-independent

classifications for a particular VM (see Section 3.1.4).

Finally, MDDB table deployment (the fourth rectangle) is used to store information

about the mapping between an application software component instance and a

corresponding VM instance or other software component instance on which it is

deployed (e.g., an application component instance can be deployed directly on a VM

or on a application container). It is also associated to the configuration of the software

component for the deployment to occur.

Below we present a snapshot of the data contained in the respective MDDB tables that

models the structure, the requirements and the deployment of the SensApp application

according to the above description. With blue colour, we denote new MDDB table

content, while with grey colour pre-existing MDDB table content. Please note that

this colour convention is used throughout Section 3.1 when the mapping of the

models of other DSLs to MDDB schema is showcased via the SensApp example.

Table Application

id name version user resource

1 SensApp 1.0 4 1

D4.1.1 – Prototype Metadata Database and Social Network Page 28 of 104

Table user:

id lastname Firstname email www login

4 User4 CC1 CC1.User4@email.com

Table software_component

id name description tag

1 Notifier … …

2 Admin … …

3 Dispatcher … …

4 MongoDB … …

5 Servlet-Container … …

Table application_components

id software_component application_id

1 1 1

2 2 1

3 3 1

4 4 1

5 5 1

Table component_dependency

id
src_

component

dest_

component
type

is_

optional

req_

remote

req_

local

require

ments

1 3 4 Communication false false true

2 3 1 Communication true false false

3 2 4 Communication true false false

4 1 5 Containment false false true

5 2 5 Containment false false true

6 3 5 Containment false false true

Table scalability_policy

id scaling_type min max

1 Horizontal 1 8

2 Vertical 2 4

D4.1.1 – Prototype Metadata Database and Social Network Page 29 of 104

Table component_scalability

id software_comp scalability_policy

1 3 1

2 4 1

3 1 2

Table software_component_instance

id name software_component

1 Notifier-1 1

2 Admin-1 2

3 Dispatcher-1 3

4 MongoDB-1 4

5 MongoDB-2 4

6 Tomcat-1 5

7 Tomcat-2 5

8 Jetty-1 5

Table cloud_provider

organization_id public paas iaas saas

1 true true true false

Table data_center:

id name location_id cloud_provider code_name

1 DC

Ireland

1111 1 DCI

Table ci_vm_type:

id cpu_class memory_class io_class network_class

111 medium small small low

112 medium medium medium medium

113 high medium medium high

D4.1.1 – Prototype Metadata Database and Social Network Page 30 of 104

Table organization:

id name www postal_address email

1 Amazon www.amazon.com

Table cd_vm_type:

id name datacenter ci_vm_type classified_on evaluated_on

11 SL 1 111

12 MM 1 112

13 LL 1 113

Table cd_vm_type (cont.):

id cpu ram disk benchmark_rate cost_per_hour resource

11 2 2 100 ... 0.5 7

12 4 4 400 ... 0.7 8

13 8 16 600 ... 0.9 9

Table vm_instance

id name cd_vm_type ip created_on destroyed_on vm_config

1 SL-1 11 … … … …

2 MM-1 12 … … … …

3 LL-1 13 … … … …

Table deployment

id
component_

instance

software_

config

on_vm_

instance

on_component

instance
on_paas

1 1 … 6

2 2 … 8

3 3 … 7

4 4 … 3

5 5 … 3

6 6 … 1

7 7 … 3

8 8 … 2

D4.1.1 – Prototype Metadata Database and Social Network Page 31 of 104

3.1.4 Cloud Provider Profiling Aspect - Saloon

Here we provide first a high level description of the Saloon meta-model, then we

identify the respective MDDB schema part and finally provide visually the mapping

between the Saloon meta-model and the MDDB schema along with a particular

example validating it.

DSL Description

Saloon is a model-based framework (see Deliverable D2.1.1 [D2.1.1]) through which

cloud requirements can be matched with cloud offerings so as to identify particular

cloud services which can be used for the deployment of a specific cloud application.

This framework is accompanied by a particular cloud ontology which can be used to

fix the vocabulary between the cloud offerings and requirements and thus enabling a

better matching of them. The framework offers a generic feature meta-model used for

describing cloud-provider offerings. Actually this meta-model is so generic that can

be used even in the context of other fields or domains. The expressivity of the meta-

model is quite powerful as it is able to describe different combinations of offerings for

particular cloud providers as well as introduce constraints which can be used as a

guide for the matching and the deployment of applications. This generality and

expressivity, however, should be accompanied by more domain-specific constructs so

as to enable the mapping of feature models to the domain of the cloud and to the

respective elements and attributes that can be used to describe/annotate features.

Figure 10 - The Saloon feature meta-model

The feature meta-model of Saloon is depicted in Figure 10. As it can be seen, any

feature model requires the appearance of a root Feature which can be mapped to a

specific cloud provider. Then, the sub-features of this root feature denote the cloud

services that the respective provider offers. A Feature is related to a set of attributes

which attempt to characterize its main properties/characteristics. For instance, a

particular VM type offered by a cloud provider might be characterized by the size of

the main memory and the frequency of the CPU. The feature-model is quite

expressive allowing the specification of different types of (sub-)feature combinations:

D4.1.1 – Prototype Metadata Database and Social Network Page 32 of 104

 a combination of alternative sub-features covers the case where the main
feature can be realized/configured through the selection of one or more

features. For instance, a cloud provider might offer a Database cloud

service which can be realized in two different ways (mapping to the

respective sub-features of the Database feature): an SQL or a NoSQL

database.

 a xor (exclusive or) combination of alternative sub-features covers the

case where only one (sub-feature) configuration/realization of a feature

can be actually selected. For instance, concerning the SQL database

feature, only one from all possible SQL realizations can be selected (e.g.,

MySQL or PostgreSQL).

 a simple (and) combination of sub-features means that the main feature
comprises particular sub-features that characterize it. This case can be

separated into two sub-cases: (a) the sub-features can be offered as

standalone services and (b) all sub-features should be considered as a

uniform combination which is required for the proper realization of the

feature.

Features also have cardinalities and constraints. Cardinalities indicate the amount of

instances for a feature for a particular application/product configuration, while

constraints usually indicate inter-feature or inter-attribute dependencies, i.e.,

requirements for other features imposed for the proper offering of the feature or

constraints restraining the combination of values that the attributes of a feature can

take. For instance, a constraint might indicate that four individual instances of Tomcat

require the existence of a load balancer.

As it can be understood for the above analysis, the Saloon's feature meta-model has

important modelling capabilities which allow flexibility in the specification of the

features or services offered by a particular cloud provider and their combination.

However, it has the following disadvantages that need to be covered:

 domain-specific terms need to be entered and considered which could be
regarded as belonging to a lower modelling level. The Saloon ontology could

be used for this purpose but this ontology is just a simple hierarchy of terms

attempting to fix a specific vocabulary for particular cloud terms which is not

enough as, e.g., the values of the feature attributes should have a particular

domain to which they should conform. This would enable the proper mapping

to the cloud domain as well as the capability to check the correctness of the

models derived from the feature meta-model.

 there is a lack of particular information which is highly-required in order to
enable the proper matching of cloud requirements and capabilities. This

information includes the time validity of a particular offering, its pricing as

well as particular means for rating such an offering. For the latter, it has been

already proposed and proved that the matching of VMs solely based on their

capabilities is not enough and correct as even VMs with the same

characteristics might have a different behaviour in different platforms. To this

end, direct rating information according to a particular VM dimension (e.g.,

CPU frequency) could be highly beneficial for the matchmaking process as it

would lead to a more fair ranking of cloud provider offerings. Such

information could be produced through benchmarking.

D4.1.1 – Prototype Metadata Database and Social Network Page 33 of 104

Description of Respective MDDB Schema Part

The overall, related to Saloon tables in the MDDB schema and their relationships are

depicted in Figure 11. Two main tables are used for the description of the two types of

offerings that a cloud provider can supply: cd_vm_type which maps to the description

of virtual machine types (IaaS) and platform_as_service which maps to the

description of platform as a service offerings. Virtual machine types are characterized

by the usual information of number of CPUs and amount of RAM and disk storage.

Moreover, their location is specified as well as a reference to the description of a fair

ranking for them described by a specific row of the ci_vm_type table. The latter row

indicates the uniform and fair ranking of a VM according to different VM dimensions,

such as some from those indicated (CPU, RAM) above plus the I/O and network one

(mapping to particular latency ratings). Apart from these, the description of a VM

includes the rate value for a particular benchmark, the cost of the VM per hour as well

as the cloud provider which offers the particular VM. Concerning the description of

platform as service offerings, the information that can be specified currently includes

a textual description of the PaaS API and some elasticity capabilities.

Apart from these two tables, two other MDDB tables are quite important and need to

be considered. The first one is the cloud_provider which maps to a root node of a

feature model and the second one is the data_center which maps to the data centres

owned by the cloud provider for which particular VM types are offered. The existence

of the latter table and its association to the cd_vm_type table unveils the necessity to

include data centre information in feature models. Such information could be

provided in two alternative ways: (a) a cloud service is offered in a particular data

centre (so the reference to the data centre could be a particular feature attribute) and

(b) a root node (cloud provider) is first associated to the data centres which are

associated in turn to the particular cloud services that they offer and support.

D4.1.1 – Prototype Metadata Database and Social Network Page 34 of 104

Figure 11 - The respective MDDB part capturing cloud provider offerings

From the above analysis, it is apparent that the MDDB schema provides information

that is either missing or can be regarded as missing with respect to the Saloon feature

meta-model, such as cost and rating information. On the other hand, the Saloon

feature meta-model is richer in describing the way service offerings can be combined

as well as enable the introduction of particular constraints which restrain the context

under which the respective cloud services can be selected and used. Thus, the two

schemata need to be closely aligned with each other in order to have both of them

capable of describing the same amount and type of information. This would, of

course, facilitate the mapping of models from one schema/meta-model to the other.

Figure 12 shows the current mapping of the two considered schemata where, as it can

be easily deduced, the fact that some information inherent in one schema is missing

from the other and vice versa is more than apparent. Moreover, it is also clear that the

mapping is not so straightforward and certainly requires some procedural logic as the

same element in the feature model can be mapped to the content of different MDDB

tables depending on the information that it actually caries (e.g., a root feature maps to

a cloud provider and a non-root feature maps to a cloud service).

D4.1.1 – Prototype Metadata Database and Social Network Page 35 of 104

Figure 12 - The mapping of Saloon feature meta-model to MDDB Schema

Mapping Example

Based on the current alignment between the Saloon feature meta-model and the

respective part of the MDDB schema, we continue the running example of SENSAPP

where we indicate a Saloon feature model for Amazon, conforming to the Saloon

feature meta-model, which shows the IaaS offering of this cloud provider for a

specific data centre that has been considered for the deployment of the Notifier (and

the tomcat container): a particular VM type with the name "SL" which has the

following characteristics: CPU: 2 cores, RAM: 2 GB, DISK: 100 GB, and cost: 0.5 $

per hour. Further suppose that based on particular benchmarking classifications, this

VM type is rated as (CPU: "medium", RAM: "small", IO: "small", network: "low").

The Saloon feature model is depicted in Figure 13, while the respective MDDB

content to be produced is shown in the following tables representation:

D4.1.1 – Prototype Metadata Database and Social Network Page 36 of 104

Figure 13 - The Saloon feature model for the running example

Table cd_vm_type:

id name datacenter ci_vm_type classified_on evaluated_on

11 SL 1 111

Table cd_vm_type (cont.):

id cpu ram disk benchmark_rate cost_per_hour resource

11 2 2 100 ... 0.5 7

Table data_center:

id name location_id cloud_provider code_name

1 DC

Ireland

1111 1 DCI

D4.1.1 – Prototype Metadata Database and Social Network Page 37 of 104

Table ci_vm_type:

id cpu_class memory_class io_class network_class

111 medium small small low

Table cloud_provider:

organization_id public paas iaas saas

1 ...

Table organization:

Id name www postal_address email

1 Amazon www.amazon.com

3.1.5 Scalability Rule Aspect

DSL Description

MDDB exhibits particular tables that map to exploiting the “Event-Condition-Action”

(ECA) method of capturing (quality) property/metric violations and mapping them to

specific actions. This ECA method is the one used for representing scalability rules

(elasticity rules in the MDDB schema) defined via a specific DSL which is proposed

in Deliverable D2.1.2 [D2.1.2] and can be mapped to that of particular rule languages

that normally assort a particular rule engine. The rationale for introducing this

scalability rule DSL was the following. As most of the DSLs for representing

(scalability) rules lack a rich meta-model for describing events, we have created an

extended rule DSL encompassing a sub-DSL to cover the missing information

concerning the event aspect (based on the work in [Zeginis et al., 2013]). The

scalability rules are triggered when an event is emitted by either the Monitoring

engines of the Executionware or MDDB and/or KB. Their main target is virtual

computing (e.g., CPU cores or memory of a virtual machine) and storage (e.g., the

size of virtual storage devices and databases) resources. Four are the main adaptation

actions of PaaSage as already defined in [D2.1.1]: scale up (i.e., increase the size of

compute core and memory on a virtual machine or the size of a virtual storage device)

and scale out (i.e., add more virtual machines or more virtual storage devices), as well

as the inverse adaptation actions scale down and scale in, respectively. If more

adaptation actions will be realized in the near future in the context of this project, it
will be ensured that the proposed DSL can represent all the required information.

The scalability rule DSL has a particular meta-model, part of which is depicted in

Figure 14, which comprises various concepts as well as their relationships. The main

concept is of course a scalability rule which is related to an event to be detected as

well as the set of actions to be executed when the rule is actually triggered. Such

events are actually part of a particular event meta-model for Service-based Cloud

applications proposed in [Zeginis et al., 2013]. This model is generic enough and

D4.1.1 – Prototype Metadata Database and Social Network Page 38 of 104

extensible to incorporate any other event type defined by domain-specific service

providers. Therefore, any Cloud provider could use this model to add any other event

type that could be emitted by his/her platform, or even incorporate new non-

functional dependencies and cloud-specific layers. Events can be simple or composite,

where composite events actually map to logical or timely-related combination of

events. Thus, in the meta-model, a composite event is related to two events and

indicates a logical combination or a time ordering (where ordering operators are

actually a special type of AND-based logical operators) (e.g., sequence in case that

one event occurred before the second one) between these two events. Simple events

can be classified as functional and non-functional, where the non-functional events

are usually attributed to the violation of SLOs while the functional events indicate an

erroneous situation concerning a particular component that could exist in the three

possible layers (infrastructure, platform and software). Events also map to the layer

that they concern, such as infrastructure (IaaS), platform (PaaS) and software (SaaS).

Figure 14 - The meta-model of the scalability rule DSL

Description of Respective MDDB Schema Part

Figure 15 shows the respective MDDB schema part responsible for capturing

scalability rules and their provisioning. Scalability rules are represented with the

elasticity_rule table of the MDDB schema which either maps a single, generic event

or an event pattern (i.e., a composite event) to one or more generic (high-level)

actions (e.g., scale-out). Furthermore, a scalability rule is related to an evaluation

frequency, defining how often the specific rule will be evaluated. The event table

models generic information about a simple event, thus not concerning any specific

event instance, such as the event name and the related it_slo so as to map to the metric

condition that will be violated. On the other hand, the event_pattern table stores the

event patterns (composite events) actually occurring during Cloud application

execution. Each event pattern maps to either two events or two event patterns and an

operator linking them to indicating the timing relationships between these events or

event patterns. In this way, we can construct event patterns comprising just two events

or even more complex event patterns with many associated events related via specific

D4.1.1 – Prototype Metadata Database and Social Network Page 39 of 104

timing relationships. An elasticity rule is related to the invariant requirements that

should hold during its triggering and must be respected, such as scalability policies

which restrain the way more resources will be provided or additional VMs could be

generated, through the reqs_to_elasticity_rule table. In addition, as a scalability rule

might trigger more than one action, the elasticity_rule_action table associates the

scalability rules with these actions. Similarly to events, the actions, as they are at a

high specification level, are modelled in a general manner according to the action

table which stores the id and name of the action.

Figure 15 - The respective MDDB part capturing scalability rule information

Apart from being able to capture the specification of scalability rules, the MDDB

schema also covers their provisioning by introducing particular tables which map to

the triggering of rules by particular event instances and the realization of specific but

required (by the rule) high-level actions at the cloud-provider level. The event

instance table models the information for each unique, concrete event that is raised

which includes the generic event of which the concrete event is instance, the source

component (e.g., particular VM instance, software component or application) of the

event, when the event was fired and under what execution context (see Section 3.1.6).

A set of event instances might lead to the triggering of a specific event. To this end,

two tables have been created for this purpose: (a) table rule_trigger captures generic

information about the triggering of the rule, such as which rule and when was

triggered, while (b) table rule_trigger_event relates a rule trigger with the event

instances that triggered it. To also associate the rule trigger with the actual actions that

have been executed for it, table action_realization models all the necessary

D4.1.1 – Prototype Metadata Database and Social Network Page 40 of 104

information (including the id of the rule_trigger as a foreign key), such as which

action was executed, when it started running and when it ended its execution, which

low level actions were actually used to realize this action and at which cloud provider.

From the above description, it can be understood that the mapping between this DSL

and the MDDB schema is straightforward and only some information at the DSL level

needs to be splitted across multiple tables in the MDDB schema. A visual

representation of part of this mapping (for the DSL meta-model portion shown in

Figure 14) can be seen in Figure 16. It must be noted here that as the DSL focuses on

covering the specification of scalability rules and not their actual provisioning, the

mapping does not include particular, related MDDB tables, such as rule_trigger and

action_realization. It should be decided if the scalability rule provisioning

information should also be covered by the DSL proposed.

Running Example

To exemplify the usage of the DSLs for events and scalability rules, we continue with

the running example of the SENSAPP, described in deliverable D2.1.1 [D2.1.1]

(section 7.3). Assume that the application provider and/or external experts extract the

following ECA-like scalability rule:

 Scale out when the average application response time goes beyond 10sec or its
availability falls below 99,9%.

This rule consists of two conditions on two metrics values, respectively, but the

violation of just one of them is adequate to fire the rule and scale up the VM hosting

the application. Scaling up means moving to a more powerful VM, with respect to all

resources (i.e. CPU, memory, disk), thus addressing both violations. Suppose, now,

that two events occur (with ids 2345 and 3456) which lead to the triggering of the rule

and to the execution of the respective action (with id 4567) which maps to increasing

the CPU, memory and disk capacity (low-level actions) and lasted one and a half

minute (between 10/01/2014:20:43:00:234 and 10/01/2014:20:44:36:234).

D4.1.1 – Prototype Metadata Database and Social Network Page 41 of 104

Figure 16 - The mapping from the scalability rule DSL to the respective MDDB schema part

To show how the mapping is realized according to the running example, we first show

what would be the content of the scalability rules according to the scalability rule

DSL of PaaSage, and then we visualize the rows that will be inserted in all the rule-

related tables of the MDDB schema according the mapping indicated. Rows in blue

colour indicate content that is generated based on the mapping while rows in grey

colour indicate existing content mapping to already defined information supporting

the description of the scalability rule and its related event information. It should be

noted that as the rule provisioning information is not covered by the DSL, we only

show what would be the respective content of the MDDB which could be created by

the ExecutionWare module of PaaSage when the respective scalability rule is fired.

D4.1.1 – Prototype Metadata Database and Social Network Page 42 of 104

The Scalability rule DSL specification expressing the running example rule would be

the following:

<ScalabilityRule name=" Scale_out1">
 <related_event>

 <event name="Composite Event" logicalOperator="OR">

 <left>

 <event name="response_time_violation">

 <slo_condition operator="GREATER_THAN"

value="30">

 <metric id="1" name="Response

time/>

 </slo_condition>

 </event>

 </left>

 <right>

 <event name="availability_violation>

 <slo_condition operator="LESS_THAN"

value="99.9">

 <metric id="2"

name="Availability/>

 </slo_condition>

 </event>

 </right>

 </event>

 </related_event>

 <actions>

 <action id="1" name="Scale-up" type="SCALE_UP">

 </action>

 </actions>

</ScalabilityRule>

The respective mapped content in the MDDB according to the selected colour

convention is shown visually in the tables below.

Table scalability_rule:
name evaluate_frequency event pattern

Scale_out1 Every 5 minutes null 12345

Table event_pattern:

id first_event first_event_relation second_event

12345 SenseApp_respTime_violation SenseApp_availability_violation

id second_event_relation operator

12345 OR

D4.1.1 – Prototype Metadata Database and Social Network Page 43 of 104

Table event:

name condition

SenseApp_respTime_violation 123

SenseApp_availability_violation 234

Table it_slo:

id metric threshold platform

123 Response time 30

234 Availability 99,9

Table action:

id action_type_id

1 1

Table action_type:

id Name

1 Scale_out

Table scalability_rule_action:

scalability_rule Action

Scale_out1 1

Table reqs_to_scalability_rule:

req_id scalability_rule_name

1 Scale_out1

Table rule_trigger:
id rule_name fired_on

111 Scale_out1 10/01/2014:20:45:36:234

Table event_instance:

id event_name importance source_component fired_on

2345 SenseApp_respTime_violation Critical SENSAPP 10/01/2014:20:42:36:234

3456 SenseApp_availability_violation Critical SENSAPP 10/01/2014:20:42:37:234

execution_context

Exec_context1

Exec_context1

D4.1.1 – Prototype Metadata Database and Social Network Page 44 of 104

Table action_realization:

action_Id provider_id low_level_actions fired_on

1 1 Increase CPU

Increase Memory

Increase Disk

capacity

10/01/2014:20:43:00:234

ended_on rule_trigger_id

10/01/2014:20:44:36:234 111

Table rule_trigger_event:
rule_trigger_id event_instance_id

111 2345

111 3456

Table execution_context:

id app_id start_time end_time info total_cost

Exec_context1 2 10/01/2014:20:40:36:234 10/01/2014:20:50:36:234

Table cloud_provider:

organization_id public paas iaas saas

1 true

Table organization:

id name www postal_address email

1 Amazon www.amazon.com

Table application:

id name Version user resource

2 SensApp 1.0 4 1

3.1.6 User Requirements and Monitoring Aspect - WS-Agreement

An SLA seems to be one of the most prominent ways of expressing an agreement

between two or more parties about a particular service that is offered and its

respective service levels that it needs to sustain. Such an agreement is usually a

product of negotiation between these parties, although there are cases where an SLA

is offered as it is to potential service requesters. SLAs have proven to be one of the

main means of steering the service provisioning and adaptation phase as they usually

specify particular quality of service guarantees, commonly named as Service Level

Objectives (SLOs), which need to be sustained during service execution. Thus,

violation to one or more of these SLOs can lead to particular adaptation actions which

aim at raising up again the appropriate service level offered to the service requester.

D4.1.1 – Prototype Metadata Database and Social Network Page 45 of 104

To this end, some SLA languages pave the way for expressing particular actions that

need to be taken when specific SLOs are breached.

In the context of the PaaSage project, SLAs are envisioned to play a crucial role in the

deployment and provisioning of cloud-based applications as they can determine what

cloud services must be offered to a particular application and under what guarantees.

It is expected that such an SLA is being produced after a particular deployment plan

has been determined as only at this moment it is known which particular cloud

services will be required for the particular application at hand. There is no actual

requirement of how the SLA is really produced. The common practice in the current

cloud world is that cloud providers offer particular SLA templates in a take-it-or-

leave-it manner. However, this situation can change in the near future after the cloud

providers realize the real benefits of providing more flexible SLA templates leaving

place for variability and customization leading to cost savings, additional gains and

more satisfied customer. Thus, based on the above analysis, a possibly composite or

set of SLAs (each pertaining to a particular cloud service) could be produced through

a broker which functions on behalf of the customer in order to negotiate and agree

with all the cloud providers involved. Alternatively, the service requester might

follow a manual approach where he/she contacts with each of the cloud provider in

order to arrange for the production of the appropriate SLA(s).

DSL Description

Various SLA languages have been proposed by researchers or even by standardization

organizations. For a detailed analysis over their capabilities concerning the support of

the service management life-cycle, the survey in [Kritikos et al., 2013] can be studied.

WS-Agreement, proposed by Open Grid Forum (OGF), is one of the most widely-

used SLA language which has been successfully applied in the context of Grid

services and is thus quite suitable for being used in the context of Cloud services. This

language is XML-based and is supported by particular implementation frameworks,

such as WSAG4J. It has been also heavily used in the context of other European

research projects.

WS-Agreement has the main strength that it is a standard and that it captures well

basic SLA information, such as what are the (signatory) parties involved, which are

the services offered and what are their main quality of service (QoS) guarantees. It

also allows the logical combination of QoS guarantees in such way that different

service levels can be guaranteed under different qualifying conditions, although the

service level notion is not formally defined. Another strong feature of the language is

the mapping of QoS guarantees to rewards and penalties which enable to create a trust

level between the parties involved in the SLA formation such that service requesters

are compensated when SLOs are violated and service providers are rewarded when a

higher service level than the one promised was actually delivered.

On the other hand, we can distinguish two main shortcomings of WS-Agreement.

First, this language does not define particular metrics that have to be evaluated in

order to assess when SLOs are violated. Instead, the WS-Agreement developers

indicate that the definition of these metrics is out of scope of this language and should

be performed through domain-specific service description languages. This certainly

creates the need of introducing or exploiting an existing ontology of the various

metrics that will be exploited in PaaSage for cloud service monitoring and adaptation

which also enables the formal definition of all their possible aspects, such as the

metrics' assessment formula, value type, and frequency/timing as well as unit of

measurement. An example of such an ontology language is OWL-Q [Kritikos and

D4.1.1 – Prototype Metadata Database and Social Network Page 46 of 104

Plexousakis, 2007], which has various interesting capabilities and merits, as indicated

in [Kritikos et al., 2013]. Second, apart from defining penalties for SLO violations,

the language does not map these violations to particular adaptation actions that

resolve them in order to sustain an acceptable service level (that is why a scalability

rule DSL is required). This means that either the language is used in the context of

PaaSage at a high-level to express QoS requirements for cloud services or the

language must be extended to allow this required connection. The consortium for this

second problem has taken the path of introducing a separate (scalability rule) DSL for

defining exactly those rules that identify which adaptation actions will be performed

when one or more SLO objectives are violated. In this way, the only concern with

respect to the modelling is the correct linking of these two DSLs according to similar

or equivalent concepts that might use which can be appropriately handled by

considering that the scalability rule DSL is currently proposed and designed by the

consortium and thus this linkage and integration can be more carefully performed

through the appropriate realization of this language.

A detailed class diagram showing the conceptual elements of WS-Agreement is

depicted in Figure 17. As it can be seen, the main conceptual element is the

Agreement, representing a specific SLA agreement between one or more parties. This

element is then composed of a context element and a set of service and guarantee

terms. The context is related to parties involved in the agreement, the duration of the

agreement as well as optionally to the name of the SLA template on which the

agreement relied to be built.

Figure 17 - The class diagram of WS-Agreement

Service terms relate to a particular service description which is either defined inline in

the agreement document or referenced. This service description is also related to a set

of service properties which can be used in the building of guarantee terms. Each

service property has a name, a URI pointing to its definition in an external domain-

specific language as well as a structural reference to a location in another (service

D4.1.1 – Prototype Metadata Database and Social Network Page 47 of 104

property definition) document, such as an XPATH expression. It should be mentioned

here that many service terms can be defined for the same service. This allows to

express two alternative specification cases: (a) service terms refer to the description of

the components of a (composite) service and (b) service terms refer to different facets

of a service description, such as the service's interface in WSDL.

Guarantee terms, as already indicated, map to SLOs. A guarantee term first references

the party that is obliged to satisfy it which can be either the service provider or even

the service requester (e.g., when particular guarantees must be offered by this party in

order to enable the service provider to sustain a particular service level). It also

defines what is the service scope, i.e., the particular service or service part that it

concerns. SLOs are defined by indicating the Key Performance Indicator (KPI) name

(i.e., referencing a particular metric) and the respective target (metric threshold value)

and can be accompanied by qualifying conditions (such as that the invocation rate for

the service is below a particular threshold) which must be met in order to assure the

satisfaction of the SLO. Finally, guarantee terms are mapped to business-level

information, such as rewards and penalties, guarantee importance (indicating the

relative importance of guarantee terms) and preferences (which are fine-grained

business values for different alternatives that can be offered).

SLA-Based MDDB Schema Description and Mapping

PaaSage has certainly realized that it is important to store and exploit information that

originates from SLAs as such information will guide the cloud-based application

deployment and execution phases. To this end, it has accommodated for particular

tables in the MDDB schema which are used for the storage of SLA information.

These tables are sla and it_slo. The first table is responsible of storing general

information about an SLA, such as the targeted cost, location and revenue. This

information cannot be mapped into a straightforward manner in WS-Agreement. For

instance, the targeted cost could be part of an external service description/offering that

is referenced by the WS-Agreement document. In addition, it also references one or

more rows of the it_slo table which represent information about a specific IT-based

SLO, such as the metric involved, its required threshold and the platform as a service

involved (i.e., to which it actually applies). However, in contrast to WS-Agreement,

we can see here two main differences: (a) the expressivity of WS-Agreement in terms

of SLO combinations is missing from the MDDB Schema and (b) the MDDB Schema

takes a different approach in metric definition where important aspects of a particular

metric are actually modelled in the metric table such as the metric's name, textual

description, layer, unit and value direction. The latter information could, of course, be

drawn from metric specifications defined via languages such as OWL-Q [Kritikos and

Plexousakis, 2006]. Apart from the two main differences, it is apparent that some

other information can also be mapped, especially the one concerning the description

of the service offered which can be drawn from the platform_as_service and

cd_vm_type tables as well as the one concerning the description of the service

providers and requesters which can be drawn from tables cloud_provider,

organization and user (depending also on the type of party involved in the

agreement). It must be mentioned, though, that other important information, such as

rewards, penalties and SLA duration (or expiration date) is currently missing from the

MDDB Schema and this information will certainly be added in the forthcoming

versions. Figure 18 shows the current mapping that can be enforced between the two

current versions of the compared schemata.

D4.1.1 – Prototype Metadata Database and Social Network Page 48 of 104

Figure 18 - The mapping between WS-Agreement and MDDB at the schema level

Apart from being able to define requirements, it is also important to capture

monitoring information as this is crucial for various purposes: (a) enhance application

profiles, (b) associate applications with best deployments such that this knowledge

could be exploited in the Social Network by users that desire the run the same or

equivalent applications, (c) avoid bad application deployments, and (d) enable the

assessment of IT SLOs and the triggering of adaptation actions when these SLOs are

violated. By also linking deployment and execution information with user

requirements, we also achieve traceability such that we are able to not only

understand which requirements drove the respective deployments but also which

deployment and execution information lead to the violation of these requirements or

their updating.

To this end, MDDB was designed to capture all of the required monitoring and

execution information for applications through the following tables:

 execution_context: it encapsulates generic information that is related to a

particular application execution, such as when application execution started

and ended, what was the total cost incurred and for which application. This

context is also used as a reference to connect to all other more detailed

information about a particular application execution.

D4.1.1 – Prototype Metadata Database and Social Network Page 49 of 104

 deployment_execution: it captures which requirements lead to a particular
deployment under a specific execution context and for which user. This is

where traceability is actually achieved.

 appl_monitor: This table is related to the monitor created for observing the

performance of an application according to a specific metric. It covers

information such as the considered application, the relevant it_slo and

execution_context, the metric used for the monitoring, the value actually

monitored, when this value was reported and a pointer to raw measurement

data (stored in the TSDB, see Deliverable D5.1.1 [D5.1.1]) used to generate

the monitored value. Similarly, monitors are created for other entities and the

following tables are used to capture the respective monitoring information:

o software_component_monitor: it monitors the performance of a

particular software component instance according to a specific SLO.

o resource_monitor: it monitors the usage (according to a specific metric

for a particular SLO) of a resource (see resource_class column) of a

specific VM instance.

o resource_coupling_monitor: it monitors the performance (e.g.,

communication bandwidth) with respect to a coupling of resources

(actually VM instances)

 slo_assessment: this table captures the assessment of a particular SLO under a
specific (application) execution context.

An overall visualization of the MDDB schema part dedicated to the capturing of

requirements and monitoring/execution information is depicted in Figure 19.

D4.1.1 – Prototype Metadata Database and Social Network Page 50 of 104

Figure 19 - MDDB schema part capturing requirements and monitoring/assessment information

Running Example

For better comprehension of how the compared schemata are mapped, let us rely on

the running example of SENSAPP. Suppose that a WS-Agreement document has been

developed which concerns the provisioning of VM "SL" from Cloud Provider

"Amazon" for Cloud Customer "CC1" (the user of SENSAPP) under the guarantee

that the VM's CPU usage will not go below a particular threshold (60%). The WS-

Agreement specification for this example is given below.

 <wsag:Agreement AgreementId=”1”>

 <wsag:Name>

 VM Agreement for Application SENSAPP

D4.1.1 – Prototype Metadata Database and Social Network Page 51 of 104

 </wsag:Name>

 <wsag:AgreementContext>

 <wsag:AgreementInitiator>

 CC1

 </wsag:AgreementInitiator>

 <wsag:AgreementResponder>

 Amazon

 </wsag:AgreementResponder>

 <wsag:ServiceProvider>

 Amazon

 </wsag:ServiceProvider>

 </wsag:AgreementContext>

 <wsag:Terms>

 <wsag:All>

 <wsag:ServiceDescriptionTerm

 wsag:Name=”ServiceTerm1” wsag:ServiceName=”SL”/>

 <wsag:GuaranteeTerm Name=”GuaranteeTerm1”

Obligated=”ServiceProvider”>

 <wsag:ServiceLevelObjective>

 <wsag:KPITarget>

 <wsag:KPIName>cpu_usage</wsag:KPIName>

 <wsag:Target>60</wsag:Target>

 </wsag:KPITarget>

 </wsag:ServiceLevelObjective>

 <wsag:BusinessValueList>

 <wsag:Penalty>10$</wsag:Penalty>

 </wsag:BusinessValueList>

 </wsag:GuaranteeTerm>

 </wsag:All>

 </wsag:Terms>

</wsag:Agreement>

The respective content of MDDB that will be produced from the transformation of the

above document is the following (expressed in rows of the mapped tables). It must be

highlighted that table metric might be updated if the agreement terms in the WS-

Agreement document refer to metrics which are defined elsewhere (e.g., wrt. the

metric ontology used by PaaSage), provided that the metric definition can be mapped

to the content of the metric table.

Table sla:

id targeted_cost targeted_location targeted_revenue it_slo application_id

1 ... 3 2

Table it_slo:

id metric threshold platform

3 4 60

D4.1.1 – Prototype Metadata Database and Social Network Page 52 of 104

Table sla_parties:

sla_id provider_id requester_id

1 1 4

Table metric:

id name description value_direction layer unit property

4 cpu_usage The

average

usage of

CPU for

the VM

positive Infrastructure percentage

Table cloud_provider:

organization_id public paas iaas saas

1 true

Table organization:

id name www postal_address email

1 Amazon www.amazon.com

Table application:

id name version user resource

2 SensApp 1.0 4 1

Table user:

id lastname Firstname email www login

4 User4 CC1 CC1.User4@email.com

Table cd_vm_type:

id name datacenter ci_vm_type classified_on evaluated_on

11 SL 1 111

D4.1.1 – Prototype Metadata Database and Social Network Page 53 of 104

Table cd_vm_type (cont.):

id cpu ram disk benchmark_rate cost_per_hour resource

11 2 2 100 ... 0.5 7

Table data_center:

id name location_id cloud_provider code_name

1 DC

Ireland

1111 1 DCI

Table ci_vm_type:

id cpu_class memory_class io_class network_class

111 medium small small low

3.1.7 Security Requirements, Capabilities and Policies Aspect

Security seems one of the most major obstacles for the adoption of Cloud computing

as most of the businesses and organizations are concerned with the ability of cloud

providers to secure the access to their data and services, especially if we consider the

multi-tenant context under which cloud platforms are operating. To this end, various

cloud providers are undergoing a certification process which guarantees that they

realize and have in place various security controls which mitigate the risk of reaching

security breaches in their cloud platforms. These security controls are specified at a

high-level of abstraction and realized by adopting various security mechanisms.

For a cloud customer, it is essential that he/she provides his/her requirements through

indicating the necessity of the existence of particular security controls realized in a

cloud provider's platform. In this way, he/she will be guaranteed that no matter how a

particular security control is realized, particular security problems related to this

security control will not occur. Moreover, in order to obtain additional guarantees and

further enhance the trust level between the cloud customer and provider, security

controls can be linked to particular security properties whose service level can be

measured. In this way, the cloud provider and customer can come into an agreement

over which actual service levels will be provided for these security properties and

such an agreement could be expressed through an existing SLA language, such as

WS-Agreement.

Based on the above analysis, it is apparent that there should be a DSL which is able to
express security requirements and capabilities in terms of high-level security controls.

This DSL should also be able to link these security controls to particular security

properties, some of which will need to be measured through specific security metrics.

This DSL could be part of a bigger DSL, as already mentioned, which could be used

to express security level agreement templates (expressing security needs and

requirements supplied by cloud providers and customers) and actual security level

agreements, such as a DSL dedicated to the specification of (generic and not only

security-based) service level agreements. Alternatively, the DSL could also be

D4.1.1 – Prototype Metadata Database and Social Network Page 54 of 104

standalone which would indicate two main issues: (a) cloud service matching should

be accompanied by cloud security matching and (b) appropriate descriptions are

produced and connected to those of the more generic cloud service specifications. No

matter the way this DSL is actually developed, it is essential that a particular security

control ontology is also needed to enable a proper and more accurate matching of

cloud security requirements and capabilities. Such an ontology could rely on

particular products, such as the Cloud Control Matrix (CCM)

(https://cloudsecurityalliance.org/research/ccm/) proposed by Cloud Security

Alliance.

Apart from the need for a security control DSL, which would provide added-value to

the cloud application deployment process and thus to the PaaSage project, it is also

essential that a security level is imposed on the MDDB prototype so that the access to

its resources is restricted only to those entities that have the appropriate rights. Such a

security level can be realized through adopting particular authentication and

authorization mechanisms, such as single sign-on (SSO) and role-based access control

(RBAC) (as has been indicated in the description of the MDDB architecture), and

exploiting particular DSL languages for the proper description of the authentication

and authorization information in terms of resources, roles and policies imposing the

rights that roles will have on the MDDB resources. After thorough examination of all

possible alternatives, the DSL languages that have been selected are SAML and

XACML, where the first will be responsible for the description of authentication

information while the second is responsible for the description of security policies.

The selection of these languages relied on the fact that these languages are XML-

based, they already have particular realizing frameworks and are powerful enough for

the description of the appropriate security artifacts. More importantly, they are open

standards proposed by standardization organizations, such as OASIS. Finally, another

criterion that lead to their selection was that there is close cooperation of these two

standards where a specific profile (SAML profile for XACML) has been developed

which is used for exploiting SAML 2.0 for the protection, storage and transport of

XACML schema instances as well as other information required by a XACML

implementation.

Some of the above security DSLs will need to be mapped to the MDDB schema but

for obvious security reasons, it was decided that quite sensitive information will be

stored outside of MDDB (actually it could be realized as a dedicated MDDB instance

that is isolated and only available to the security mechanisms that will be realized for

MDDB) in order to not enable MDDB intruders to have access to quite sensitive

information. The DSLs that will indeed be mapped to MDDB are the security

language and XACML. To this end, the following sub-sections shortly analyze these

DSLs and indicate the way they will be mapped to MDDB.

3.1.7.1 Security DSL

DSL Description

As the agreed security levels for the properties related to a specific security control

can be expressed by WS-Agreement, which is a language already selected by PaaSage

to express agreements between cloud providers and customers, we have decided to

develop a DSL which will be able to not only express what security controls are

required and offered by a cloud customer and provider, respectively, but also to link

these security controls to security properties which can be monitored and measured.

The main benefits and usages of the DSL will be the following:

https://cloudsecurityalliance.org/research/ccm/

D4.1.1 – Prototype Metadata Database and Social Network Page 55 of 104

 The DSL will enable the matching of cloud providers based on the cloud
customer requirements, thus paving the way for negotiation

 The DSL will set up the context of the negotiation in terms of the security

levels that will need to be sustained for each security control required

 It will enable the monitoring of the security capabilities of the cloud providers
in order to assess whether the promised security levels have been violated and

impose particular penalties.

Figure 20 - The class diagram of the security DSL

While the specification of security controls can rely on CCM and it is quite easy to

model it, the design focus of the required DSL language shifted to the specification of

security properties that map to these security controls. Among the various candidate

security property DSLs, it was decided to use the one developed through the research

work conducted in the CUMULUS European project [Cumulus] with particular

adjustments needed to be more uniform and consistent across all DSLs. This DSL

relies on a particular security property domain vocabulary which is able to describe in

a precise way those security properties that can be utilized in the specification of

security capabilities and requirements.

Based on the main entities that constitute the above security property domain

vocabulary and the information required for modelling security controls, we have

developed a DSL whose meta-model is depicted in Figure 20. As it can be seen, the

main entity is security control which maps to a particular security domain, it has a

particular id derived from this security domain, and is textually described by the

specification attribute. A security control is required by a particular cloud user with a

specific priority. The introduction of priorities enables better matching the security

capabilities (e.g., through considering hard and soft requirements) as well as their

ranking. Security controls are also implemented and offered by cloud providers.

Security controls are finally linked to security properties. The latter are modelled

through the Security Property class which has two main sub-classes: Abstract and

Certifiable representing high-level security properties which concern desirable

D4.1.1 – Prototype Metadata Database and Social Network Page 56 of 104

security features of the CP and map to a set of concrete security properties realizing

them and highlighting a particular aspect over them. The latter represent concrete

security properties which are measurable. Abstract security properties are classified

under a specific category of the Cloud Control Matrix (CCM) which actually

represents a particular security domain, satisfying in this way the goal principle that

security properties must not be defined through mechanisms but goals. The certifiable

security properties comprise a minimum set of attributes that is enough for

distinguishing between different measurements of the same property on the same or

different systems, thus satisfying the equivalence principle. This is the point we

differentiate based on this DSL. In our opinion, the set of security attributes for a

particular property, in the way they are defined and according to the equivalence

principle, map to the definition of a security metric. In this way, we become uniform

as we are able to have IT SLOs which comprise various types of metrics, such as the

ones measuring performance and security properties.

Description of Respective MDDB Schema Part

Initial versions of the MDDB Schema were not able to capture well the definition of

security properties so the current version has extended them with this capability.

Figure 21 shows the relevant MDDB schema part. The actual extensions realized

cover two main aspects: (a) security control information captured by the

security_control table (b) security requirements expressed through

requirement_sec_control table which maps to a requirement belonging to an SLA, the

security control that is required and the respective preference/priority of the user, (c)

the provides_sec_control table which maps cloud providers to the security controls

that they offer, (d) the association of security IT SLOs to security control

requirements through the sec_control_slo table, and (e) the definition of security

properties. Please note here that security IT SLOs are already captured by the it_slo

table where the metrics involved measure particular certified/measurable properties

(where these properties can be indirectly discovered via accessing the metric table).

As the mapping of an SLA language is analyzed in a different deliverable section

(3.1.6), the focus of the analysis is now on the definition and mapping of security

property models. In MDDB, security properties are specified through the prop and

sec_prop table where the first table captures generic information about any type of

property, such as the property's id, name, category, parent (abstract property) and

whether it is measurable (obviously mapping to certifiable for security properties),

while the second table additionally models the property's CCM domain. As indicated

above, the metric table is enough for describing the way certified security properties

can be measured while it also links the metrics to the attributes that they measure, so

no further additions or extensions are needed.

D4.1.1 – Prototype Metadata Database and Social Network Page 57 of 104

Figure 21 - The MDDB schema part capturing security requirement and capability information

Based on the above analysis, the (more or less straightforward) mapping at the

schema level between the proposed security DSL and the (extended) MDDB schema

can be seen in Figure 22.

D4.1.1 – Prototype Metadata Database and Social Network Page 58 of 104

Figure 22 - The mapping of security DSL to MDDB schema

Running Example

Based on the SENSAPP running example, suppose that the cloud application user

(named as CC1 with ID 4) requires the security control SEF-05 belonging to the

control domain: Security Incident Management, E-Discovery & Cloud Forensics

(SEF) - Incident Response Metrics. Further, suppose that this user has made an

agreement with the Amazon cloud provider (with organization_id 1) which dictates a

particular SLO for property incident_management_quality indicating that the metric

percentage_of_timely_incident_reports measuring this property has a threshold of

99%. Then, the respective MDDB content that will be produced will be the following

(here all tables are in blue mapping to new MDDB content as we assume that the

security SLO might refer to a property that has not been inserted in the MDDB but is

described by the security language of CUMULUS):

D4.1.1 – Prototype Metadata Database and Social Network Page 59 of 104

Table security_control:

id description domain

SEF-05 Mechanisms shall be put in

place to monitor and quantify

the types, volumes, and costs of

information security incidents.

Security Incident Management, E-

Discovery & Cloud Forensics

(SEF) - Incident Response Metrics

Table requirement_sec_control:

id sec_control_id requirements

1 SEF-05 5

Table sec_control_slo:

requirement_id sec_slo

1 2

Table requirements:

id priority

5 "high"

Table provides_sec_control:

sec_control_id cp_id

SEF-05 1

Table itslo:

id metric threshold platform

2 1 99

Table metric:

id name description value_direction layer unit property

1 Percentage of timely

incident reports

 1 percentage 1

Table property:

id name category measurable parent

1 incident_management_quality true

D4.1.1 – Prototype Metadata Database and Social Network Page 60 of 104

Table sec_property:

prop_id domain

1 SEF

Table cloud_provider:

organization_id public Paas iaas saas

1 true

Table organization:

id name www postal_address email

1 Amazon www.amazon.com

Table user:

id lastname firstname email www login

4 User4 CC1 CC1.User4@email.com

3.1.7.2 XACML

DSL Description

XACML (eXtensible Access Control Markup Language) is a declarative access

control policy language proposed by OASIS as a standard. This standard also

indicates a processing model specifying the way access requests can be evaluated

based on the rules defined in the available policies. XACML is used to realize

Attribute Based Access Control (ABAC) systems where attributes are provided for

resources, actions and users and policies are described through patterns over them so

as to reach decisions of whether a particular user can perform a specific action on a

certain resource. As XACML supports ABACs, it can be easily used also to support

the realization of Role-Based Access Control (RBAC) systems which is the one of the

main security requirements for the MDDB prototype.

The UML diagram showing the main entities and their relationships of XACML is

depicted in Figure 23. As it can be seen, there are three main elements in XACML:

policy sets, policies and rules which are actually the three levels of security policy

description that can be specified in XACML over subjects, resources and actions. A

PolicySet is actually what its name signifies, a set of policies which can be jointly

used for reaching a particular decision through exploiting policy combining

algorithms. This set can also contain other policy sets and is obviously considered as

the standard medium for combining policies into a single one. A Policy signifies a

single access control policy which comprises a set of rules as well as a rule combining

algorithm which is used for combining the results of their evaluation. This policy is

considered as the basis for an authorization decision. Finally, rules constitute the most

fine-grained elements in access control policy description which cannot be used in an

isolated manner. In fact, rules can only be exchanged if they are packaged inside

policies. A rule comprises the following information:

D4.1.1 – Prototype Metadata Database and Social Network Page 61 of 104

 the target which indicates the set of requests on which the rule can be applied
by defining conditions over the requests attributes. The latter attributes can

map to the description of subjects, resources and actions. In fact, subjects can

have various attributes, while resources represent data, services or system

compositions with one attribute. Figure 1Figure 23 shows the mechanism

through which the set of requests are actually identified. In particular, a target

comprises 0 or more any-of elements which represent a disjunctive list of all-

of elements. The latter elements represent a conjunctive list of Match elements

which are those elements which indicate a set of entities by matching attribute

values in requests with the attribute value in them.

 the effect indicating the outcome of the rule evaluation which should be a deny

or accept decision over a particular request

 the condition which is an optional boolean expression further refining the
applicability of a rule beyond the predicates specified on its target. Such

expressions can use a broader set of function and be able to compare two or

more attributes. Through conditions, the standard is actually able to achieve

segregation of data checks as well as realize RBAC.

 the obligation expressions which define obligations/directives dictated by a
Policy Decision Point (PDP) to the Policy Enforcement Point (PEP) on what

must be performed before or after an access to a resource is granted. If a PEP

cannot comply to an obligation, then the approved access might not be

realized. Thus, it seems that obligations are used to fill the gap between formal

requirements and policy enforcement.

 the advices which are similar to obligations but are not necessarily enforced by
a PEP.

It must be indicated that a target can be identified also for policies and policy sets.

Moreover, the standard defines different ways (i.e., realizations of the rule/policy

combining algorithms) where the results of rule or policy evaluation are combined

into a final decision/evaluation for policies and policy sets, respectively. Some of

these ways are the following: (a) deny-overrides (any single deny evaluation results to

a combined deny evaluation value), (b) permit overrides (same for previous one but

not a single permit evaluation influences the decision result), (c) first applicable (from

the ordered sets of rules, promote the decision of the first applicable), and (d) only

one applicable (only one rule/policy should be applicable and its decision is

promoted).

D4.1.1 – Prototype Metadata Database and Social Network Page 62 of 104

Figure 23 - The UML class diagram of XACML

Description of Respective MDDB Schema Part

Based on the CERIF extension, which is described in detail in Section 3.1.2, the

MDDB schema was updated with information which can be expressed by CERIF

concerning the modelling of organizations, user and roles and includes the description

of policy information. In particular, in the current version of the MDDB schema, there

is the notion of permission which can be mapped to access control policies and is

related to the (user) role that has the permission and to the action(s) that can be

executed by this role. The resource affected by the permission is described through

the resource table and maps to all possible resources that will be available by the

MDDB prototype and its components. For instance, concerning the MDDB itself, it is

possible to describe resources at the table level and express which PaaSage

components/modules will have read and write access to which MDDB tables.

Moreover, the mapping of permissions to access control policies seems to be at the

rule level but it is essential to distinguish which parts of these two elements

description are going to be mapped as there is a gap between the declarative

description in XACML and the direct description in MDDB schema.

Running Example

Based on the running example, suppose that SINTEF has issued a local policy

indicating that any user with the role "Modeller" can modify and run the SENSAPP

application. An example of a XACML specification describing such a policy could be

the following:

<?xml version="1.0" encoding="UTF-8"?>

<Policy 1030

D4.1.1 – Prototype Metadata Database and Social Network Page 63 of 104

 xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17

 xmlns:xacml ="urn:oasis:names:tc:xacml:3.0:core:schema:wd-

17"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:md="http://www.med.example.com/schemas/record.xsd"

PolicyId="urn:oasis:names:tc:xacml:3.0:example:policyid:1"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-

combining-algorithm:deny-overrides" Version="1.0">

 <PolicyDefaults>

 <XPathVersion>http://www.w3.org/TR/1999/REC-xpath-

19991116</XPathVersion>

 </PolicyDefaults>

 <Target/>

 <Rule

RuleId="urn:oasis:names:tc:xacml:3.0:example:ruleid:1"

Effect="Permit">

 <Description> A user with the "Modeller" role can

modify and run the SENSAPP application

 </Description>

 <Target>

 <AnyOf>

 <AllOf>

 <Match

 MatchId="urn:oasis:names:tc:xacml:1.0:function:string-

equal">

 <AttributeValue

 DataType="http://www.w3.org/2001/XMLSchema#string"

>Modeller</AttributeValue>

 <AttributeDesignator MustBePresent="false"

 Category="urn:oasis:names:tc:xacml:1.0:subject-

category:access-subject"

AttributeId="urn:oasis:names:tc:xacml:3.0:example:attribute:ro

le"

DataType="http://www.w3.org/2001/XMLSchema#string"/>

 </Match>

 </AllOf>

 </AnyOf>

 <AnyOf>

 <AllOf>

 <Match

 MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-

equal">

 <AttributeValue

 DataType="http://www.w3.org/2001/XMLSchema#anyURI"

>10</AttributeValue>

 <AttributeDesignator MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:attribute-

category:resource"

AttributeId="urn:oasis:names:tc:xacml:2.0:resource:target-

namespace"

 DataType="http://www.w3.org/2001/XMLSchema#anyURI"/>

D4.1.1 – Prototype Metadata Database and Social Network Page 64 of 104

 </Match>

 </AllOf>

 </AnyOf>

 <AnyOf>

 <AllOf>

 <Match

MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string"

>1</AttributeValue>

<AttributeDesignator MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:attribute-

category:action"

 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-

id"

DataType="http://www.w3.org/2001/XMLSchema#string"/>

 </Match>

 </AllOf>

 <AllOf>

 <Match

MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string"

>2</AttributeValue>

 <AttributeDesignator MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:attribute-

category:action"

 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-

id"

DataType="http://www.w3.org/2001/XMLSchema#string"/>

 </Match>

 </AllOf>

 </AnyOf>

 </Target>

 </Rule>

</Policy>

This XACML specification would then be transformed into the following MDDB

content:

Table permission:

id role_id resource allowed start end issued_by

1 1 10 yes 3

D4.1.1 – Prototype Metadata Database and Social Network Page 65 of 104

Table role:

id name

1 Modeller

Table permission_action:

id permission_id action_id

1 1 1

1 1 2

Table action:

id action_type_id

1 1

2 2

Table action_type:

id name

1 Modify

2 Run

Table resource:

id

10

Table application:

id name version user resource

2 SensApp 1.0 4 10

Table organization:

id name www postal_address email

3 SINTEF www.sintef.no

3.1.8 Mapping Considerations

To realize the identified mappings at the schema level, we could rely on a set of

technologies that are already available as well on particular assumptions on the actual

transformation requirements. By starting from the latter and by considering that a

object-to-relational interface will be developed, we can assume that there are two

transformation modes:

D4.1.1 – Prototype Metadata Database and Social Network Page 66 of 104

1. The domain objects are directly mapped to MDDB content in a

straightforward manner;

2. The domain objects are processed (possibly after being transformed to

model code) through procedural code in order to realize the more

involved mappings to the MDDB.

The first mode seems more appropriate when the mapping is easy to realize and

usually one entity/object maps to the content of one or two MDDB tables. For this

mode, we can consider annotation techniques which enable defining the mapping

between the domain classes and the MDDB tables. On the other hand, the second

mode is better when the mapping is not so easy to realize in a one-to-one or one-to-

many manner but also some procedural logic is required. It is obvious that the

techniques activating in the second mode are more powerful than the first and can

accommodate any type of required mapping.

In our opinion, both types of modes can be exploited depending on the mapping case

by especially considering that sometimes you do not need great expressive power in

order to do something simple as this can spend more resources and lead to more

realization effort. For instance, the mapping between a Saloon model and MDDB is

better to be handled by the second type of mapping techniques as one Saloon

element/entity is not always mapped to the same MDDB table but the mapping

actually depends on the actual element content (at the model level). On the other

hand, the mapping between CloudML and MDDB is more straightforward and an

annotation-based technique could be more appropriate in this case.

Based on the above rationale, we shortly analyse in the sequel some particular

mapping techniques that could be used for realizing the identified schema mappings.

We also assess which of these techniques could be more suited for handling the

mapping cases designated.

3.1.8.1 Mapping Technology Analysis

3.1.8.1.1 Code Generators / Persistence Solutions via Annotations

3.1.8.1.1.1 Acceleo

Acceleo (current version 3.0) is a code generator which conforms to OMG's Model to

Text specification (MOFM2T 1.0). It allows you to handle the whole life-cycle of the

code generator, including offering refactoring tools as well as a debugger, profiler and

traceability API. Acceleo does not restrict the input model used in the generation as it

can span across UML models, ecore models, and (custom-made) meta-models (XMI).

It also allows you to use any EMF tool to create the input model, such as EMF tree-

based editors, graphical editors, text-based editors and CDO applications. It follows a

template-based approach in developing any type of code, such as Java, Scala,

Javascript, and HTML. Thus, it can also be easily used to produce SQL code. A

module under open-source licence (by Obeo) for transforming UML models to

Java/JEE code is available which exploits Struts, Spring and Hibernate technologies.

The latter indicates that Hibernate can be exploited through this code generation
framework to create the appropriate data-access layer (between objects and relational

data) enabling capabilities such as cache handling, 3NF SQL, integrity constraints and

concurrent access.

http://www.omg.org/spec/MOFM2T/1.0/

D4.1.1 – Prototype Metadata Database and Social Network Page 67 of 104

3.1.8.1.1.2 Teneo

Teneo constitutes an EMF-based solution enabling the mapping between models and

relational data as well as a respective runtime persistence layer. It exploits the

Hibernate and EclipseLink technologies to persist Eobjects, Elists and other types of

objects and relations as well as to support JPA-compliance. Both Hibernate and basic

JPA annotations can be exploited in order to map model objects to relational data.

While the former type of annotations is more suitable for one-to-one types of

mappings, the latter type enables the mapping of model objects to more than one RDB

table as well as the support of other interesting mapping capabilities (enabling the use

of join tables, inheritance mappings, etc.). The annotations can be entered in the

model (XSD or ecore) or specified in a separate XML file to separate the domain

from the annotation logic. The persisted objects can be retrieved either via an EMF-

based resource approach or through HQL queries. Most RDBs are supported. It must

be noted that Teneo is actually used as a component of the CDO Hibernate Store (see

Deliverable D2.1.2 [D2.1.2].

3.1.8.1.1.3 Texo

Similarly to Teneo, Texo provides a JPA-based solution where the JPA annotations

can be generated and enhanced at the source code or an orm.xml mapping (ORM 2.0

standard is supported) can be generated and extended from ecore/xcore models. Texo

is able to generate true PoJos from Ecore/Xcore/XSD models with no direct compile

link from the entities produced to EMF. It actually supports overridable and

extendable code generation with important support for EMF tasks like merge and

formatting. It also provides a web services layer for performing querying and CRUD

operations. It should be highlighted that it also provides appropriate runtime support

through models@runtime thus enabling the realization of important functionality such

as security, archiving and code generation. Finally, it should be mentioned that

support for multiple annotation models (e.g. JPA and Hibernate) is planned.

3.1.8.1.1.4 XDoclet

XDoclet is an open-source code generation framework which supports attribute-

oriented programming through Java. It parses the input data/files provided and

through the appropriate templates it generates the respective information, such as

XML descriptors or code. The generation process is defined through Jakarta Ant.

Although this framework originally aimed at producing EJBs, it has now been

transformed into a general-purpose code generation framework. This framework

provides support for all major server and tools, such as IBM WebSphere, JBoss,

Oracle IAS. Similarly to Acceleo (although Acceleo is rather more weak at this point)

it also exploits various technologies, such as Hibernate, Castor, many JDO vendors,

Struts and WebWork. Thus, as it can be seen, Hibernate annotations can also be

exploited in the code generation. In fact, different annotation models are supported

depending on the underlying technology (e.g., Spring bean annotations, Jboss

annotations and so on).

3.1.8.1.1.5 AXGen

AXGen is a another code generator engine which takes as input XMI files and

transform them to any type of code. It uses Velocity templates to perform the

transformation and thus relies on Velocity's sophisticated template engine. It offers an

UML abstraction layer (through Nsuml or NetBeans MDR) which provides an object-

oriented view to the model. AXGen exploits an OR Mapping tool in order to persist

mailto:models@runtime

D4.1.1 – Prototype Metadata Database and Social Network Page 68 of 104

the model object into a relational database, where OJB (Apache's

ObjectRelationalBridge) technology is actually exploited. While OJB is quite

powerful and is comparable to other persistence frameworks and technologies, the

corresponding Apache project has been retired.

3.1.8.1.1.6 XMI-to-SQL

XMI-to-SQL is a free library that can be used to transform XMI input files to SQL

code. This library was implemented in the context of a bachelor project. It requires

that the input models conform to XMI version 2.1 and are produced by an Enterprise

Architect v7.0 or above project. Moreover, to enable a proper code generation, the

project must contain a Class diagram and its version must be transformed to DDL.

Due to the context of this project, we need to actually check whether its functionality

is stable and can be exploited for performing the respective transformations. We need

also to check whether there is actually a one-to-one mapping between XMI model

entities and the respective RDB tables.

3.1.8.1.2 Model-to-Model Transformation / Procedural Approaches

3.1.8.1.2.1 XSLT/YSLT

XSLT is a XML-based specification for model-to-model transformation which

follows a procedural way for defining mappings. It is widely used especially for

transforming XML-based models to models in XML or other formats. It supports the

XPATH standard which can be used for identifying any component of a particular

(input) XML specification. Despite its popularity, XSLT exhibits particular issues

which can be a little bit annoying to the (mapping) modellers: (a) no separation of

indention of the XSLT program and that of the output text, (b) complicated syntax

and (c) lack of good escaping mechanisms. To this end, some extensions have been
proposed, such as YSLT which solves the above problems. Due to its simplicity and

expressive power, X/YSLT could be used for defining any type of transformation,

such as the XML-to-SQL one that we desire to achieve. The only issue that we

foresee with its use is that it is up to the modeller to produce correct resulting models.

Thus, it is usually good practice to check in the end whether the resulting model

complies to its meta-model and is correct.

3.1.8.1.2.2 MOLA

The MOLA project has been developed with the aim to offer a simple and user-

intuitive graphical model transformation language which is able to cover all the

typical transformation scenarios in the context of the Model-Driven Software

Development. The project offers the following artifacts: (a) the MOLA (Model

transformation LAnguage) language and (b) the MOLA tool enabling users to define

MOLA transformations and execute them on models. The MOLA language is quite

powerful and exploits the well-known concepts of pattern matching and rules for

identifying the appropriate input model parts to be transformed. The order of rule

application is specified through exploiting traditional programming constructs, such

as sequence, loop and branching. Another interesting characteristic of the language is

that it allows the use of variables and calls. A complete transformation specification in

MOLA comprises a MOF-compliant meta-model and a set of MOLA transformation

diagrams (procedures) which constitute a MOLA program. The result of the

http://mola.mii.lu.lv/home.html

D4.1.1 – Prototype Metadata Database and Social Network Page 69 of 104

transformation is a model which conforms to a MOF-compliant meta-model. MOLA

diagrams are actually sequences of graph statements linked by arrows which start by a

UML start symbol and finish with a UML end symbol. The MOLA tool is freeware

and comprises the following components: (i) a graphical editor for metamodel and

MOLA procedures, (ii) a MOLA compiler set able to produce C++ or Java code using

intermediate transformation languages and (iii) the MOLA runtime environment

which has been constructed from meta-model in-memory repositories (mii_rep,

JGralab and EMF). In the context of this project, the transformation example of UML

class model to RDB content has been realized according to the QVT-P proposal and

the respective MOLA program is available.

3.1.8.1.2.3 ATL

ATL is a model transformation language which is defined both as a meta-model and a

concrete textual syntax. ATL can be used to transform a set of input source models to

one target model. The main rationale is that all these models conform to a specific

meta-model and that the model transformation specification conforms to the ATL

meta-model. Model transformations in ATL can be specified either in a declarative or

a imperative way, where the declarative is the preferred one which is bypassed only

when the transformations cannot be easily expressed in a declarative way. Such model

transformations contain rules which indicate how to navigate and select the

appropriate elements of the input source models for the generation of the respective

elements of the target model. ATL also offers a model query facility which can be

used to issue requests on models. Code can also be factorized in ATL via the

definition of ATL libraries. ATL is accompanied with an Integrated Development

Environment (IDE), developed for the Eclipse platform, which offers various

development tools through which the model transformations can be specified. This

environment also offers additional facilities which can be used for model and meta-

model management, including a simple textual notation for meta-model specification

and a number of bridges between common textual syntaxes and their respective model

specifications. Through ATL, a MySQL to KM3 transformation has already been

defined which could be used in the context of this project for transforming relational

data to respective model representations. It must be highlighted that the model

transformations in both directions have been defined such that also a model

representation can be mapped to the respective relational content.

3.1.8.2 Assessment

From the above analysis, it is apparent that there are various approaches that can be

used to realize the two designated mapping cases. Thus, the goal of the consortium is

to decide which candidate language to use for each case. By considering the

annotation techniques, we can distinguish Teneo which is an Eclipse-based solution

which supports JPA and Hibernate annotations and is a component of a CDO

Hibernate Store. This seems a stable solution which has been adopted in order to build

a more added-value persistence technology for CDO repositories. As far as the

procedural techniques are concerned, we can have two different choices: (a) if we go

for simplicity and not for exploiting a quite involved technique which might have

more power than actually needed, then XSLT could be our choice and (b) if we desire

a more sophisticated approach which also ensures that the produced model conforms

to a particular meta-model, then we should go for ATL which is a language that is

widely used for model-to-model transformations and already has available various

D4.1.1 – Prototype Metadata Database and Social Network Page 70 of 104

(sample) mappings as well as a graphical development environment for specifying

model transformations.

3.2 Security, Privacy & Trust for MDDB Prototype
A key feature of the MDDB is the integration of data from third parties. We envisage

that this integration can be done via authentication and authorisation of a federated

organisation with the specific PaaSage instance. Sources data could include social

networks, federated implementations of PaaSage, trusted business partners plus

others. In these cases users from trusted organisations can share data with the PaaSage

implementation using credentials from their home organisation.

The Authentication and Authorisation provides the basis on which the trust fabric

used in PaaSage is built. Trust is derived at user and organisational level. Federated

users authenticate with PaaSage and are associated with unique identity tokens which

contain their role and organisation. These tokens contain access privileges for the user

in the PaaSage instance which is derived from the role and organisation of the user.

Authentication and Authorisation linked trust is present within the PaaSage identity

management framework which is linked to the MDDB. This framework supports

single sign on from users via the use of OpenID, SAML and OAuth. The identity

assertions from each method of authentication translated to a trust level linked to the

user’s previous use and reputation of their organisation. For example an OpenID user

could have lower trust than a previous good quality SAML federated user from a

trusted partner organisation.

In terms of secure access to data the trust associated with the user is expressed as

permissions in the user’s identity token. This token is issued by the identity

management component and checked by the MDDB in order to grant access for users.

Security policies are present in the MDDB in order to control the level of access to the

retrieval or recording of data. Policy is expressed in XACML and covers who has

access rights to data and what the access rights are. Policies are enforced by Policy

Enforcement Points (PEP) and Policy Decision Points (PDP) before access is granted.

The flow can be seen in Figure 24 below.

As the figure illustrates the access to data is based on both identity granted from the

MDDB and policy stored in the MDDB. The PEP and PDP components sit outside of

the MDDB and can be provided by a third party in order to ensure neutrality from the

PaaSage platform when policies are applied.

The combination of authentication, authorisation and the use of secure identity tokens

and policy provide the backbone to the trust, security and privacy architecture of the

MDDB. As PaaSage evolves the trust model is expected to become more complex and

the use of the PDP and PEP will support different deployment architectures and the

potential use of trusted third parties for Policy Enforcement.

D4.1.1 – Prototype Metadata Database and Social Network Page 71 of 104

3.3 Scalability, Availability
The current MDDB prototype is implemented over standard relational (SQL) database

technologies. Centralized relational databases are known to exhibit scalability and

availability issues. In PaaSage we aim to address this challenge in a number of ways.

First, standard SQL database management technologies offer scalability and

availability features that can be used in the context of PaaSage. For example, the

MySQL cluster
7
 option can seamlessly offer horizontal partitioning of the dataset into

several nodes achieving parallelism (scalability) as well as availability via replication.

While effective in sustaining larger levels of load than single-node installations,

options such as MySQL cluster are known to exhibit limited levels of scalability.

There are two alternative options to scale beyond the limits of conventional

technologies. First, leverage recent advances in ultra-scalable transactional processing

systems
8
; or second, explore the NoSQL class of database management systems

(examples include Apache HBase, Cassandra, MongoDB, and others), which however

come at the expense of losing full transactional semantics. Besides scalability and

availability, the two alternative options offer good elasticity features as well. In our

evaluation of the MDDB we aim to determine the performance and availability

requirements of applications from the MDDB and consider the appropriate database

technology to use based on those requirements and the results of our evaluation.

7
 http://www.mysql.com/products/cluster/

8
 http://www.cumulonimbo.eu

Figure 24 Trust and identity management

D4.1.1 – Prototype Metadata Database and Social Network Page 72 of 104

4 Knowledge Base Design & Implementation
Design Rationale

While the MDDB schema is capable of storing a vast amount of different types of

information which is appropriate for the proper management of cloud-based

applications, there is a clear need of additional information which can be derived from

the lower-level stored one which could be of an added-value to many tasks/processes

involved in cloud-based application management. Obviously, such information could

be produced by processing the data stored in MDDB but this would have the

following main drawbacks: (a) the MDDB would be loaded with additional queries

possibly affecting many parts of the data stored, (b) the knowledge produced through

MDDB content processing could be required by many PaaSage components and this

will certainly lead to a redundancy of computation/processing for the production of

the same information, and (c) even if a dedicated component is realized in order to

implement the above processing functionality, again there will be the issue that the

information produced must be cached or stored in order to avoid performing

redundant computations.

To this end, it was decided that a new component is required which is responsible for

deriving additional, high-level knowledge from the MDDB content which can be

queried at any time by the PaaSage components in order to draw particular parts and

exploit them. Such a component would need to consider the following requirements

which mainly concern the way the processing functionality must be realized, installed

and updated, the way the derivation knowledge can be managed and the way the

MDDB content can be exploited in order to produce the required, high-level

knowledge:

 Knowledge should be produced once and updated only at particular time
points or cases (e.g., when particular MDDB data are updated) in order not to

frequently burden the MDDB layer with additional load.

 There should be a simple and user-intuitive way to query the new knowledge
derived.

 The new knowledge should be persisted.

 New knowledge derivation functionality (e.g., the one produced/proposed by
expert users of the PaaSage SN) should be realized and installed in an easy

manner into the component.

 The knowledge should be built in a bottom-up manner and be re-used as
much as possible, especially when new knowledge derivation functionality is

needed.

 The communication between this new component and the MDDB layer
should be realized in an efficient and appropriate way such that no time is

spent in transforming the MDDB content into the format required by the new

component.

 There should be facilities for the proper management of the knowledge and of

the functionality used to derive it.

 Particular programming constructs should be provided in order to realize the
processing/derivation functionality in a uniform manner.

D4.1.1 – Prototype Metadata Database and Social Network Page 73 of 104

Candidate Technology Selection

Based on the above requirements, two main candidates were identified: (a) knowledge

bases and (b) ontology-based reasoners which could fulfil many of the above

requirements, if not all. However, the decision finally went to knowledge bases as: (i)

there are already particular efficient facilities in order to draw and exploit database

data and (ii) ontology-based reasoners require that the MDDB data must be already

available or transformed into RDF (or other ontology language) data and (iii) some

project partners are not familiar with the semantic (ontology-based) technology.

Nevertheless, the main logic between these two alternatives is similar as rules are

mainly used as the basic constructs for the derivation of new knowledge. In addition,

new rules can be inserted in such way that they exploit the knowledge produced from

old rules in order to produce novel knowledge and this perfectly maps to the bottom-

up approach designated by the above requirements. Moreover, the modern rule

languages utilized by the current state-of-the-art knowledge base frameworks exhibit

a particular user-friendly syntax and provide various important and sufficient

constructs which can be exploited in order to produce an efficient set of rules, most of

the times in a programming-language independent way (although some frameworks

can also enable you to write rules in two modes in order to utilize your favour

programming language, such as Java). Finally, most of the current state-of-the-art

frameworks enable you to manage and easily query the knowledge derived (with

some also exhibiting caching capabilities) as well as manage the rules developed in

various meaningful ways. To conclude, knowledge bases perfectly match the above

requirements and are the best candidates for the realization of the required MDDB

component.

Open-source KB frameworks can be separated into two types: (a) internal KB engines

operating on the DB of the DBMS and (b) external KB engines operating on data

fetched from a DB through a particular technology, such as Hibernate. From these KB

frameworks, the internal ones are rejected as the most sophisticated frameworks are

provided only by proprietary solutions that are part of a specific DBMS. To this end,

we resorted and evaluated only external, prominent open-source KB frameworks,

namely Drools Expert, Jess and Prova, based on the following criteria:

 powerful rule building constructs

 simple and user-intuitive rule and query language

 simple and efficient integration with DBMS technologies

 extensive documentation

 extensive and highly active user base

Drools Expert fulfilled all of the requirements, while the other frameworks were not

satisfying one or more of them. For instance, Drools has native support for Hibernate

while Jess does not and this means that efficiency issues might arise when DB content

is queried and fetched. Moreover, the user base for Jess and Prova is small or getting

smaller while there seems to be a move or trend to resorting to the solution of Drools

Expert. Apart from this, another factor that influenced our decision was the fact that

Drools Expert is accompanied by other, complementary open-source solutions that

could be exploited, such as the Drools Guvnor which is a centralized repository for

KBs.

D4.1.1 – Prototype Metadata Database and Social Network Page 74 of 104

Knowledge Base Design

Drools Expert as well as many other current state-of-the-art frameworks provide you

with various conceptual elements which can be used for the management of rules and

the derived knowledge. In particular, the main conceptual element is a Session which

can come in two flavours:

1. Stateless sessions which can be used to produce and return the whole

knowledge derived at once. After that, they are usually destroyed.

2. Stateful sessions which can persist and which can be continuously

exploited by firing rules, issuing queries and obtaining back the results,

and adding new objects (if needed). Such sessions can be easily informed

when new rules are added in order to fire them and produce additional

knowledge on top of the one already derived.

Sessions are connected to KnowledgeBases which constitute the management point of

rules. In this way, once a new rule is added, the session is automatically updated.

Moreover, when a Knowledge Base is removed, then all the corresponding sessions

are usually removed (or no more valid). KnowledgeBases can also persist and this is

crucial in order not to lose the knowledge production logic.

Based on the aforementioned description, it was decided to realize a component

through web service technology which will be responsible for managing both

different knowledge bases as well as their respective stateful sessions. Stateful

sessions were chosen as there was a clear need to not only persist the derived

knowledge but also to have a continuous management medium through which this

knowledge could be updated and queried. On the other hand, the design choice of

enabling the creation of many knowledge bases relied on the following rationale:

 a basic knowledge base is needed for holding the formal core rules that are
exploited by the PaaSage components which is usually close and only updated

after it is decided that a new rule proposed by an (expert) user should be

accepted.

 other knowledge bases can be created by PaaSage components or even
PaaSage users in order to fulfill their own individual goals. Such knowledge

bases can be pre-loaded with the basic PaaSage rules as well as obviously

extended with new component or user-specific rules.

In addition to this, the component also allows one component/user to create many

stateful sessions for a particular knowledge base as needed in order to cater user

requirements such as the one that different sessions should be kept for different parts

of the knowledge/rule base (i.e., for a particular partition of the user-defined rule set).

As can be easily understood, the realized KB service is able to manage the whole

lifecycle of KBs and the sessions created out of them. The KB management methods

provided include the following:

 create a Knowledge Base

 add a set of rules to a Knowledge Base

 remove a Knowledge Base

while the session management methods offered are the following:

D4.1.1 – Prototype Metadata Database and Social Network Page 75 of 104

 create a session for a particular knowledge base

 fire rules for a particular session

 get all objects of a particular session

 add objects to a session

 issue a query to a session

 delete a session of a knowledge base

Apart from providing these methods, the service also ensures that all KBs and

sessions created as well as the rules provided are persisted in physical storage (plus

other configuration information) such that even if it is interrupted or restarted, it can

load all the appropriate KB, session and rule information such that no user data are

damaged or lost.

Important details about how to use the service and what is the signature of the service

methods can be found in:

https://projects.gwdg.de/projects/paasageproject/repository/raw/Work%20Packages/

WP4/KB_CLIENT.zip

where the client API code is also included and can be exploited.

The current content of the KB component relies on the exploitation of rules which

derive three types of knowledge: (a) similarity degree between application and

between artifacts, (b) successful deployments of applications and artifacts and (c) best

deployments of applications and artifacts according to one or more quality

requirements. The similarity degree of artifacts is currently derived through name

matching but it is planned that additional information is exploited once it is available

in the MDDB. The similarity degree of applications is derived based on the

percentage of common or equivalent artifacts between these applications. Similarly, it

is planned that additional information is also exploited when it is also available in the

MDDB (or can be derived from other files or models of the application). Apart from

the rules that derive the above knowledge, particular queries have been designed

which allow to enquire successful/best deployments for new artifacts or applications

based on the derivation knowledge of old artifacts or applications that match them,

respectively. The answer of such queries can be exploited during CloudML model

design as modelling hints to designers for new applications which are depicted and

loaded by the SN or during reasoning in order to obtain interesting deployments for

new applications that could be potentially exploited. New rules and queries are

planned to be designed concentrating on the same or even different aspects of the

cloud-based application management information stored in the MDDB.

The knowledge derived is structured into objects that are instances of particular Java

bean classes. These classes build upon the Java bean classes corresponding to the

tables of the MDDB schema. This is a basic requirement for exploiting the DB

fetching mechanisms of the exploited KB framework as the DB content is drawn in

the form of objects that are instances of the latter classes. It should be noted here that

the DB content is fetched by particular queries which are placed in the "if" part of

rules and which are issued once when the rules are pre-checked if they can fire. This

means that the DB queries map to static knowledge which is produced once and

exploited by one or more rules. The re-evaluation of queries, if needed, is only

enforced through performing particular tricks. Thus, DB queries in rules must be

https://projects.gwdg.de/projects/paasageproject/repository/raw/Work%20Packages/WP4/KB_CLIENT.zip
https://projects.gwdg.de/projects/paasageproject/repository/raw/Work%20Packages/WP4/KB_CLIENT.zip

D4.1.1 – Prototype Metadata Database and Social Network Page 76 of 104

handled with care. We should mention here that this is a common restriction that

appears in most of the KB frameworks reviewed.

Figure 25 - The architecture of the KB Component

The architecture of the realized component is depicted in Figure 25. As it can be seen,

the user / PaaSage / MDDB component issues any type of request to the KB

management service which first passes by the PEP/PDP points for authorization (it is

assumed that the user/component is already authenticated and has incorporated in

his/her request the authentication token). Once the authorization is granted, then the

respective method of the KB service is called. Depending on the method called (i.e.,

rule firing method), communication with the MDDB layer takes place through the

widely-used technology of Hibernate in order to fetch (domain) objects (actually rows

for a particular table which can be seen as a Java bean) from the MDDB as the raw

information exploited by the "if"/"left hand side" of rules. The execution of many

methods also results in persisting crucial KB/session management information in the

current node that hosts the service, while in the future the information will be also

persisted in other places for ensuring that no data are lost when critical host failures

occur (such as physical disk faults). The service is currently deployed on a Tomcat

application server running on a particular node of the Flexiant cloud and is available

at the following URL (where also documentation information can be viewed):

http://109.231.122.77:8080/ksession-manager-1.0-SNAPSHOT.

Implementation details

Implementation fully relied on the use of the Java programming language. The KB

framework exploited is Drools Expert. This framework offers a Java API which

enables the full management of KBs and their respective sessions. The main

management functionality was wrapped into a restful web service which was realized

through the jersey Java library, while the enunciate library was used for producing the

web-based, user-friendly documentation of the service. The Java Hibernate library

was used for fetching the appropriate MDDB content through HQL queries in rules.

http://109.231.122.77:8080/ksession-manager-1.0-SNAPSHOT

D4.1.1 – Prototype Metadata Database and Social Network Page 77 of 104

5 Social Network Design & Implementation

5.1 Core Design
The PaaSage social network is implemented over the extensible Elgg social network

framework. Elgg comprises a Core system and a number of plugins, all of which share

a common structure. All objects in Elgg inherit an ElggEntity Object, which provides

the necessary general attributes of an object. Elgg Core comes with four basic objects:

ElggObject, ElggUser, ElggGroup, ElggSite, ElggSession, and ElggCache, and a lot

of others classes necessary for the proper engine operation.

The extensibility of Elgg can be established not by modifying the core system but by

introducing new plugins. The plugins follow the MVC (Move View Controller)

model. A new plugin can create new objects (e.g., ApplicationObject for the rest of

the document we mention as draw_app), which extend ElggEntity. Thus, each Entity

is characterized by a numeric Globally Unique IDentifier (GUID), owner GUID, and

Access ID. The Access ID determines the permissions that other users have. Thus,

when a page requests data, it never touches those data that the current user doesn’t

have permission to see. Other application-specific attributes are defined within the

application plugin such as the view of a specific object. All Entities may have

relationships between each other or may store data (metadata) to the Elgg Database.

Figure 26 - Elgg Structure (a)

D4.1.1 – Prototype Metadata Database and Social Network Page 78 of 104

The implementation of a new plugin follows a well defined directory structure such as

the one shown in Figure 28 for the Application plugin. The structure resembles a tree

whose leaves are executable php, css or javascript scripts.

Figure 28 - Plugin structure

Figure 27 - Elgg Structure (b)

D4.1.1 – Prototype Metadata Database and Social Network Page 79 of 104

Any plugin (including Application) has:

 Default views. Views are responsible for creating the output. Generally, this

will be HTML sent to a web browser, but it can be also JSON or other data

formats.

 Actions, which are Elgg’s way of providing interactivity: every active

participation by the user is performed via an action. Logging in, creating,

updating or deleting content are all generic categories of actions. For instance,

the save button of an application composition triggers a “save” action.

 Events. There are two types of events: Elgg Events and plugin hooks. Elgg

Events are triggered when something is created, updated, deleted or when the

Elgg framework is loading. Examples would be a blog being created or a user

logging in. Each event is determined by an event name and an object type

(draw_app, system, user, object, or group). By registering handlers for Elgg

events, our plugins can have code executed when that event occur, such as

river creation events. The river creation is the event that is responsible for the

news activity posts of the network. Plugin hooks tend to be triggered when an

action has occurred and parts of that action can be overridden by a plugin

though there are additional cases where a plugin hook can be used to overwrite

the action.

 Pages, which can be from chunks of presentation output (like sidebars or

objects) down to individual html code.

 Libraries, such as jsPlumb which is in the vendors folder

 A page-hander function described in start.php is a facility to manage our

plugin pages, enabling custom url redirect to a specific page php script in a

specific folder. The plugin initialization is also defined in the start.php and

registers actions, events and determines the views. For example, a “Save” user

action in the draw_app (when the “Save” button is pressed) produces a “Save”

action in our plugin, and this action adds a “river” stream functionality which

is handled within “Activity” (core system) and creates the view for our own

object in the home page.

D4.1.1 – Prototype Metadata Database and Social Network Page 80 of 104

The Elgg Social Network is implemented as a classic MVC framework which also

exhibits the standard functionality of a social network engine. In order to extend its

operability to compose the social network according to the project requirements, the

following extra plugins were created:

 An Application Description (draw_app) plugin that allows users to compose /

view their applications in a graphical approach similar to an IDE.

 A MDDB plugin, which is responsible for the Metadata Database interaction

and provides a standard HTTP API to execute queries. The more sophisticated

users can post a pending query directly to MDDB through the social network.

For security reasons, the moderators of the web page have to accept the query

as benign in order to be executed.

 A Custom View query plugin, which modifies the default CSS view of Elgg.

 A Group plugin, which is responsible for the groups and discussion html

pages.

 A Message plugin which allows users to send each other private messages.

Javascript Libraries

We have imported the jQuery Impromptu library in our system as it is a extension

which provides a more pleasant way to spontaneously prompt a user for input. More

or less this is a great replacement for an alert, prompt, and confirm javascript pop-ups

as it does not only replace them but it also allows for creating forms within these

controls.

The jsPlumb is the core system of the Application Description plugin. jsPlumb

provides a means for a user to visually connect objects. Furthermore, with the help of

jQuery Impromptu the user can configure objects and execute queries to MDDB.

Figure 29 - Social Network Server Architecture

D4.1.1 – Prototype Metadata Database and Social Network Page 81 of 104

Node.js Language Processing

In group discussion forms we need to interact with the user in order to provide

information from the MDDB when the user is typing a topic. Apart from the jQuery

interaction, we use the node.js to determine if a word is a natural language word or is

a keyword known to MDDB. When a word is neither of them, then with jQuery

Impromptu the user can define this word, providing a definition and a classification of

the keyword. Apart from javascript libraries that perform the same work, the node.js

is faster and does not overwhelm the client with a big dictionary file and the process

complexity to look up for words.

As a future work, we will include natural/node.js which can classify sentences and

offer a way to understand what the user is trying to ask through the topic and check if

the MDDB knows something about it.

Interaction with MDDB and KnowledgeBase

The MDDB query plugin provides an API to logged in users to execute queries about

the deployment of applications. Those queries are being executed with jQuery Ajax

post requests to the MDDB plugin. The queries currently exploited are the following:

 Similar Applications based on the name of the application.

 Similar Applications based on the artifacts they use.

 Deployment hints based on cost.

 The cloud provider on which a specific application was deployed in the past.

Integration with CloudML model editor

In the current prototype we have integrated a CloudML model editor provided by

SINTEF that is shown in Figure 30. As the CloudML model editor is extended to

provide additional features, we intend to maintain and expand its integration with the

implementation of the social network.

D4.1.1 – Prototype Metadata Database and Social Network Page 82 of 104

5.2 UI design
In this section we describe ongoing work on UI design for the social network,

including mock-up screenshots representative of the typical user experience.

5.2.1 Header

Figure 31 - The header shown in PaaSage's SN

(1) Main menu that facilitates the exploration of the PaaSage Social Network

a. Activity feed (home icon): displays the most interesting recent activity taking

place on PaaSage (depending on the user’s connections and preferences)

b. Models: facilitates browsing among publicly available PaaSage’s application

models

c. Components: facilitates browsing among PaaSage’s software components

d. Community: facilitates the exploration of PaaSage's social community (e.g.,

individual users, groups, discussions, etc.)

(2) Personal area: Includes options related to the profile of the logged-in user

a. Models created - owned by the user

b. User profile

c. Personal Messages

d. Account Settings

(3) System-wide search area: permits searching for models, components, groups, connections

and messages

Figure 30: Integration of Model Editor with Social Network UI

 2 3

 1

D4.1.1 – Prototype Metadata Database and Social Network Page 83 of 104

5.2.2 Models: Home

This screen is displayed when the “Model” option is selected. Its purpose is to help

the user locate interesting models by displaying: (i) recommendations personalized to

the user’s areas of interest, (ii) featured models promoted by the network and (iii)

popular models based on community dynamics.

Figure 32 - Main page for models exploration in PaaSage SN

 6

 1

 2 3

 4

 5

 7

 8

 9

D4.1.1 – Prototype Metadata Database and Social Network Page 84 of 104

(1) Page title

(2) Page-wide search area: facilitates searching for models of the selected category

(3) Models & Components List: enables the collection of various models and software

components that can be later imported for manipulation in the “Model Editor”

(4) Recommended models based on the user’s areas of interest

(5) Featured models promoted by the network

(6) Top Models; through a drop down menu the user can select the attribute based on which

the “Top Models” will be selected (e.g., user rating, performance, number of uses,

number of executions, etc.)

(7) New and Noteworthy Models; through a drop down menu, the user can select the

attributed based on which the “New and Noteworthy Models” will be selected (e.g., user

rating, performance, number of uses, number of executions, etc.)

(8) Sub-menu containing the main categories of the PaaSage models. By selecting a category,

the page will refresh to display all the models of that category. The option “Any

category” allows the user view all models regardless of their categories.

(9) Model Short View

5.2.2.1 Model Short View

Model short views contain the most important information of a specific model, so as

to enable users to identify those that better suit their needs:

 Model Icon, Title and Creator

 Associated Category (-ies)

 User rating and Badges (e.g., 99.9%

uptime, 20ms execution time, etc.)

 Associated tag(s)

 Number of uses and executions

A preview icon is also

available for the users that wish to

view further details about the model.

On mouse-over, the actions “use” and

“run” are displayed. “Use” will add the

selected model to the “Models &

Components List” for later use through

the model editor, while “run” will

immediately launch the model editor for

configuring deployment parameters and

resources.

Figure 33 - The short view of models in PaaSage SN

D4.1.1 – Prototype Metadata Database and Social Network Page 85 of 104

5.2.2.2 Models: Selected Category

This screen is displayed when a model category is selected.

Figure 34 - Page shown when a model category is selected

(1) The page title updates to include the selected model category

(2) Filters that can be used to narrow down the displayed models

(3) Sub-menu containing the subcategories of the previously selected category

 1

 3

 2

D4.1.1 – Prototype Metadata Database and Social Network Page 86 of 104

5.2.2.3 Model Subcategories

When a model category is selected, the

page refreshes to display all the models of

that category, while the categories’ sub-

menu adapts to display the subcategories of

that category. The user can undo by

pressing the “clear x” control displayed

next to the category title.

Figure 35 - Model Category Selection

Figure 36 - Refreshed page as a result of

category selection

D4.1.1 – Prototype Metadata Database and Social Network Page 87 of 104

5.2.3 Components: Home

This screen is displayed when the “Components” option is selected.

Figure 37 - Home page for component exploration in PaaSage's SN

(1) Recommended components based on the user’s areas of interest

(2) Components categories; the user can either select a category to view all the contained

components or click on the “use all” button that appears on mouse-over to add an abstract

component to the “Models and Components List” that can be specified later in the

“Model Editor” (benefiting from the Knowledge Base recommendation facilities)

(3) Component Short View

5.2.3.1 Component Short View

Component short views contain the most important information of a specific

component to enable users to identify those that better suit their needs:

 Component Icon, Title and Creator

 Associated Category

 Small Description

 User Rating

 Number of uses

 1

 2

 3

Figure 38 - Short view of components in the SN

D4.1.1 – Prototype Metadata Database and Social Network Page 88 of 104

On mouse-over, the “number of uses” label transforms to a “use” button for

immediate addition of the component to the “Models and Components List”

5.2.3.2 Models and Components List

When empty, the “Models and

Components List” informs the user that it

contains no items.

As soon as the user adds a model to the

list, it updates to display the contained

model. If the contained models are more

than one, a summary is provided instead

(e.g., 3 models).

Similarly, if the list contains components,

the user is informed appropriately.

5.3 Identity Management for Social Network Prototype
The implementation of the identity management infrastructure to support trust,

security and privacy in PaaSage is designed to scale in order to support deployment in

various domains. The Identity Management Framework supports SAML, OAuth and

OpenID for authentication requests. SAML is typically used for enterprise level

authentication while sources such as OpenID and OAuth are used on popular Internet

Service Providers such as Google or Facebook.

The initial implementation of security privacy and trust in the MDDB is focused

around the integration of the Elgg social network with the MDDB. Support for

OpenID, OAuth and SAML is added to the network. This functionality has been

added using Open Source plugins (SAML http://www.yaco.es/uniquid/, OAuth

http://community.elgg.org/plugins/385119/0.3.1/oauth and OpenID

http://community.elgg.org/plugins/433999/1.3/openid-client).

In order to process the authentication requests from the social network the OAuth and

OpenID assertions are integrated within Elgg and details of the users authentication is

stored in the Elgg database linked to the MDDB. For SAML, SimpleSAMLphp

(http://simplesamlphp.org) is used to handle the SAML requests and act as a WAIF

server. Once the SAML assertions are de-serialized, the identity information like in

the Elgg plugins is stored into the MDDB.

Data protection in PaaSage is implemented using ZXID (www.zxid.org) which is an

Open Source Identity Management Platform. The use of ZXID enables the wrapping

of data objects in order to check identity tokens when incoming requests for access to

data is received. ZXID is the mechanism by which the calls to the PEP and PDP are

Figure 39 - Empty models & component list

Figure 40 - Updated list with the incorporation

of a model and particular components

http://www.yaco.es/uniquid/
http://community.elgg.org/plugins/385119/0.3.1/oauth
http://community.elgg.org/plugins/433999/1.3/openid-client
http://simplesamlphp.org/

D4.1.1 – Prototype Metadata Database and Social Network Page 89 of 104

conducted. The PDP is implemented using OpenAZ in order to read stored XACML

policies.

Once authenticated the identity assertions stored in the MDDB are checked against a

lookup table in the MDDB which lists levels of trust of organizations and users. In

cases where organizations have users with the same role but different privileges we

provide mappings. The mapping of identity has been added with the integration of

CERIF. This DSL in PaaSage can be used to express roles and hierarchy’s in

organisations. CERIF is used to express the relationship between roles in the specific

XACML policies and the authenticated user’s token.

For example an organization using PaaSage could be a US university where professor

has the same functionality as lecturer in a UK university which is presenting the data

protected by a XACML policy. In this case the use of CERIF mapping between the

organization will ensure the users from the US organisation using PaaSage are

assigned the right privileges.

Figure 41 - XACML and CERIF integration.

Figure 41 illustrates the identity management architecture in PaaSage. By considering

this diagram, the following main events can actually occur:

1 User authenticates with portal providing request

2 Portal checks userID against policy enforcement point for request

3 Policy decision made by policy decision point

4 Decision fed back to portal

5 If access granted request sent to MDDB

In its current state the main implementation using Elgg demonstrates the support of

multi-domain identity management schema. The link between identity and trust is

done using the MDDB schema. In the future the schema of the MDDB could be

developed to better match standards for expressing trust such as WS-Trust that could

be supported in future PaaSage as a DSL if WS-Security is supported.

D4.1.1 – Prototype Metadata Database and Social Network Page 90 of 104

6 Prototype evaluation

6.1 MDDB performance
To assess MDDB's performance, we have mapped its schema in a MySQL v5.5

database. The following subsections focus on two main areas: the space evolution of

the database when more application data are stored over time and its response time

while increasing the load (the number of concurrent clients querying the database).

Space evolution

The MDDB schema was designed to avoid redundancy when recording time-evolving

state. They key to achieving this is to explicitly represent time-dependent

associations, for example that of a software component with the resources used to

deploy it in each execution of the application. If we recorded the time of deployment

of every software component within the software_component_instance table, we

would need to create a new software component instance for every execution of the

application even though no other aspect changed across executions. This design

ensures that our metadata database grows at the reasonable pace.

To get a feeling of the rate of growth for the physical size of the MDDB we assume

that we have applications consisting of 3 software components each. We deploy and

execute each application using random VMs and random monitoring data. Figure 42

shows the growth of the database as we store more applications in the MDDB.

The size of the database when data for only one application are stored is about 2.9

MB, while for 100 applications the size raises up only until 3.03 MB. It must be

highlighted that due to the correct MDDB design, even when data for 1 million

applications are stored, the MDDB size is about 3.5 GB.

Figure 42 - Database size evaluation results

D4.1.1 – Prototype Metadata Database and Social Network Page 91 of 104

Load performance

On the second part of the performance evaluation of the MDDB, we focus on the

response time of query evaluation by executing two different queries. The first query

is as follows:

This query returns the mapping between the VM instances and respective software

component instances. The MDDB contains sample data of 100 000 applications. As

the query returns results for all the applications in the database and involves joining 4

tables which are highly populated, it can be considered as mapping to an extreme

case. To avoid the overhead of sending too many results to the clients, we used the

LIMIT keyword to retrieve the first 10 000 records in order. Figure 46 depicts the

response time of the query as the load of the database increases (more concurrent

clients query the MDDB). Even in the extreme case of about 600 concurrent clients,

the response time is about 4 seconds. Please note that we don’t make use of the query

cache offered by the MySQL database by using the keyword SQL_NO_CACHE in

the query.

Figure 43 - Response time of MDDB while increasing the load (num of concurrent clients)

The second query (see below) exploited database performance evaluation involved the

retrieval of the VM type most widely used (i.e., mostly instantiated in application

deployments). Figure 44 depicts the response time of the database when its load is

SELECT SQL_NO_CACHE d.component_instance, d.on_vm_instance

FROM execution_context as exec, slo_assessment as slo,

deployment_execution as de, deployment as d

WHERE slo.assessment=true AND

slo.execution_context=exec.id AND

de.execution_context=exec.id AND d.id=de.execution_context

LIMIT 10000

D4.1.1 – Prototype Metadata Database and Social Network Page 92 of 104

increased. We can again see that the performance of the database is affected by the

load. However, even in the extreme case of about 600 concurrent clients, the response

time is reasonable (about 6 seconds).

Figure 44 - Response time of MDDB while increasing the load (num of concurrent clients)

6.2 MDDB – Hibernate-Based Object-Relational interface
The main purpose of this section was to evaluate how well the MDDB fit the needs of

its primary clients, i.e., the PaaSage components and modules and especially the

Profiler and Reasoner. By assuming that an object interface will be offered to these

clients through which they will be able to interact with the MDDB, the evaluation

focused on the query performance of the MDDB through the hibernate-based object

interface already realized. The main rationale for this was to have a indication of the

query performance which could be slightly worsen when a different mapping from the

realized one-to-one would be implemented.

Three main experiments were conducted to assess the hibernate object interface query

performance which involved three main queries, respectively:

1. obtain all successful deployments for all applications

2. same as previous one but with a limit on the results (1000 rows)

3. retrieve the most widely used VM type for a cloud provider

SELECT SQL_NO_CACHE vmi.cd_vm_id, count(vmi.id)

FROM vm_instance as vmi

GROUP BY vmi.cd_vm_id

D4.1.1 – Prototype Metadata Database and Social Network Page 93 of 104

These three queries were similar to those used for the evaluation of the pure, SQL-

based performance of the MDDB. In this way, we are able to show what is the

overhead introduced by hibernate and whether its scalability is appropriate. Moreover,

we should also highlight the rationale for each query. The first query is quite involved

as it includes joining many tables which are populated by a huge amount of rows and

obtaining back the results. This query maps to a worst case scenario for queries that

are not very selective and require a huge amount of data to be returned. This scenario

has of course a great impact over the hibernate realization as the huge amount of data

returned needs to be transformed into a graph of highly-connected domain objects.

Thus, in contrast to the case of pure SQL queries, it is expected that the overhead

introduced through performing this transformation will be quite high. On the other

hand, the second query exactly shows that when the amount of information to be

returned is not very big, then the performance is better and more appropriate.

The goal of the third query was to introduce a scenario of a selective query issuance

which involves comparing aggregations of MDDB data. Thus, now it is not the

amount of data to be returned that play a significant role in query time but actually the

query provisioning. In this way, we are able to show that for this type of scenarios, the

hibernate-based performance is quite close to the one exhibited by pure SQL queries.

The experiments, as in the previous MDDB evaluation, were performed over a

MySQL DB running on a Flexiant FCO instance and involved the issuing of HQL

queries by an increasing number of concurrent users. For each experiment, the

average query time across each number of specific concurrent users was assessed.

First query experiment - Simple querying with huge amount of results

In the first experiment, we increased the number of concurrent users from 10 to 40

with a step of 10 and evaluated the average query performance of the hibernate-based

solution. The experiment results are shown in Figure 45. As it can be seen, while there

is a linear increase in the query time with the increase in the number of concurrent

users, which signifies the scalability of the examined solution, the query time is not

very satisfactory. This dictates that for the particular type of queries the hibernate

solution can only be used by (PaaSage) components/modules which do not perform a

real-time task which requires a fast query performance. Moreover, this query type

should be avoided if there is the possibility of a great number of concurrent issuers.

D4.1.1 – Prototype Metadata Database and Social Network Page 94 of 104

Figure 45 - The first query performance of the 1-1 hibernate mapping solution

Second query experiment - Simple querying with small amount of results

The second experiment involved the issuing of the second query over an increasing

number of concurrent users from 100 to 600 with a increase step of 100. The

experiment results are shown in Figure 46. By comparing with the previous

assessment results, we can clearly deduce that the performance in this case is much

better and a greater number of concurrent users can be supported. Thus, the hibernate

solution is quite scalable in this case and can be used by component tasks that need a

fast query response time. These results also prove our assumption that the overhead of

a great amount of query results significantly impacts the performance and scalability

of the hibernate-based solution. Please bare in mind that again the performance trend

is the same with a linear increase in query time with the increase of the concurrent

users.

D4.1.1 – Prototype Metadata Database and Social Network Page 95 of 104

Figure 46 - The second query performance for the 1-1 hibernate mapping solution

Third query experiment - Involved querying with small amount of results

In the third experiment, the number of concurrent users issuing the third query

increased from 50 to 300 with a step of 50. The respective experiment results are

depicted in Figure 47. Again, there is a linear increase in the performance behavior. In

addition, by comparing these results with the respective ones according to the pure-

based SQL evaluation, we can clearly see that for this type of queries the object

transformation overhead is small and the major query time percentage is spent in

query provisioning (by the underlying DBMS). To this end, this type of queries seem

to be ideal for being used under this specific solution. In fact, as we expect that this

type of queries will be the ones most widely used in the context of the PaaSage

project, then it can be definitely deduced that the hibernate-based solution will be the

ideal alternative for the realization of the envisioned object interface. What remains to

be shown, after a particular non straightforward DSL-to-MDDB mapping is realized,

is whether the non one-to-one mapping can increase the overhead introduced by

hibernate and in what degree. If the overhead is insignificant, then the hibernate-based

solution will be the final realization choice of the object-to-relational interface.

D4.1.1 – Prototype Metadata Database and Social Network Page 96 of 104

Figure 47 - The third query performance of the 1-1 hibernate mapping solution

6.3 KB Performance
The purpose of the evaluation was to assess whether the Rest-Based implementation

of the KB Management Service is scalable enough to accommodate for an increasing

number of concurrent users no matter what is the size of the user session repository

storing the respective objects derived and has a quite good runtime performance. The

main focus of the evaluation was a particular method which is the one most valuable

to the PaaSage users, components and modules and which is expected to be executed

most of the times by them. This method is obviously the one dedicated to the issuing

of queries on user sessions for obtaining particular facts derived which is called

runQuery. Other methods could also be tested but we restrained our focus just on this

method as: (a) some other methods are quite lightweight with respect to their

realization, so it is not quite meaningful to assess them, (b) just one method, called

fireRules, needs to be run sparsely across user sessions as: (i) it generally takes some

time to finish especially for quite populated underlying (MDDB) database(s) and (ii) a

slight update on the database(s) is highly improbable to require the updating of

derivations for old or the derivation of new facts; thus, if this method is called once

D4.1.1 – Prototype Metadata Database and Social Network Page 97 of 104

per day per PaaSage component/module, then it is quite easy to handle it in an

appropriate and scalable way.

Based on the above analysis, we made two stress tests on the rest-based

implementation to check the scalability and performance of the runQuery method for

varying sizes of the underlying MDDB: (a) the first focused on issuing different types

of queries with different content over an underlying sparsely populated MDDB and

(b) the second focused on issuing the same types of queries over a highly populated

MDDB. The varying content and type of queries was used to simulate the expected

situation where each user may issue different query types (based also on his/her

interests) with varying content (mapping to different checks such as the case of the

SN which could issue many queries requiring to find which application components

are similar to those exploited in the current modelling of a particular application) as

well as examine whether performance is highly affected by the size of the query

results to be returned (as time is needed to serialize the results in XML and deliver

them across the network) such that the caching advantages of the KB session are

diminished (where same query with same content will be responded quicker in all

times than the first). The four query types map to the four main KB rules: (a) find

similar applications for a specific application, (b) find similar artifacts for a specific

artifact, (c) retrieve best deployment for a particular application and specific set of

SLOs and (d) obtain best deployment for a particular artifact and a specific set of

SLOs.

In the first test, MDDB was holding execution data for 5 applications concerning 4

execution contexts, while for the second test the same amount of applications

remained but the execution context data for each become 400.

The tool used to run the stress tests was JMeter and all the tests were performed from

a local laptop machine (i.e., the stress code - all thread clients issuing HTTP requests

to the REST-service) to the Flexiant Cloud (FCO) where the service was deployed

and running. In each experiment test, 100 concurrent users were created issuing 100

queries each in one second interval between requests. For issuing his/her requests,

each user first created a session (not counted for computing the overall time) and then

called the runQuery method 100 times before destroying his/session in the end (again

not counted for computing the overall time). The query type and parameters are

chosen randomly for each call of the runQuery method per user.

Figure 48 - The response time behavior of KB for the first assessment

D4.1.1 – Prototype Metadata Database and Social Network Page 98 of 104

6.3.1 Results for First Test - Sparsely Populated MDDB

The assessment results from the first stress test are depicted in Figure 48. As it can be

seen, the query time in the beginning is increased but then it drops sharply and gets

stabilized until the very end. This behaviour can be justified by the fact that at the

beginning most of the queries as well as their content tends to be new so they have to

be normally processed. Then, as the query results start to get cached, the performance

starts to increase and becomes stable. Thus, for this case, the API method is scalable

enough to handle a vast amount of users with the appropriate performance where the

response time goes from 420 milliseconds to 1.4 seconds.

6.3.2 Results for Second Test - Highly Populated MDDB

Figure 49 shows the assessment results for the second experiment. The performance

seems to follow the same trend with respect to the previous assessment results.

However, we can deduce the following differences:

 the query performance is not so stable as in the first experiment.

 The query performance is worse than the first experiment.

These differences can be justified as follows. In order to serialize the query results

and pass them over the network, we followed a serialization strategy where as much

as possible information from the domain objects is retained. In this way and as the

domain objects tend to be highly connected with each other, the same queries with

almost the same type of results have now a quite larger size than in the first

experiment. For instance, by considering the first column for the best deployment

query which maps to an application object, in the first case this object was connected

to 4 execution context objects which were inserted internally in its serialization (when

this serialization was produced), while in the second case the same object was

associated with 400 execution context objects. To this end, the following effects were

produced: (a) the different types of queries now map to different result sizes; as such,

when more queries from the small size cluster are finished, the average query time is

reduced, while, on the other hand, when more queries from the big size cluster end,

the average query time is increased; (b) as the result size is very big (MBs of data) for

half of all the issued queries and such big size maps to a great XML serialization and

network broadcasting time, the performance is now much worse.

D4.1.1 – Prototype Metadata Database and Social Network Page 99 of 104

The second experiment's assessment results clearly show that while the response

behaviour trend is quite good and more or less stable, the selected serialization

strategy leads to a big performance penalty induced by serializing and sending results

with big size. In this way, a particular solution is chosen to remedy the above issue

and improve KB performance which leads to redesigning the main KB rules and its

domain model (mapping to the additional (with respect to MDDB) facts that are

derived): the serialization strategy should now be minimal with respect to the

information considered from the main MDDB objects. Obviously, this solution will

certainly lead to performing additional queries for obtaining the information that has

been cut out from the serialization but first here we are dealing with a major design

trade-off and second queries can be focused and be performed only on those objects

that interest the PaaSage user.

As a proof of concept for the new, envisioned solution, we have modified the

serialization for some of the domain objects that are returned and re-executed the

second experiment. The results can now be seen in Figure 50. As it can be seen, the

query performance has been substantially improved such that 100 concurrent users

obtain the respective query results in 4 seconds on average. This performance is

obviously quite satisfactory and enables the use of the KB by PaaSage modules and

components which might have real-time or near real-time tasks with increasing

demands on query latency.

Based on the above rationale and analysis, the KB will be redesigned according to the

solution considered so as to improve its query performance substantially and be able

to handle a great number of concurrent users with the best possible query response

time.

Figure 49 - The KB query performance for the second experiment

D4.1.1 – Prototype Metadata Database and Social Network Page 100 of 104

7 Path to Final Prototype (M36)
The current prototype implements a significant amount of the MDDB functionality.

Considerable effort however is still needed towards the production of the final

prototype in M36, as Table X also shows. Besides progress with individual

components, the planned work includes focus on the integration between different

components ensuring that they can correctly communicate and interoperate. To

coordinate this work, FORTH will continue organizing regular bi-weekly

teleconferences. Progress so far has finalized the responsibilities for different tasks;

we thus foresee a smooth path to the production of a fully-functional prototype and

will now focus on the remaining work.

Work

Item

Number

Work Item Description Responsible Partner

Organization

#1 DSL-to-MDDB mapping realization FORTH

#2 Modelling of concepts and relationships not

covered by DSLs for extensive ecore meta-model

FORTH

#3 Linking concepts in extensive ecore model STFC

#4 CAMEL (ontology-based) modelling & mapping STFC

#5 Further DSL modelling + possible modelling of

new DSLs

FORTH, CETIC,

AGH (+UULM)

#6 Improve CERIF integration with MDDB AGH

#7 Additional information sources exploitation AGH

#8 Scalability and high-availability of MDDB

through CDO

FORTH

Figure 50 - The query performance of the modified KB for the second experiment

D4.1.1 – Prototype Metadata Database and Social Network Page 101 of 104

#9 Small KB redesign and possible KB service API
extension

FORTH

#10 Analytics module development FORTH

#11 SN's UI realization FORTH

#12 SN's realization of missing functionality FORTH

#13 SN's (UI) evaluation Flexiant (+ possibly

other partners)

#14 Multi-domain security STFC & AGH

#15 Further MDDB/KB evaluation FORTH (+ possibly

other partners)

Table 4 - Work Item Summary towards M36

Concerning the MDDB itself, the work can be split into three main directions; two of

those directions are joined based on the underlying technology. The first direction

concerns the mapping of the DSLs to the MDDB schema. Based on the decisions

made in a recent meeting (3/2014) the consortium is considering exploiting Eclipse

CDO as the technology for realizing the object-to-relational interface required by the

PaaSage components (especially those involved in WP3). This technology

(thoroughly analyzed in Deliverable D2.1.2 [D2.1.2]) exploits Teneo and Hibernate

(see Section 3.1.8) in order to provide a persistence layer for the storage, updating and

retrieving models complying to DSLs. Moreover, through this technology, JPA and

Hibernate annotations can be provided which can define in most of the cases (with

just the exception of Saloon DSL) all of the identified mappings between the DSLs

and the MDDB. In addition, based on the previous decisions, it has been decided to

create an extensive ecore model which not only covers all the DSL but also the

information already captured in the MDDB schema. This means that there will be the

need of enriching the ecore model with all the appropriate concepts and relationships

in such way that not only the additional, required information is covered but also that

the mapping is more or less one-to-one in order not create an additional load to the

persistence layer in the enforcement of the mappings. This will be a task that will be

followed by FORTH in cooperation with the partners that have contributed to this

additional information (AGH for CERIF-based modelling, CETIC for the security

DSL, and STFC for the WS-Agreement modelling). It should be noted that through

this approach, the current MDDB schema will not be modified to a significant degree

as the mappings will ensure that the respective tables and columns with their

corresponding names and types are still there in most of the cases. However, some of

the table information might be enriched by columns additionally inserted by

Hibernate.

Apart from modelling the additional missing information from the union of the DSLs,

there is also a need for linking different concepts with each other, especially when

they are equivalent or there is some interconnection between them. This task will be

performed by STFC which will explore first and then enforce some of the appropriate

linking in the extensive ecore model and then evaluate whether the ecore-based

technology along with CDO is enough for having the appropriate expressivity and

whether an ontology at a higher level will be more appropriate to ensure the

integration of all information. This task will be performed in such way so as not to

D4.1.1 – Prototype Metadata Database and Social Network Page 102 of 104

interfere with the CDO solution and the way it is mapped to the MDDB but on the

other hand ensure that the ontology-based (CAMEL) models will also be mapped

accordingly to MDDB without any loss of (critical) information.

The further modelling of some novel DSLs will also be pursued, such as those of the

security and scalability rule DSLs. For the first DSL, FORTH will cooperate with

CETIC in order to evaluate whether the current modelling is enough or needs to be

extended appropriately. For the second DSL, FORTH will cooperate with UULM in

order to further extend the DSL according to particular aspects that have already been

discussed during the development of the current, first version of the DSL. Apart from

this, it might also be interesting to see whether other additional DSLs could be

modelled not just to add a new DSL but to cover a particular need that might originate

from the use cases of the PaaSage project. For instance, we could examine whether a

new DSL could be created in order to replace WS-Agreement, which although is a

standard, seems not to cover some essential aspects, such as the definition of the

SLOs and of the respective metrics involved.

AGH plans to extend the current MDDB schema in order to include additional

concepts from CERIF and cover cases requiring additional modelling of roles and

organizations, the trust and reputation aspects, the accounting and billing for the

users, and the tracking of provenance and usage statistics. By considering that CERIF

is another DSL, then have certainly the case of extending a DSL in order to cover

some additional aspects which will provide an added-value to the project and enable

to more fully realize the role of a multi-cloud service management platform. The

future work will also focus on further improving CERIF integration with MDDB,

including the possibility of uploading CERIF descriptions of users or organizations in

CERIF XML exchange format directly through the social network website. Additional

information sources will be also considered for improving MDDB functionality such

as automatic creation of CloudML configuration models from legacy application

descriptions (e.g. JBoss application descriptors) and support for advanced methods of

rule discovery in Knowledge Base.

Based on the CDO technology adopted, the way scalability and high-availability for

the MDDB can be achieved might be modified as CDO already provides mechanisms

which can enforce (DB) distribution with interesting features, such as fault-tolerance

and data consistency (see Deliverable D2.1.2 [D2.1.2]). FORTH will be responsible

of checking the CDO distribution capabilities.

As far as the KB is concerned, the evaluation in Section 6 has shown that it should be

re-designed in order to have an appropriate domain model which does not lead to

delays in answering queries which involve a huge amount of results. Apart from this,

some of the KB rules will be enhanced in order to better fulfil their purpose. In

particular, the rules used for inferring application and component

equivalence/similarity will be extended to consider other (richer) information aspects

apart just from the name of the components and applications. In addition, additional

rules might be created which can be used to derive some other interesting facts, such

as which adaptation actions are the best to consider for adapting a particular

application when specific performance problems arise. Based on the feedback from

the PaaSage developers, the API that has been implemented might be also enriched in

order to provide additional functionality or slightly change the way the current

functionality is delivered. All of the tasks that involve the KB will be conducted by

FORTH.

D4.1.1 – Prototype Metadata Database and Social Network Page 103 of 104

As it can already been figured out, the Analytics Module has not been developed yet.

Its development will start after M18 and will finish before M36. However, it is

acknowledged that this component will provide added value to the MDDB prototype

and in general to the PaaSage platform, through analyzing the previous execution

history and providing interesting insights on the application performance and

deployment, and thus the consortium will surely focus on its proper realization on

time.

The Social Network is being re-designed in order to reach further usability levels as

well as become the single point of interaction between the users and the platform. To

this end, while the back-end technology remains the same, the UI is being improved

as outlined in the mock-ups presented in this deliverable. Once the UI design is

finalized, the UI will be realized based on particular state-of-the-art methods as well

as the back-end possibly enriched based on the requirements imposed by the UI. Part

of the work concerning the UI also includes the generation of an editor which will be

used by the PaaSage users in order to create CAMEL models which will then be used

to guide the provisioning of the respective applications. While a significant part of

this work is driven by FORTH, guidance and feedback on the usability of the UI will

be performed by other partners to provide insights on aspects of the UI that need

further improvement.

While implementation of the security layer for the authentication and authorization in

the MDDB has been finalized, it can currently be enforced in a single domain. It will

be the task of STFC and AGH to extend this layer accordingly in order to work

correctly also in multiple domains (an important feature consider distribution of the

MDDB) with the appropriate realization of the required functionality and the

respective modelling extensions.

Finally, although some initial evaluation of MDDB has been performed, the

consortium will attempt to perform further evaluation in order not only to show some

additional aspects (scalability due to MDDB distribution) but also to reassess its

performance and scalability due to the incorporation of new technologies (such as

CDO/Teneo/Hibernate on top of RDB layer).

8 Conclusion
This deliverable reports on the current status of the MDDB and social network

infrastructure. It also provides a roadmap of the remaining work to be performed in

order to finalize the final prototype offering the full functionality supporting the

PaaSage architecture and the use cases. Progress to date has been according to plan

through the smooth cooperation of the consortium members. Given the clear

implementation plan outlined in this deliverable, we are confident that development of

the final prototype will also proceed smoothly through M36.

Bibliography
[CERIF] Keith G Jeffery and Anne Asserson. "CRIS Central Relating Information

System". In: Proceedings of the 8th International Conference on Current Research

Information Systems (CRIS2006). Leuven University Press, 2006, pp. 109-120. ISBN:

978-90-5867-536-1.

[CloudML] Nicolas Ferry, Franck Chauvel, Alessandro Rossini, Brice Morin and

Arnor Solberg. “Managing multi-cloud systems with CloudMF”. In: NordiCloud

2013: 2nd Nordic Symposium on Cloud Computing and Internet Technologies. Ed. by

D4.1.1 – Prototype Metadata Database and Social Network Page 104 of 104

Arnor Solberg, Muhammad Ali Babar, Marlon Dumas and Carlos E. Cuesta. ACM,

2013, pp. 38–45. ISBN: 978-1-4503-2307-9. DOI: 10.1145/2513534.2513542.

[Cumulus] A. Pannetrat, Security-aware SLA Specification Language and Cloud

Security Dependency Model. CUMULUS Deliverable D2.1, 2013.

[D1.6.1] The PaaSage Consortium. D1.6.1—Initial Architecture Design. PaaSage

project deliverable. Oct. 2013.

[D2.1.1] Alessandro Rossini, Arnor Solberg, Daniel Romero, Jörg Domaschka,

Kostas Magoutis, Nicolas Ferry, Tom Kirkham, Maciej Malawski, Bartosz Balis,

Dariusz Krol, Achilleas Achilleos, CloudML Guide and Assessment Report

(Extended). PaaSage Deliverable D2.1.1e, November 2013.

[D2.1.2] Alessandro Rossini, Nikolay Nikolov, Daniel Romero, Jörg Domaschka,

Kyriakos Kritikos, Tom Kirkham, Arnor Solberg, CloudML Implementation

Documentation. PaaSage Deliverable D2.1.2, March 2014.

[D5.1.1] Anthony Sulistio, Panagiotis Garefalakis, Damianos Metalidis,

Chrysostomos Zeginis, Craig Sheridan, Kuan Lu, Jörg Domaschka, Bartosz Balis,

Dariusz Król, Edwin Yaqub, Prototype Executionware and Prototype new Execution

Engines. PaaSage Deliverable D5.1.1, March 2014.

[Kritikos and Plexousakis 2006] K. Kritikos and D. Plexousakis. Semantic QoS

Metric Matching. In ECOWS (2006).

[Kritikos et al. 2013] Kyriakos Kritikos, Barbara Pernici, Pierluigi Plebani, Cinzia

Cappiello, Marco Comuzzi, Salima Benrernou, Ivona Brandic, Attila Kertész,

Michael Parkin, and Manuel Carro. 2013. A survey on service quality description.

ACM Comput. Surv. 46, 1, Article 1 (July 2013), 58 pages.

DOI=10.1145/2522968.2522969 http://doi.acm.org/10.1145/2522968.2522969.

[Saloon] Clément Quinton, Nicolas Haderer, Romain Rouvoy and Laurence Duchien.

“Towards multi-cloud configurations using feature models and ontologies”. In:

MultiCloud 2013: International Workshop on Multi-cloud Applications and

Federated Clouds. ACM, 2013, pp. 21–26. ISBN: 978-1-4503-2050-4. DOI:

10.1145/2462326.2462332.

[WS-Agreement] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko

Ludwig, Toshiyuki Nakata, Jim Pruyne, John Rofrano, Steve Tuecke and Ming Xu.

Web Services Agreement Specification (WS-Agreement). Tech. rep., Open Grid

Forum, Mar. 2007.

[XACML] Erik Rissanen. eXtensible Access Control Markup Language (XACML)

Version 3.0. Technical Committee Specification 01, OASIS, August 2010.

[Zeginis et al. 2013] C. Zeginis, P. Garefalakis, K. Kritikos, K. Konsolaki, K.

Magoutis and D. Plexousakis. Towards Cross-layer Monitoring of Multi-Cloud

Service-based Applications, European Conference on Service-Oriented and Cloud

Computing, Malaga (2013)

