
D3.1.1 / D3.1.3 – Upperware Prototype Report Page 1 of 87

PaaSage

Model Based Cloud Platform Upperware

Deliverable D3.1.1 & D3.1.3

Upperware Prototype Report

Version: 1.0

D3.1.1 / D3.1.3 – Upperware Prototype Report Page 2 of 87

D3.1.1 / D3.1.3 – Upperware Prototype Report Page 3 of 87

D3.1.1

Name, title and organisation of the scientific representative of the project's coordinator:

Mr Tom Williamson Tel: +33 4 9238 5072 Fax: +33 4 92385011 E-mail: tom.williamson@ercim.eu

Project website address: http://www.paasage.eu

Project

Grant Agreement number 317715

Project acronym: PaaSage

Project title: Model Based Cloud Platform Upperware

Funding Scheme: Integrated Project

Date of latest version of Annex I against which the
assessment will be made:

29th August 2012

Document

Period covered:

Deliverable number: D3.1.1 & D3.1.1E

Deliverable title Upperware Prototype

Contractual Date of Delivery: 31th March 2013 (M18)

Actual Date of Delivery:

Editor (s): Christian Perez

Author (s): Amin Bsila, Nicolas Ferry, Kamil Figiela, Geir Horn,
Tom Kirkham, Maciej Malawski, Nikos Parlavantzas,
Christian Perez, Jonathan Rouzaud-Cornabas, Daniel
Romero, Alessandro Rossini, Arnor Solberg, Hui Song

Reviewer (s): Benjamin Depardon, Philippe Massonet

Participant(s):

Work package no.: 3

Work package title: Upperware

Work package leader: Christian Perez

Distribution:

Version/Revision: 1.0

Draft/Final:

Total number of pages (including cover):

D3.1.1 / D3.1.3 – Upperware Prototype Report Page 4 of 87

DISCLAIMER

This document contains description of the PaaSage project work and findings.

The authors of this document have taken any available measure in order for its content to be accurate, consistent and

lawful. However, neither the project consortium as a whole nor the individual partners that implicitly or explicitly

participated in the creation and publication of this document hold any responsibility for actions that might occur as a

result of using its content.

This publication has been produced with the assistance of the European Union. The content of this publication is the

sole responsibility of the PaaSage consortium and can in no way be taken to reflect the views of the European Union.

The European Union is established in accordance with the

Treaty on European Union (Maastricht). There are currently

28 Member States of the Union. It is based on the European

Communities and the member states cooperation in the

fields of Common Foreign and Security Policy and Justice

and Home Affairs. The five main institutions of the

European Union are the European Parliament, the Council

of Ministers, the European Commission, the Court of Justice

and the Court of Auditors. (http://europa.eu)

PaaSage is a project funded in part by the European Union.

Contents
1 Introduction . 10

1.1 Structure of the document 10
2 Upperware Architecture Overview 11

2.1 Overview . 11
2.2 Upperware Metamodels 12

3 Upperware Meta Models . 13
3.1 Types and Constraint Problem Metamodel 13
3.2 PaaSage Type and Application Metamodels 15
3.3 Example . 18

4 Profiler . 23
4.1 CP Generator Model-to-Solver 23
4.2 Rule Processor . 27

5 Reasoner . 30
5.1 Learning Automata (LA) based Assignments 31
5.2 CP Solver . 43
5.3 MILP Solver . 45
5.4 Heuristics . 48
5.5 Meta-Solver . 51
5.6 Solution Evaluator . 52
5.7 Utility Function Generator 52
5.8 Simulator Wrapper . 57
5.9 Solver-to-deployment 66

6 Adapter . 69
6.1 Adaptation Manager 69
6.2 Plan Generator . 73
6.3 Application Controller 75

7 Conclusion . 76
References . 77

A Common Metamodels 83

B CPIM of Simple Application Example 86

C Saloon Ontology 87

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 5 of 87

List of Figures
1 PAASAGE Workflow. 11
2 Metamodels overview. 13
3 CP Metamodel overview. 14
4 Expressions in the CP Metamodel. 14
5 Type Metamodel: types, variables, and constants in the CP Metamodel. 15
6 PaaSage Type and Application Metamodels overview. 16
7 Virtual Machines and Providers in the PaaSage Type and App Metamod-

els. 17
8 Application Components and Variables in the PaaSage Type and

App Metamodel. 18
9 Elasticity Rules in the PaaSage Type and App Metamodels. 19
10 CP Model of the Simple Application example. 20
11 PaaSage Model of the Simple Application. 21
12 Properties of some elements of the Simple Application example. . . 22
13 Profiler Architecture. 23
14 Saloon Ontology (excerpt) with the selected concepts for the Simple

Application example. 25
15 CP Generator - Model to Solver Architecture. 26
16 Process executed by the CP Generator Model-to-Solver component. 28
17 Reasoner: Architecture and main Components. 30
18 The fundamental learning loop: The learning actor proposes an ac-

tion to the environment. In this case, the action is a particular de-
ployment configuration. The environment then provides feedback
on the quality of this configuration in terms of a reward to the learn-
ing agent. 32

19 The learning environment controlling the problem variables and con-
straints is an actor that interacts with a learning actors through mes-
sages. 38

20 The various options of binding the solver code with the compiled
variables and constraints of the problem at hand. 41

21 The hierarchy of a learning actor implementing Variable Structure
Stochastic Learning. Alternatively the Learning Actor could have
inherited the class implementing a Fixed Structure Stochastic Learn-
ing type. 42

22 Architecture of MILP solver. 46
23 Example of CMPL model for simple cloud application. 48
24 Architecture of Heuristic reasoner. 49
25 The steps needed in order to compute the fuzzy utility value. 55
26 Internal architecture of the Simulator Wrapper. 58

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 6 of 87

27 Generic application model. 59
28 Generic request’s dataflow model. 59
29 Generic application model for the RUBBoS application. 63
30 Example of an instance of the RUBBoS application model. 64
31 2 request types’ dataflow for the RUBBoS application. 64
32 Trade-off between the metrics for the RUBBoS application and the

horizontal scalability of the application tier. 65
33 Solver-to-deployer-overview. 66
34 Adapter Architecture. 69
35 Adaptation Manager structure. 70
36 Metamodels overview. 83
37 CP and Type Metamodels. 84
38 PaaSage Type and Application Metamodel. 85
39 Saloon Ontology. 87

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 7 of 87

List of Tables
1 Matching table. 68
2 REST API. 72
3 Action types output by Plan Generator. 74

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 8 of 87

Executive Summary
This document gives an overview of the architecture of the prototype of the Up-
perware layer of PAASAGE. The Upperware contains three main entities, known
as the Profiler, the Reasoner, and the Adapter. This deliverable describes the ini-
tial implementation of each of them. It also describes four metamodels internal
to the Upperware to ease separation of concerns, in particular with respect to the
Profiler and the Adapter.

This deliverable provides our view at M18. As long as experience will be
gained using the developed software, the implementation of the Upperware layer
can be updated. The next deliverable about final version of the Upperware is due
at Month 36 (Product Upperware).

Intended Audience
The deliverable is a public document designed for readers with some Cloud com-
puting experience. It presumes the reader is familiar with the overall PAASAGE

architecture as described in Deliverable D1.6.1 [1].
For the external reader, this deliverable provides an insight into the Upper-

ware sub-system of PAASAGE, its architecture and its various entities. For the
research and industrial partners in PAASAGE, this deliverable provides an un-
derstanding of the basic design of the Upperware, its capabilities and also its
limitations.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 9 of 87

1 Introduction
The Upperware is a collection of tools and components used to assist the ap-
plication development or porting at design time, and then to integrate with the
Executionware at runtime to facilitate the optimisation of the running applica-
tion and execution platform. It is made of three main elements: the Profiler, the
Reasoner, and the Adapter.

Deliverable D1.6.1 [1] has provided a high level view of these three ele-
ments. In particular, it gives some insights on the major sub-components, and
how they relate. This document present the major choices we have made for de-
veloping them, showing in particular the inputs and outputs of the various sub-
components. One major change with respect to the initial architecture presented
in D1.6.1 is the introduction of four metamodels private to the Upperware to ease
separation of concerns, in particular with respect to the Profiler and the Adapter.

1.1 Structure of the document
The structure of this document quite closely follows the structure of the Upper-
ware. Section 2 sums up the architecture of the Upperware, and its relationships
with other PAASAGE elements. Next, Section 3 motivates and presents the four
metamodels internal to the Upperware. The sub-components of the three major
entities of the Upperware are then described: Section 4 for the Profiler elements,
Section 5 for the Reasoner elements, and Section 6 for the Adapter elements.
Section 7 concludes the deliverable.

This deliverable contains three appendices. Appendix A fully describes the
Upperware metamodels. Appendix B lists the full Cloud Provider-Independent
Model (CPIM) of the Simple Application example introduced in Section 4.1.
Appendix C fully represents the Saloon Ontology.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 10 of 87

2 Upperware Architecture Overview

2.1 Overview
As defined in Deliverable [1], the first objective of the Upperware is to com-
pute which commands to send to the Executionware from a CAMEL config-
uration model instance (initial deployment). To this end, it can make use of
the Metadata Database (MDDB) to retrieve information related for example to
Cloud Providers or to historical data related to previous executions.

After the initial deployment, the Upperware will typically receive monitoring
information from the Executionware and the MDDB. Its tasks will be to compute
new commands to send to the Executionware to maintain an actual deployment
respecting the deployment constraints.

Application

implementat

ion

Java, Python, …

Application source

code, binaries, scripts

Deployment

design

CloudML

Provisioning and

deployment model

Application

design

UML

Application model

Commercial

negotiation

WS-Agreement

Service-level

agreement

Requirements

and goals

identification

Saloon

Requirements and

goals

CAMEL

Configuration model Profiler

CAMEL

Deployment template

CAMEL

Deployment model

Adapter

Execution models

Executionware

Metadata Database

Historical data

Reasoner

Infrastructure

/ Platform

Figure 1: PAASAGE Workflow.

Figure 1 describes the PAASAGE workflow in more details. At the end of
deployment description phase, that involves the deployment design, the com-
mercial negotiation, and the identification of requirements and goals, all inform-
ation is gathered into a CAMEL configuration model instance. This document

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 11 of 87

instance is the initial input of the Upperware. First, the Profiler analyses it to pro-
duce a CAMEL deployment template, that contains a list of potential candidate
providers that satisfy the constraints. Second, the Reasoner computes a CAMEL
deployment model instance, that is the chosen deployment solution. Third, the
Adapter is responsible for transforming the output of the Reasoner into the target
configuration in an efficient and consistent way, by issuing a set of commands to
the Executionware.

The Adapter is also responsible for performing high-level application man-
agement, which involves monitoring and adapting components deployed on mul-
tiple cloud providers. However, as the Upperware Prototype at M18 only fo-
cuses on the initial deployment, this document does not cover application re-
deployment.

2.2 Upperware Metamodels
PAASAGE is a model based project. The Profiler and most Reasoner elements are
based on the usage of some models. Therefore, we have defined four metamodels
that aims at capturing elements important for Upperware components. Section 3
presents these metamodels in details, and their usage is detailed when compon-
ents of the Profiler (cf. Section 4) and the Reasoner (cf. Section 5) make use
of them. Globally, the Profiler creates metamodel instances that are mainly read
by Reasoner components. The only important modifications made by Reasoner
components is for storing a deployment solution into them.

These metamodels are mainly defined to capture information related to the
deployment problem that the Reasoner has to solve. We have aimed to minimise
dependencies to CAMEL, for example by controlling the exposition of CAMEL
concepts. Our goal was to separate as much as possible CAMEL evolutions from
Reasoner internals.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 12 of 87

3 Upperware Meta Models
As introduced in Section 2.2, four metamodels have been defined to minim-
ise model transformations and to minimise Reasoner dependencies to CAMEL.
Figure 2 provides an overview of these metamodels and their relationships. The
Constraint Problem Metamodel (CP Metamodel) and Types Metamodel enable
the definition of the Cloud provider selection problem as a constraint problem.
The PaaSage Application Metamodel (PaaSage App Metamodel) and PaaSage
Type Metamodel establish the relationship between concepts from the Cloud and
constraint problem worlds. These metamodels are presented in the following
sections.

PaaSage App
Metamodel

CP Metamodel Type Metamodel

PaaSage Type
Metamodel

Figure 2: Metamodels overview.

3.1 Types and Constraint Problem Metamodel
Overview

The CP metamodel contains the different concepts needed to define a constraint
problem: variables, constants, constraints and objective functions. Figure 3
presents an overview of this metamodel. An objective function is reified through
a NumericExpression which value will be maximised or minimised (cf. Goal and
GoalEnumTypes). The constraints are ComparisonExpressions that are defined
by means of auxiliary expressions.

Expressions

The Expressions are mainly NumericExpressions and BooleanExpressions. Vari-
ables, Constants and ComposedExpressions are numeric expressions as depicted
in Figure 4. A ComposedExpression contains a set of numeric expressions re-
lated through an operation, i.e., addition, subtraction, multiplication, division (cf.
OperatorEnum in Figure 4).

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 13 of 87

variables

<<Abstract>>
Expression

-id:String

<<Abstract>>
CPElement

goal:GoalTypeEnum
Goal auxExpressions

0..*constraints0..*

-comparator:ComparatorEnum
ComparisonExpression

goals

type:BasicTypeEnum
Constant

ConstraintProblem

constants
0..*

0..*

Variable

expression

<<Abstract>>
NumericExpression

Figure 3: CP Metamodel overview.

type:BasicTypeEnum
Constant

<<Abstract>>
Expression

-operator:OperatorEnum
ComposedExpression

expressions

exp2 exp1

2..*

-comparator:ComparatorEnum
ComparisonExpression-plus

-minus
-times
-div

<<enumeration>>
OperatorEnum

-greaterThan
-lessThan
-greaterOrEqualTo
-lessOrEqualTo
-equalTo
-different

<<enumeration>>
ComparatorEnum

<<Abstract>>
NumericExpression

<<Abstract>>
Expression

<<Abstract>>
BooleanExpressionVariable

goal:GoalTypeEnum
Goal

-max
-min

<<enumeration>>
GoalTypeEnum

expression

Figure 4: Expressions in the CP Metamodel.

A boolean expression is a ComparisonExpression that relates two expres-
sions by using a comparator such as >,<,≥ ,≤ , = and 6= (cf. ComparatorEnum
in Figure 4).

Types, Variables and Constants

Figure 5 shows the Types Metamodel concepts in green, and the concepts in
yellow are the ones related to CP Metamodel. As observed, this metamodel
defines the basic values types, i.e., integer, long integer, float, double, boolean
and string, which are used to characterise variables and constants in a constraint
problem.

A Variable, besides a Value, has a Domain that can be numeric or a list of
strings. A NumericDomain is defined by basic types (cf. BasicTypeEnum in Fig-
ure 5). However, this kind of domain can be specialised for only considering a

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 14 of 87

<<Abstract>>
Value

<<Abstract>>
NumericValue

-value:int
IntegerValue

-value:long
LongValue

-value:double
DoubleValue

type:BasicTypeEnum
Constant

from

<<Abstract>>
Domain

NumericListDomain

-type:BasicTypeEnum
NumericDomain

RangeDomain<<Abstract>>
NumericValue

to

values

value 0..1

domain

-value:float
FloatValue
value

1..*

Types Metamodel

CP Metamodel

Legend

-value:string
StringValue

ListDomainvalues

1..* <<Abstract>>
ValueMultiRangeDomain

ranges
2..*

-Integer
-Float
-Double
-Long

<<enumeration>>
BasicTypeEnum

Variable

-value:boolean
BooleanValue

Figure 5: Type Metamodel: types, variables, and constants in the CP Metamodel.

subset of values through NumericListRange, RangeDomain and MultiRangeDo-
main. A MultiRangeDomain contains 2 or more ranges. On the other hand, a
Constant also has a value but its domain is defined only by basic types.

Figure 37 in Appendix A depicts the whole Types Metamodel and CP Metamodel
and their relationships.

3.2 PaaSage Type and Application Metamodels
Overview

The PaaSage Application Metamodel (or PaaSage App Metamodel) combined
with the PaaSage Type Metamodels contain the required concepts to characterise
an application to be deployed by using the PaaSage platform. Figure 6 provides
an overview of these models. As observed, an application is described with a
PaaSageConfiguration containing VirtualMachineProfiles, ElasticityRules, a set

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 15 of 87

components

1..*

-cloudMLId:String

<<Abstract>>
CloudMLElement

providers
vmProfiles

-cloudMLId:String

<<Abstract>>
CloudMLElement

0..*

vms

1..*

-id:String
VirtualMachine

profile

Variable

relatedElement

-typeId:int

<<Abstract>>
PaaSageCPElement

variables
0..*

-GeoLocation
-PhysicalLocation
-VirtualLocation
-ResponseTime
-Provider

<<enumeration>>
VariableElementTypeEnum

auxExpressions

-comparator:ComparatorEnum
ComparisonExpression

constraints

-id:String
ElasticityRule

rules0..*

goals

0..*
0..*

0..*

-id:String
PaaSageConfiguration

<<Abstract>>
Expression

-id.String
Provider

-id:string
FunctionType

function

-Min
-Max

<<enumeration>>
GoalTypeEnum

VirtualMachineProfile

-id:String
-features:List

ApplicationComponent

-id:String
-goal:GoalTypeEnum

PaaSageGoal

monitoredDimensions

-id:string
Dimension

0..*

-paasageType: VariableElementTypeEnum
PaaSageVariable

CP Metamodel

Legend

PaaSage Application Metamodel

PaaSage Types Metamodel

Figure 6: PaaSage Type and Application Metamodels overview.

of Providers and Dimensions to be monitored during the execution (e.g., the ap-
plication response time or the price evolution). The configuration also contains
PaaSageGoals, i.e., minimisation and/or maximisation of relevant dimensions
for users. The final objective of the PaaSage Type and Application Metamodels
is to allow the derivation of the CP Model used by the Reasoner (cf. Sec-
tion 5) and the generation of a Cloud Platform Specific Model (CPSM) for the
Adapter component (cf. Section 6).

Virtual Machines and Providers

The Cloud providers are reified by the ProviderType class in the PaaSage Type
Metamodel (cf. Figure 7). This means that, for example, Amazon EC2, ElasticHosts
and Windows Azure are provider types. As these providers can be located in
different regions and their location is defined according to application require-
ments, the PaaSage App Metamodel includes a Provider concept with a specific
position, i.e., continent, country or city.

As Cloud providers, virtual machines (VM) are represented through two
concepts in the metamodel (cf. Figure 7): VirtualMachineProfiles and Virtual-
Machines. The former represents the types of VM supported by providers or
defined by the users themselves. The latter represents concrete instances of Vir-
tualMachineProfiles that will potentially enable the application execution.

VirtualMachineProfiles have an operating system (OS), memory, storage ca-
pacity, CPU (with frequency and number of cores) and location as depicted in
Figure 7. These profiles are also related to a ProviderCost that depends on spe-
cific Cloud provider rates.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 16 of 87

-MHz
-GHz

<<enumeration>>
FrequencyEnum

-MB
-GB
-TB

<<enumeration>>
DataUnitEnum

Continent

country

continent

City

Country

location

location

<<Abstract>>
CloudMLElement

-frequency:FrequencyEnum
-cores:int

CPU

-unit:DataUnitEnum
Memory

cpu 0..1

<<Abstract>>
NumericValue

<<Abstract>>
Resource

value

0..1 0..1memory
storage

1..*

-id:String
VirtualMachine

profile

0..*

-name:String
-version:String
-architecture:OSArchitectureEnum

OS
os

-typeId:int

<<Abstract>>
PaaSageCPElement

-typeId:int

<<Abstract>>
PaaSageCPElement

-name:String
-alternativeNames:List

<<Abstract>>
Location

-typeId:int

<<Abstract>>
PaaSageCPElement

Type Metamodel

Legend

PaaSage Application Metamodel

PaaSage Types Metamodel

-id:string
VMSizeType

size

-id:string
ProviderType

-id.String
Provider

type

-cost:double
ProviderCost

VirtualMachineProfile

potentialProviders

-id.String
Provider

provider

<<Abstract>>
Resource

1..*

-typeId:int

<<Abstract>>
PaaSageCPElement

-unit:DataUnitEnum
Storage

-XS
-S
-M
-L
-XL
-XXL
-A6
-A7

<<enumeration>>
VMSizeEnum

Figure 7: Virtual Machines and Providers in the PaaSage Type and App
Metamodels.

Variables and Application Components

ApplicationComponents in the PaaSage App Metamodel represents the node
types in CloudML [2]. An ApplicationComponent has a location, RequiredFea-
tures and an ApplicationComponentProfile. RequiredFeatures are dependencies
to other application components and therefore they are provided by Application-
Components. ApplicationComponentProfiles characterises the application com-
ponents in terms of name, version and ApplicationComponentType. An Applic-
ationComponentProfile example is Tomcat 7.0 with application server as type.
An ApplicationComponent also has a list of preferred providers to be deployed
and a VM that could contain it. Figure 8 shows ApplicationComponent and these
relationships.

PaaSageVariables represents the connection between a PaaSage App Model
and a CP Model. They are related to ApplicationComponents and they typically
define relationships between VM and providers.

Elasticity Rules

ElasticityRules in the PaaSage App Metamodel reifies the rules enabling the dy-
namic adaptation of the application in order to deal with the trade-off between
performance and cost for example (cf. [2]). They are composed by Conditions
and Actions. Conditions are boolean expressions from the CP Metamodel while

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 17 of 87

<<Abstract>>
CloudMLElement

-id:String
VirtualMachine

vm

VariablerelatedElement

-name:String
-alternativeNames:List

<<Abstract>>
Location

0..1

-size:VMSizeEnum
VirtualMachineProfile

requiredProfile

-id:string
ApplicationComponentType

-feature:string
RequiredFeature

requiredFeatures
0..*providedBy-id:string

ProviderType

preferred
Providers

0..*

type-name:string
-version:string

<<Abstract>>
ApplicationComponentProfile

-id:String
-features:List

ApplicationComponent

profile

0..1

-paasageType: VariableElementTypeEnum
PaaSageVariable

CP Metamodel

Legend

PaaSage Application Metamodel

PaaSage Types Metamodel

Figure 8: Application Components and Variables in the PaaSage Type and App
Metamodel.

Actions represent typical actions on cloud providers such as "stop node" or "re-
sume service". In this way, the rules are of the "if...then" form. Figure 9 depicts
these ElasticityRules.

3.3 Example
In order to illustrate the use of the presented metamodels, we use a Java applic-
ation, called Simple Application, with one component containing a Web applic-
ation ARchive (WAR) file. Let assume the requirements are as follow:

• Required resources: ≥ 512 MB of RAM,≥ 1 GB of hard disk,≥ 1.6 GHz
of CPU frequency.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 18 of 87

-parameters:List
Actionaction

-id:String
ElasticityRule

condition

BooleanExpression
exp1

-operator:LogicOperatorEnum
Condition

exp20..1

<<Abstract>>
BooleanExpression

-id:string
ActionType

type

Figure 9: Elasticity Rules in the PaaSage Type and App Metamodels.

• Preferred providers: Amazon EC21, ElasticHosts2, Windows Azure3.

• Preferred operating system: Ubuntu Server 13.X.

• Additional services: Apache Tomcat 7.X.

• User goal: Minimisation of the deployment cost.

CP Model

Equation 1 represents a simple cost function that we want to minimise for the
simple application example.

∑

vm∈VMs

(number_ofvm)× Pricevm ≡ (1)

(number_ofvm1_amazon1)× Pricevm1_amazon1)+

(number_ofvm2_elastichosts1)× Pricevm2_elastichosts1) + ... (2)

where
VMs = {vm1_amazon1, vm2_elastichosts1, vm3_windowsAzure1}
Pricevm = Cost of deploying Virtual Machine vm

1Amazon EC2: http://aws.amazon.com/ec2/
2ElasticHosts: http://www.elastichosts.com/
3Windows Azure: www.windowsazure.com/

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 19 of 87

CP Metamodel

conforms to

Figure 10: CP Model of the Simple Application example.

Figure 10 presents a screenshot of the related CP Model by using the Ec-
lipse Modeling Framework4 (EMF). In this example each virtual machine, i.e.,
vm1_amazon1, vm2_elastichosts1 and vm3_windowaAzure1, is related to
an specific provider and satisfies the requirements of application in terms of
memory, storage, CPU and operating system. The constraints to be satisfied in
order to minimise this function are presented below.

• Each application component is only deployed in a virtual machine:

(∀ac/ac ∈ COMPS :
∑

vm∈VM

(appComponentacinvm) = 1) (3)

where

COMPS = {simpleApplicationWar, tomcat}
appComponentacinvm = Component ac is deployed on vm

• If a virtual machine is selected to deploy a component, at least there is one
instance of the virtual machine:

(∀vm/vm ∈ VM :
∑

ac∈COMPS

(appComponentacinvm) ≤ number_ofvm)

(4)
4EMF: http://www.eclipse.org/modeling/emf/

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 20 of 87

• Tomcat and application WAR have to be deployed on the same virtual
machine:

(∀ac1, ac2/ac1, ac2 ∈ COMPS : (∀vm/vm ∈ VM :

appComponentac1invm = appComponentac2invm)) (5)

• At least one virtual machine instance is required:
∑

vm∈VMs

number_ofvm > 0 (6)

PaaSage Application Model

Figure 11 shows a screenshot of the PaaSage Model for the Simple Application.
Such a model defines the minimisation goal, the three preferred providers, and
the profiles of virtual machines (of these providers) that support the required
resources.

The minimisation goal has cost as function type as depicted in Figure 12 a).
In the provider case, Figure 12 b) shows an instance of Amazon called amazon1
that has Europe as location. Finally, Figure 12 c) indicates that Simple Applica-
tion is a WAR that should be deployed in Europe on any of the three providers.

PaaSage App
Metamodel

conforms to

Figure 11: PaaSage Model of the Simple Application.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 21 of 87

a) b)

c)

Figure 12: Properties of some elements of the Simple Application example.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 22 of 87

4 Profiler
The Profiler represents the entry point of the Upperware, which means that it pro-
cesses the different application requirements, user goals and preferences (e.g., a
list of desirable providers or the deployment in a specific region) in order to
produce a constraint problem description used by the reasoner to find a suitable
provider. Requirements refer to different computational resources (e.g., memory,
CPU cores and storage) and software elements (e.g., operating system, database
and frameworks) that the application needs to work properly. User goals are
minimisation or maximisation of dimensions that have important business im-
pact, such as cost or application response time.

Input
CPIM Saloon

Ontology

CP Generator
Model to Solver

CP Model

Upperware Model

PaaSage
Application

Model

Rule Processor CP Model
PaaSage

Application
Model

Application and
Resource Model

SLA,
Elasticity

Rules

Upperware Model

Legend

Output

Component

Figure 13: Profiler Architecture.

Figure 13 depicts the global architecture of the Profiler. The CP Generator
Model-to-Solver component produces a constraint problem description that
is improved by the Rule Processor component by removing redundancies
and verifying the list of Cloud providers candidates. A detailed description of
these two components is given in the following sections.

4.1 CP Generator Model-to-Solver
Overview

This component receives as input a Cloud Platform Independent Model (CPIM)
and a Saloon ontology (cf. [2]), which captures the requirements in terms of com-

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 23 of 87

Listing 1: CPIM for the Simple Application example (excerpt)
<net.cloudml:CloudMLModel xmi:version="2.0"...

xmlns:net.cloudml="http://cloudml.net"...
name="SimpleAppModel">

<providers name="AmazonEC2"
credentials="./credentials_aws"/>

...
<components xsi:type="net.cloudml:VM"

name="ML"
provider="AmazonEC2"
location="EU"
minRam="4096"
minCores="4"
minStorage="102400"
os="ubuntu"
securityGroup="simpleApp"
sshKey="simpleApp"
privateKey="/simpleapp.pem"
groupName="simpleApp">

<providedContainmentPorts name="mlProvided"
owner="ML"/>

</components>
...

</net.cloudml:CloudMLModel>

putational resources and services related to the PAASAGE application as well as
the user goals such as the minimisation of cost and response time. The outputs
are a CP Model (cf. Section 3.1) representing the selection problem as a con-
straint problem and a PaaSage Application Model (cf. Section 3.2) that relates
the variables in the CP Model with the Cloud concepts in the CPIM. Listing 1
presents an excerpt of the CPIM for the Simple Application (cf. Section 3.3).
In particular, it shows "amazonEC2" as the cloud provider and a virtual machine
(named "ML") provided by "amazonEC2" and satisfying the application require-
ments in terms of resources. On the other hand, Figure 14 depicts an excerpt of
the Saloon ontology used to specify some of the application requirements. As
observed, the selected concepts and some of the related values correspond to
the application requirements specified in Section 3.3. A complete version of the
CPIM and Saloon ontology are defined in Appendix B and C, respectively.

Implementation

Figure 15 depicts the various components that compose the CP Generator
Model-to-Solver component. The Processor Factory components
load the models received as input and instantiate Model Processors, which
encapsulate the functionality to parse and extract the elements required to build
a PaaSage Application Model and a CP Model related to the application to be
deployed.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 24 of 87

Thing

Technical
Element

Provisioning

Countable
Concept

Application
Server

Language

Countable
Concept

Tomcat Tomcat 6.0

Tomcat 7.0

Java

Resource

Quantifiable
Concept

Java 6

Java 7

Tomcat
7.0.X

Memory

CPU
Frequency

Storage

Quantifiable
Concept

provider Heroku

Amazon
EC2

ElasticHosts

Windows
Azure

value= 1.6
unit= GHz

value= 1000
unit= MB

value= 512
unit= MB

Virtual
Machine

Legend

Abstract Concept

Concrete Concept

Selected Concept

is a

uses

value= 1

value= 1

OS

Ubuntu
Server Countable

Concept

Figure 14: Saloon Ontology (excerpt) with the selected concepts for the Simple
Application example.

The current implementation of the CP Generator Model-to-Solver
has a Processor Factory and a Model Processors for both the Do-
main Specific Language (DSL) used for the input description, i.e., CloudML
and Saalon (cf. [2]). The CloudML Processor Factory and the Saloon
Processor Factory exploit EMF to load an object representation of the
CPIM model and Saloon Ontology, respectively. The Model Processor for
CloudML fills the PaaSage Application Model with information related to vir-
tual machine profiles and their related Cloud providers as well as to the different
elements that compose the application. On the other hand, the Saloon Model

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 25 of 87

Figure 15: CP Generator - Model to Solver Architecture.

Processor benefits from the core of the Saloon Framework [3], which is based
on the CHOCO library5 for constraint programming, to filter the Cloud providers
defined by the CPIM according to the application requirements reified by Saloon
Ontology. To do that, the Model Processor retrieves the Feature Models
(FMs) capturing the characteristics of the involved providers (cf. [2]) through
the Database Proxy, which encapsulates the access to the PAASAGE Data-
base (cf. [2]). Each FM is translated to a set of constraints and variables that
are passed to the CHOCO Solver in order to look for solutions or configurations
that are supported by the Cloud providers. Only valid FM configurations, which
satisfy the application requirements, are selected.

The CP Model Derivator component processes the PaaSage Applica-
tion Model produced by the Processor in order to generate a first version of
the CP Model that will be later improved by the Rule Processor compon-
ent. The list of variables, constants and constraints are derived from the differ-
ent kind of virtual machines as well as the relationships between the different
elements that compose the application. According to the dimensions to be op-
timised such as cost or time, the CP Model Derivator will use the suitable
Estimator component. For example, the Price Estimator computes the
cost of using the Cloud provider candidates selected by the PaaSage Model
Processors. The information related to provider rates is retrieved through the
Database Proxy. Finally, the Generator Orchestrator coordinates
the whole model processes that leads to the generation of the output models,
which are sent to the Rule Processor via RabbitMQ6, a robust message

5The CHOCO Solver: http://www.emn.fr/z-info/choco-solver/
6RabbitMQ:http://www.rabbitmq.com/

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 26 of 87

broker that runs on all major operating systems. The use of RabbitMQ enables
a potential distribution of Profiler components on different machines. Fig-
ure 10 and Figure 11 present a screenshot of the output models in the EMF
editor.

Summary

The CP Generator Model-to-Solver component has a CPIM and a Sa-
loon Ontology as inputs. The outputs are a CP Model and a PaaSage Applica-
tion Model. Considering the different subcomponents of the CP Generator
Model-to-Solver (cf. Figure 15) the following process is executed in order
to generate these outputs:

1. The Generation Orchestrator creates the Model Processor
for CloudML and Saloon by using the Processor Factories as well
as an empty PaaSage App Model.

2. The Generation Orchestrator loads the CPIM and Saloon Onto-
logy through the Model Processors.

3. The CloudML Model Processor extracts from the CPIM information
related to virtual machines, providers and application components and fills
the PaaSage App Model with them.

4. The Saloon Model Processor filters the providers in the PaaSage App
Model according to the requirements defined in the ontology.

5. The Derivator generates a CP Model from the PaaSage App Model
and uses the Dimension Value Estimator to retrieve values of the
required dimensions.

6. The generated models are sent to the Rule Processor component.

The previous process is also depicted in Figure 16.

4.2 Rule Processor
Overview

The Rule Processor in PAASAGE receives a list of potential Cloud pro-
viders provided by the Profiler based on requirements specified by the ap-
plication designer via the IDE. The Rule Processor checks these providers
against implementation specific rules in the Metadata Database (MDDB). These

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 27 of 87

Begin

End

Create Saloon and
CloudML Model

Processors

Create
PaaSage App

Model

Generate CP
Model from
PaaSage

App Model

Load CPIM
and Ontology

Fill PaaSage App
Model with

VMs, providers,
app components

Filter providers in
PaaSage App

Model

Figure 16: Process executed by the CP Generator Model-to-Solver component.

rules are the base rules of the system and are expressed in terms of perform-
ance and data processing constraints associated with the specific instance of the
PAASAGE platform.

The Rule Processor verifies that the list of possible deployments or
cloud providers satisfy all the given constraints from the data in the MDDB.
Deployments formed by the Rule Processor take into account the con-
straints and details of the implementation in the MDDB. For example, the Rule
Processor could have a requirement that data is processed in the EU. The
MDDB could contain SLA specific data from associated service providers that
fulfil this rule, and thus it is added to the list of deployments. If during this phase
the Rule Processor encounters a requirement that can not be fulfilled by the
PAASAGE instance such as the application should not use Amazon servers, the
Rule Processor returns to a error message containing this detail to be fed
back to the application designer.

Implementation

The Rule Processor receives as an input the CP Description from the CP
Generator that defines a list of input constraints for the future deployment.
The content of the CP Description is a CP Model and PaaSage Application
Model describing characteristics for the application, such as service level ob-
jective, CPU and more generic provider goals. Then, the CP Description is
passed into the Rule Processor as a RabbitMQ call.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 28 of 87

RabbitMQ is used by the Profiler in order to handle the communication
between the CP Generator Model-to-Solver and the Rule Processor.
Since RabbitMQ calls or messages are asynchronous and stored in a queue, it
provides reliability against failures and high scalability, where there could be
many instances of Profiler and RabbitMQ’s queue depending on the load de-
mand.

The Rule Processor runs as a Java servlet calling the MDDB to extract
platform information. The result is a CP Description that lists possible and feas-
ible deployments - wrapped into the Deployment Model. This model is linked to
a wider Cloud Application Modeling & Execution Language (CAMEL) object
where resource parameters are linked and described using specific DSLs. The
Rule Processor then passes a CAMEL data and its associated Upperware
metamodel intances onto the Reasoner.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 29 of 87

Solver-to-

deployment

LA based

allocator
CP Solver Heuristics

Meta

Solver

Solution

Evaluator

Utility function

Generator

Simulator

Wrapper

Metadata

database

AdapterProfiler

Input

Reasoner

Legend

Other WP

Cloud

Simulator

Figure 17: Reasoner: Architecture and main Components.

5 Reasoner
In a nutshell the Reasoner receives application and context models (from the
Profiler) in CAMEL format and outputs Deployment Models in CAMEL. This
process relies on the Reasoner extracting requirements from the CAMEL and
using the current state of Cloud Infrastructure and knowledge from the metadata
database to conduct reasoning.

The architecture of the Reasoner is displayed in Figure 17. Central to the
Reasoner is the concept of Solvers. The Solvers sit at the centre of the compon-
ent and conduct the main functions in the Reasoner. The Reasoner shall support
various kinds of Solvers: Learning Automata based allocator, Constraint Pro-
gramming based solvers, Heuristics based solvers, and Meta-Solvers. These
solvers have access to various external methods to evaluate solutions if needed:
i) Utility Function Generator provides a quick evaluation of a solution based on
a utility function. ii) Simulation Wrapper makes use of an external Cloud sim-
ulator, such as SimGrid, to provide a more accurate solution evaluation but a
higher execution cost. iii) The MDDB provides access to historical data.

When a solution has been computed, the Solver-to-deployment component
translates the solution in a CAMEL Deployment Model format.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 30 of 87

5.1 Learning Automata (LA) based Assignments
Overview

The problem to solve is defined by variables, each defined over a given do-
main. Then there are constraints, i.e. functional relations of the variables. Each
constraint is either satisfied when the functional expression evaluates to true or
unsatisfied when it evaluates to false. A particular assignment of variables is
feasible if all constraints are satisfied. At the conceptual level, reasoning on
the deployment problem means assigning values to all parameters from their
respective domains to form a feasible deployment configuration.

An inherent weakness of semantic reasoning is its inability to deal with
probabilistic knowledge [4]. There have rightly been attempts on logic based
stochastic reasoning like the Probabilistic Logic Network [5] or, more recently,
the Non-Axiomatic Logic [6], which aims to be a complete model for how hu-
mans learn and reason. To our knowledge these approaches are not yet supported
by accessible reasoners making it hard to adopt the frameworks within the PaaS-
age project.

Fuzzy reasoning [7] can make decisions under uncertainty conditioned on
the a priori system knowledge encoded into the fuzzy sets defined for the in-
put and output variables, and the control strategy encoded in the fuzzy rules.
Even though there are heuristic methodologies to support the development of
these rules, they will be subject to the same issues as ordinary rules in non-
stationary environments. Alternatively, the rules could be derived from data
mining, i.e. statistical pattern recognition and parameter identification on logged
data. Hence, there must be a model defined a priori whose parameters are iden-
tified. In the case of Cloud deployment this would probably mean that the fuzzy
rules must be defined by a Cloud deployment expert, and it is therefore contra-
dictory to the vision of PaaSage as a platform to aid autonomously the applic-
ation owner with the deployment task. A further issue with fuzzy reasoning is
the difficulty in analysing the adaptive system analytically with respect to key
aspects of automatic control systems like scalability and stability.

Given that it is very difficult to extract universally available expert knowledge
on generic Cloud application deployment that can automate the deployment of
any application, the only solution would be to learn what is the better way of
deploying the particular application at hand.

Different learning approaches can broadly be categorised as either:

Training approaches that use available information to train the algorithms or a
controller, and after the training phase the learned knowledge is reused on
similar problems. Data mining techniques, pattern recognition, statistical
parameter estimation and regression, clustering, and neural networks are
all examples of training based approaches.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 31 of 87

Environment

Learning actor

Action
proposed

Reward
received

Figure 18: The fundamental learning loop: The learning actor proposes an action
to the environment. In this case, the action is a particular deployment configur-
ation. The environment then provides feedback on the quality of this configura-
tion in terms of a reward to the learning agent.

Reinforcement learning algorithms that learn as new information arrives, and
the learned knowledge is immediately available, albeit it may take some
time (iterations) for the algorithm to gain confidence in the selection of its
strategy. The idea is that the learning actor will select the action at any
moment that it perceives to give the highest future reward. Examples of
approaches belonging to this class of learning are Markov Decision Prob-
lems (MDPs), Learning Automata (LA), Parameter identification, control
charts, and statistical hypothesis testing.

Both classes of learning are applicable in stationary environments; however
only reinforcement learning algorithms can be used in non-stationary environ-
ments because they may need to unlearn previous knowledge if the operational
constraints change.

The basic learning loop is illustrated in Figure 18. The learning actor selects
the appropriate “action”, which in our context is a set of values for all variables in
the deployment configuration with each variable value taken within the domain
allowed for the concerned variable. Then the environment provides a “reward”
for this choice of deployment configuration. The reward can be the strength or
goodness scaled to the unit interval [0, 1] from bad to good; it can be binary taken
from the set {0, 1} indicating that the action was respectively bad or good; or it
can be taken from a finite set of options like {very bad, bad, almost good, good}.

The environment can be the real world, and so the action represents an actual
deployment and the reward can, for instance, be the fraction of the execution cost
budget that was left unused by this particular deployment, provided that minimal
cost is the main goal for the user. However, learning is an iterative process and

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 32 of 87

many deployments may be necessary before the learning algorithm may confid-
ently conclude on the best one. The need for actual deployments can be reduced
if one is able to “simulate” the effect of a particular employment; either by us-
ing historical data or using a simulated model of the available infrastructures
and extra-functional aspects like cost and performance. Simulated deployment
is further discussed in Section 5.8.

Finally, learning can also be made against a utility function representing the
combined set of goals and preferences specified by the application owner. In this
case, any proposed deployment configuration that increases the utility for the
user will be rewarded. For instance, if the user wants to execute the application
at minimal cost, then the utility function can simply be the negative cost (since
an increase in the utility then corresponds to less cost). Utility functions are
further discussed in Section 5.7.

The solver must be able to use constructively the stochastic feedback from
the environment to converge on the better deployment configuration over time.
The learning environment must provide some kind of ranking of the possible
solutions, and for the sake of exposition we can assume that this is the utility
function7. From the second requirement it is clear that the maximal utility should
be found respecting the constraints of the application, and the domains of the
variables. The problem is therefore akin to a mathematical non-linear program
whose canonical form is [8]:

maximize U(x) (7)

subject to

g(x) ≤ 0 (8)
h(x) = 0 (9)

xi ∈ Xi (10)

A complicating factor is that many of the parameters in the configuration x
are discrete: as an example, the parameter for the Cloud provider can only take
its values from the finite set of possible providers. If the constraints and utility
function are all linear, the problem belongs to the class of mixed integer optim-
isation problems [9], otherwise it is a combinatorial optimisation problem [10].
The size of the solution space, i.e. the number of possible configurations, will
generally grow like the product of the sizes of the domains for each discrete

7Please note that this choice is made without prejudice to any of the other ways outlined for
obtaining the environment’s feedback to the learning actor. From this point on, a utility function
value can therefore also be understood as outcome of an actual deployment or the output of a
simulated system.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 33 of 87

parameter, and finding the optimum will necessitate testing each and every pos-
sible configuration. This is obviously feasible only for small deployments, so in
general the optimisation of Equation (7) must be understood as the best possible
configuration tested within the search time available. The found configuration
will therefore be a feasible configuration satisfying all the constraints, which can
be safely deployed, although a better configuration might still be possible.

There is one important aspect of the deployment problem: the constraints as
well as the utility function may be stochastic. For instance one constraint can
specify that the average response time experienced by the user of a web server
should not exceed 3 seconds. This is easily achieved with a configuration of a
few web servers when there are few users, but might require a different config-
uration with more web servers when there are many users. Thus, for a given
deployment x, the constraints (8) and (9) will only be satisfied with a certain
probability. The same is the case for the utility function. Assuming, as an ex-
ample, that the utility measures cost, then a certain provider can have a discount
at a particular time, or the data pattern of the application requires less communic-
ation and thus incur less communication cost. Evaluating the “utility function”,
which in this case could be the real deployment, twice with the same deploy-
ment configuration x could give two different utility values. We therefore have
to consider the non-linear stochastic program where we would like to find the
configuration that will give the best utility on average with expected satisfaction
of the constraints, i.e. we have to consider the following program:

maximise E {U(x)} (11)

subject to

E {g(x)} ≤ 0 (12)
E {h(x)} = 0 (13)

xi ∈ Xi (14)

If the distributions for the parameters xi were known, the problem could be
approached with stochastic programming [11]. It should be possible to estim-
ate unknown parameters of hypothesised distribution functions from available
historical data, or even use empirical density functions or fitted functions as rep-
resentations for the generally unknown probability density functions. Again, this
would be possible only for stationary environments where the involved distribu-
tions would be constant over time. Otherwise, one would have the problem of
estimating the distributions over a window of only the most recent observations
of the involved system parameters.

An alternative approach requiring only known bounds for the system para-
meters is robust optimisation [12], and it is attractive that efficient methods exist

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 34 of 87

for robust integer programming [13]. However, as only the bounds are known for
the parameters, robust optimisation can mainly give a worst case analysis with
bounds on the robustness of the found solution.

An issue with both the stochastic programming and the robust optimisation
is that the optimisation program has to be solved again from scratch when the
results of a new deployment is observed since either the distributions involved
or the bounds may have changed. Fortunately, there are many heuristics that
can be used for stochastic search [14]. For the parameters with discrete domains,
i.e. the combinatorial optimisation part, we will adopt a reinforcement learn-
ing [15] approach based on Learning Automata [16]. Albeit other reinforcement
learning techniques can be used, learning automata theory is based on the theory
of Markov chains and therefore admits rigorous mathematical analysis of key
aspects like scalability and convergence.

Poznyak and Najim [17] developed a theory for stochastic optimisation using
learning automata based on Baba’s multi-teacher approach [18] where the utility
function (7) and the constraints (8) and (9) are all considered to be independent
stochastic teachers for the learning automata. Given that this approach is feas-
ible for the learning of a single parameter, we will use one learning automata for
each discrete parameter. Thus our proposed approach corresponds to an auto-
mata game [19]. The algorithm of the proposed stochastic reasoner is shown in
Algorithm 1.

Two lines of Algorithm 1 requires further attention: Line 15 states that the
continuous optimisation problem should be “solved”. Non-linear optimisation
problems are often themselves solved by iterative algorithms [8], where each
iteration requires sampling the objective function (7). This sampling can be
costly as described above, and we need to investigate if this step of the algorithm
should be finding a complete solution, or if it can be understood as “performing
the next iteration of the iterative solver for the non-linear program”.

Furthermore, the probability updating function of line 18 should be defined.
Half a century of research on learning automata has produced a plethora of al-
gorithms to choose from. Given that our approach is a game of many automata,
we need to ensure that each automaton converges in the sense that its probabil-
ities converge to a pure deployment strategy with only one probability equal to
unity and all the others equal to zero, i.e. limk→∞ pi = [0, . . . , 1, . . . , 0]T . The
stable behaviour of various algorithms under non-stationary environments also
needs further research.

Recall that a change in a single discrete variable leads to a completely new
configuration. The foreach loop on line 12 will therefore make a major change
in the configuration. This can be seen as positive from the perspective of explor-
ing the configuration space quickly, by sampling many distant configurations.
However, it may have a negative impact on the convergence of the learning al-

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 35 of 87

Algorithm 1: Stochastic reasoning.
1 Identify the variables xi of the deployment problem
2 Identify their respective domains Xi from the given constraints and rules,

i.e. xi ∈ Xi

3 Partition the parameter set in two parts: XDiscrete for the parameters with
discrete domains, i.e. for those xi whose domain Xi is not an interval of
R, and XContinuous for those xi whose Xi ⊆ R

4 foreach xi ∈ XDiscrete do
5 Form probability vectors over the possible values in the domain:

pi(0) = [p(i,1)(0), . . . , p(i,|Xi|)(0)]
T

6 if a priori knowledge then
7 Initialise the probabilities in pi(0) accordingly
8 else
9 Initialise the probabilities equally p(i,j)(0) = 1/|Xi|

10 Initialise the step counter k = 0
11 repeat
12 foreach xi ∈ XDiscrete do
13 Select a random index Ii ∼ pi(k)
14 Assign the variable value xi = Xi[Ii]

15 Solve the optimisation problem for the continuous parameters in
XContinuous with the assigned values of the variables in XDiscrete

16 Obtain the environment’s reward r(k) for the complete set of
parameters XDiscrete ∪ XContinuous

17 foreach xi ∈ XDiscrete do
18 Update the probabilities pi(k + 1) = T (pi(k), r(k))

19 k = k + 1

20 until converged

gorithms [20]. Making the selection in line 13 and line 14 for only one variable
and then subsequently update the probabilities in line 18 only for this single
variable may be better, but it will come at the cost of more frequent environment
feedback, which can be costly to obtain especially in the case where this means
making a full deployment. Arguably, as time goes and most of the automata for
the different parameters converge, the foreach loops on line 12 and 17 will de-
generate to updating only one, or a few, variables (automata) with respect to the
current configuration. The trade-off between exploration speed and the cost of
evaluating the environment feedback consequently needs careful attention when
developing the final stochastic search algorithm.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 36 of 87

It should be noted that the learning automata based approach is only used
for the discrete variables and assigns a value to each of them in a stochastic
environment from their respective domains. It must therefore be coupled with
a constraint solver if there are continuous variables, where the constraint solver
will find values for the continuous variables conditioned on the discrete values
fixed by the stochastic learning.

Implementation

The Learning Automata (LA) based solver is implemented in terms of the Uni-
versity of Oslo’s open source LA framework written in C++, and contributes to
the further expansion of this framework. The framework is implemented using
the actor model [21] for concurrent and parallel operation of independent actors
that asynchronously exchange messages. Additionally, actors may create other
actors, and designate the actions to take for the next arriving message. There is
no synchronisation between an actor sending a message and the actor receiving
it, and the message is self-contained with addresses of both the sender and re-
ceiver. This means that there is no fixed interaction topology among the actors.
Furthermore, each actor can only act on its own, private memory. Consequently,
the actor model supports inherent concurrency of computation.

The agent model is implemented in the framework by the Theron library8,
released as open source under the MIT licence. The Theron library is robust,
efficient, and complete compared with other alternatives: libcppa9 is still not in
official release and the current version maps each actor to an individual execution
thread, which limits the number of concurrent actors that can be created under
most operating systems. The actor-cpp10 implementation seems to be a minimal
fragment not actively maintained. libprocess11 adopts the view that each actor
is a process. It is poorly documented with the best information source being a
presentation12 by its author even though libprocess is under active maintenance
and the library is packaged with many of the Linux distributions. The lack of
documentation makes it hard to evaluate libprocess.

The Theron library essentially maintains a pool of threads and schedules the
message handlers of the actors with pending messages onto these threads. The
Theron scheduler supports two yield modes: condition and spin. In the former
mode, a thread is halted if no actors uses it. This saves system resources and
allows the CPU to be used for other applications. However, when many actors

8http://www.theron-library.com/
9http://libcppa.blogspot.no/

10http://code.google.com/p/actor-cpp/
11https://github.com/3rdparty/libprocess
12https://www.dropbox.com/s/50buds6t0vizr4w/libprocess.pdf

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 37 of 87

Figure 19: The learning environment controlling the problem variables and con-
straints is an actor that interacts with a learning actors through messages.

become active again, then the thread must be restarted by the operating system,
which will introduce latency in the execution of the actors’ thread handlers. The
spin strategy keeps all threads active, even if they are empty. Potentially this
wastes CPU cycles, but the thread is running when an actor receives a message
and needs the thread to execute the message handler. Since it is anticipated
that the LA based solver will run in the same machine as the other Upperware
components, the “condition” type scheduler is used.

Learning actor A learning automata is basically a Markov chain, i.e. a set
of connected states with probabilistic transitions among the states. This struc-
ture is called a Fixed Structure Stochastic Automata (FSSA), and with each state
there is associated an “action” taken by the automata in that state. The feedback
can either be enforcing (“reward”) or discouraging (“penalty”), and the automata
selects randomly a transition out of the state from the set of reward or penalty
transitions respectively. Thus an FSSA is completely characterised as a graph
by its set of states and the associated actions for each state, and two probabil-
istic adjacency matrices: one for the reward transitions and one for the penalty
transitions. The LA framework uses the Armadillo13 linear algebra library to

13http://arma.sourceforge.net/

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 38 of 87

represent matrices. It was selected over the Eigen14 template library for linear
algebra because Armadillo had an easier interface, in particular for manipulating
sub-matrices and Armadillo is also used for implementing the mlpack15 machine
learning library.

Only a few years after the first paper on FSSA [22], Varshavskii and Voront-
sova introduced the family of Variable Structure Stochastic Automata (VSSA) [23].
Basically they studied Markov chains where the transition probabilities were in-
creased if the state transitions resulted in rewards, or otherwise decreased. This
model was developed for binary feedback from the environment, and it was ex-
tended by McMurtry and Fu to a continuous feedback model in [24]. More im-
portantly, McMurtry and Fu also introduced the concept of an action probability
vector, i.e. the stationary action probabilities were directly updated instead of
via the changing transition probabilities of the underlying Markov chain.

Each discrete variable of the CS model is represented by a learning actor,
whose set of actions is the values of the domain of the variable. The learning
actor selects one of the domain elements based on the probability vector (or its
state if the actor implements an FSSA). The selected “action” is proposed to the
learning environment, and based on the feedback from the learning environment
the probability vector (or state) is updated according to the learning algorithm
used by the actor.

Learning framework This class essentially sets up the Theron execution frame-
work. All learning actors will run in this environment. The framework instanti-
ates a learning environment and encapsulates it. This ensures that it is not pos-
sible to interact with the environment except through messages, thus enforcing
the actor model.

Learning environment This class defines the learning environment. It accepts
messages containing “actions” from the learning actors and produces “rewards”
for the chosen actions. In the context of the LA solver, the learning environ-
ment will first evaluate all constraints, and it will then evaluate the configuration
if all the constraints were satisfied by the current configuration of variable as-
signments proposed as “actions” by the learning agents. If the configuration
is feasible, then it is ranked against other feasible configurations by one of the
evaluation methods: actual deployment, simulated deployment or through an
evaluation of the utility function.

Based on how this configuration ranks, an individual “reward” is calculated
for each of the participating learning actors and returned to the actor to update

14http://eigen.tuxfamily.org
15http://mlpack.org/

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 39 of 87

its views on the better choices for a particular variable. Chandrasekaran and
Shen [25] were the first to introduce the term P-model feedback for a probab-
ility model where the stochastic feedback was binary and a penalty response
was given with a certain probability; and the term S-model feedback where the
strength of the feedback was measured over the unit interval. Viswanathan and
Narendra introduced the Q-model as the third feedback model where the re-
sponse from the environment can take its value only from a finite set of val-
ues [26].

Binding the model with the solver The constraints are mathematical func-
tions of the variables. A mathematical operator is either unary or binary and acts
respectively upon one or two variables or results of other operators. Consider
for example (a + b)2. Here the binary “plus” operator acts on the two variables
a and b and the unary operator “square” acts on the result of the plus operator.
In other words the expression forms a tree of sub-expressions with the involved
variables as the leaf nodes.

The profiler model essentially holds the constraints in this way, and any inter-
preted language would need to traverse this expression tree in order to evaluate
the constraint value. However, a compiler would generate a compact set of CPU
instructions from this tree. Given that the constraints will be evaluated over and
over again for new choices of the variables, it would be a huge performance gain
if the constraints could be compiled. The implication of this is that the solver
will have to be linked with the object code generated for a particular problem
and does not exist as a component independent of this problem.

From an Upperware metamodel instance, a LA-Dumper component will
therefore generate a C++ source file containing the variables, their domains, and
the constraint expressions. This file will be compiled as a part of starting the
solver. Then the resulting object code file will be linked with the solver code in
one of three possible ways.16

Static linking will construct one executable file by combining the problem spe-
cific object file with the object files of the solver. The problem description
is then just one of the source files of the solver producing a single, stan-
dalone application that can the be executed.

Static binding is binding the compiled solver code to a dynamic library created
from the compiled problem description. This dynamic library will then
be loaded by the operating system when the solver starts. The variables
and constraints can be used by the solver as if they had been statically

16http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.
html

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 40 of 87

CAMEL

CS
metamodel

Variables
Constraints

Compiled
solver

Compiled
model

Static
Linking

Dynamic
library

Static
binding

Solver
executable

Solver
executable

Dynamic
binding

Figure 20: The various options of binding the solver code with the compiled
variables and constraints of the problem at hand.

linked with the solver. This approach would allow several versions of the
solver to share the problem description, as the library will be loaded only
once even if there are several solvers using it. If the problem changes,
only the dynamic library needs to be recreated, and the new version is
automatically loaded by the solver provided that the new library has the
same name as the one that was statically bound to the solver.

Dynamic binding is similar to the static binding except that the solver can be
compiled and linked with no knowledge about the problem library. The
name of the library can be passed on the command line when starting
the solver, which will then load the correct library into memory. There are
however significant limitations on how the components in the dynamically
bound library can be accessed from the solver code.

The different options are illustrated in Figure 20. Which option to choose
depends on the deployment of PaaSage. The machine running the solver must
have a compiler installed in all cases, and the object code of the solver can be
compiled at installation time since it is independent of the problem. The time it

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 41 of 87

Figure 21: The hierarchy of a learning actor implementing Variable Structure
Stochastic Learning. Alternatively the Learning Actor could have inherited the
class implementing a Fixed Structure Stochastic Learning type.

takes to compile the problem description and linking or producing the dynamic
library is probably similar for all three alternatives, and anyway ignorable com-
pared with the time the reasoning will take.

Owing to the limitations of the dynamic binding, this is the least desired
alternative. It is also not clear if it makes sense to have several versions of the
solver working on the same problem in parallel. This could be the case if one
would like to test different learning algorithms, since the learning actor is bound
to the algorithm as illustrated in Figure 21. However, in order to benefit from
the dynamic library the solvers must run in the same computer, i.e. all solvers
will compete for the same resources. It could be better to send the source file
of the problem to different computers, and then compile and statically link the

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 42 of 87

problem with the solver in each machine. Thus, as static linking allows the
most transparent access to the problem’s constraints, this will be used initially in
PaaSage with the opportunity to shift to the alternative binding models at a later
stage if needed.

5.2 CP Solver
Overview

One of the Solver components being developed for PAASAGE [27] exploits Con-
straint Logic Programming (CLP) techniques and is based on the following ra-
tionale:

• Use logic rules to map high-level (application or component) requirements
to low-level (VM or PaaS) requirements.

• Combine constraints through logical operators to cater for cases where
user requirements are not expressed solely as a set of constraints that all
need to be satisfied. For instance, user requirements can be given as a
disjunction of conjunctive constraints in order to express requirements on
different (service) levels enabling to associate each of these levels to a
different cost that the user is willing to pay.

• Express optimisation formulas involving utility functions on quality met-
rics and attributes as well as cost.

The general formation of a CLP problem that will have to be solved in order
to produce a particular deployment solution has the following form:

1. maximise weighted sum of utility functions application on the metric val-
ues considered for each high-level metric (plus cost).

2. constraints on how low metric values can be propagated to higher metric
values.

3. constraints on low and high level metric values for VMs as well as applic-
ations and application components, respectively.

4. constraints concerning the co-location of application components.

5. constraints dictating that only one VM should be selected for the deploy-
ment for each application component.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 43 of 87

One of the challenges with CLP optimisation problems is that resolution time
can be high as a huge solution space needs to be explored, thus not covering
situations where a deployment solution needs to be calculated very quickly. We
consider two remedies:

1. Restrain the resolution time: this alternative, however, leads to a deploy-
ment solution which is not the best possible according to the user require-
ments provided. As the user requirements are not violated, we can deduce
that this alternative is acceptable and can enhance the performance of the
reasoner.

2. Exploit the knowledge derived from the Knowledge Base: instead of con-
sidering the whole solution space, the reasoner can exploit the fact that the
execution history for the application at hand or for equivalent applications
with this application is available and the Knowledge Base has deduced the
best deployments for these applications, such that only these deployment
solutions are explored in order to solve the optimisation problem. This al-
ternative seems even better than the previous one as (a) the reasoner relies
on real, summarised data derived from the applications’ execution history
and not data which might have been advertised by a particular cloud pro-
vider and (b) the solution space is significantly restrained.

Obviously, when no execution data are available for a particular application
(which is not similar or equivalent with any other application), the second altern-
ative cannot be applied, so the first one should be picked up.

An interesting aspect of this performance problem is what happens when a
particular application is not equivalent but similar with other ones (e.g. might
use a percentage of identical or equivalent components) and how this similarity
could be exploited to reduce the solution space. This is an interesting research
direction that will be explored to further enhance the performance and accuracy
of the reasoner that it develops.

Implementation

The current CLP solver prototype has been written in Prolog within the ECLiPSe
environment17 and has been tested according to a particular use case (traffic man-
agement) [27] which includes the description of requirements at a high level and
their mapping to low-level ones through rules as well as co-locality constraints.
The interface of the prototype is not yet available and thus can be used in a stan-
dalone manner for the time being. For integration into the Upperware, the output

17www.eclipseclp.org

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 44 of 87

of the Profiler (Upperware metamodel instance) provided as input to the reasoner
will be transformed into a CLP form that is appropriate for the ECLiPSe Prolog-
based environment. The output produced by the CLP reasoner will be stored
back into instances of Camel’s deployment metamodel. The integration and co-
operation with the Knowledge Base will be implemented after M18.

5.3 MILP Solver
Overview

The solver developed by AGH uses Mixed Integer Linear Programming (MILP)
approach in order to optimise application deployment. The solver has been intro-
duced into PAASAGE platform for supporting workflow applications within the
extended eScience use case [28]. The MILP solver is designed to be generic,
so that it can be used for two purposes:

• as a generic solver within the Reasoner component,

• as an application-specific solver for workflow planner component
of HyperFlow workflow execution system.

Moreover, the solver should also be able to operate in a standalone mode, so that
it can be used for development and testing of optimisation models of various
application and infrastructure configurations and their parameters [29].

The main premise of the MILP Solver is to use an existing mathematical
modelling framework and ready to use external solvers. To this end we decided
to use CMPL [30] mathematical modelling language and optimisation system.
CMPL supports many commercial and open source general purpose solvers for
linear and mixed integer programming problems that can be described using a
high-level mathematical notation. The advantage of CMPL is that it is avail-
able as an open source project, so it can be integrated into an open platform as
PAASAGE.

Design

To enable integration of the solver with the PAASAGE environment, the MILP
solver encapsulates several components shown in Figure 22:

Solver interface This component is responsible for communication with other
PAASAGE components (meta solver, solution evaluator and MDDB). It
translates data between PaaSage CP model and internal problem descrip-
tion and binds the different technologies used.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 45 of 87

Figure 22: Architecture of MILP solver.

CMPL problem generator The goal of this component is to generate an in-
stance of MILP problem that is subject to optimisation by CMPL. For this
purpose it combines data provided by PAASAGE with optional predefined
abstract application and infrastructure models, to create a complete MILP
problem description. For example, the application model of a workflow
needs to be provided by the user when operating within the workflow plan-
ner component.

Abstract application models The solver embeds a set of predefined models of
supported application classes represented in CMPL notation. The model

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 46 of 87

represents the performance model of the application, i.e. it describes the
expected performance and scalability of application components. It also
includes constraints of application deployment. We will provide a model
for scientific workflow applications, but the solver can be extended to sup-
port other application classes.

Abstract infrastructure model The solver also embeds an optional model of
cloud infrastructure which is also represented in CMPL notation. It in-
cludes constraints of cloud infrastructure that affect application deploy-
ment.

CMPL and external solver In order to solve mixed integer linear problem, PAAS-
AGE solver will use open-source CMPL modelling language backed by
one of the available solvers (both open-source and commercial, e.g. Cbc,
CPLEX).

It is possible to use MILP solver in a standalone mode by interfacing directly
to CMPL problem generator. This feature enables model developers to create
and test optimisation models without the need of having a complete PAASAGE

platform installed. It also makes it possible to use solver as an application-
specific component for e.g. workflow execution planning.

The internal problem description uses a lightweight data format such as
YAML in order to improve solver interoperability with different technologies.
The input for the problem generator includes application description (e.g. work-
flow structure, historical performance data), cloud infrastructure description and
user defined constraints and objective. As a result of optimisation the best de-
ployment plan will be generated.

Model example

The Simple Application similar to the one given in Section 3.3, represented in
CMPL is shown in Figure 23. Since CMPL allows defining constants and vari-
ables as sets or arrays, the model has a concise notation. The objectives and
constraints are represented as equations directly corresponding to the mathem-
atical notation of Equation 1.

Implementation

The current version of the prototype includes the CMPL problem generator de-
veloped in Ruby and a set of abstract application and infrastructure models in
CMPL for layered workflows, as well as simplified sample applications. The
solver interface is not available yet, so the solver can operate in standalone model
only.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 47 of 87

Figure 23: Example of CMPL model for simple cloud application.

%allowed_vms set[2] <
vm1 amazon1
vm2 amazon1
vm1 elastichosts1
vm2 rackspace
vm3 private

>
%cost[allowed_vms] < 1 2 1.5 0.4 7 >

variables:
{[vm, p] in allowed_vms: vm_in[vm,p]: binary; }

objectives:
sum {[vm, p] in allowed_vms:

cost[vm, p] * vm_in[vm,p]
} -> min;

constraints:
sum {[vm, p] in allowed_vms: vm_in[vm,p] } = 1;

5.4 Heuristics
Overview

Exact solution solvers (e.g. CP and MILP Solver) have to evaluate all the pos-
sible solutions to find the optimal one. But when the search space increases, the
time to compute the optimal solution is growing exponentially. At some point,
the solver will take too much time or will be impossible to process all the solu-
tions. When using a multi-Cloud platform and a medium to large application,
CP and MILP solvers might not be able to scale and give a solution within a
reasonable time. Using a heuristic approach, it is possible to find a good enough
solution within a smaller amount of time. However, such a heuristic is only valid
for some specific cases. For example, recurrent business use cases may deserve
a heuristic, letting general solver for unsupported use cases. Heuristics shall be
typically controlled by a Meta Solver component.

Our main focus for the M18 prototype is to show how such an algorithm can
be integrated into the PAASAGE platform.

Design

The internal of the heuristic reasoner is shown in the Figure 24. The heur-
istic reasoner takes as input instances of the PaaSage application and
CP metamodels, but also a connection to the MDDB. Using them, it gener-
ates the problem for the heuristic, i.e. it instantiates heuristic specific structures.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 48 of 87

Figure 24: Architecture of Heuristic reasoner.

The heuristic returns one (or multiple) solution(s). Each of these solutions are in-
jected into an instance of the PaaSage application metamodel with each
parameter set.

Even if we only present one heuristic here, the heuristic interface (block #2
in Figure 24) can be used by any heuristic.

Horizontal scalability heuristic

For illustration purposes, this section focuses on a horizontal scalability heur-
istic presented in Algorithm 2. The algorithm takes as input the list of application
components (components) and a set of constraints (Constraints). Each com-
ponent contains the list of available VM profiles and their costs. Furthermore,
if historical data or performance models are available, each VM profile contains

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 49 of 87

Algorithm 2: Horizontal scalability heuristics with constraints.
Require: components, Constraints
Ensure: solution

if historicalData(applicationComponent) OR performanceModel(applicationComponent) then
for all applicationComponent : components do

for vmProfile: applicationComponentV irtualMachineProfiles do
if ConstraintsCost > 0 then

if vmProfileCost ≤ ConstraintsCost
|components| then

if ConstraintsRTT > 0 then
if vmProfileRTT ≤ ConstraintsRTT

|components| then
if ConstraintsThroughput > 0 then

if vmProfileThroughput ≥ ConstraintsThroughput

|components| then
normalizedThroughput =

vmProfileTroughput

max(applicationComponentV irtualMachineProfilesThroughput
)

normalizedCost =
vmProfileCost

max(applicationComponentV irtualMachineProfilesCost
)

tradeOffvmProfile = normalizedThroughput
normalizedCost

end if
end if

end if
end if

end if
end if

end for
solutionapplicationComponent = max(tradeOff)vmProfile

end for
else

for all applicationComponent : components do
for vmProfile : applicationComponentV irtualMachineProfiles do

normalizedFLOPS = vmProfileFLOPS
max(applicationComponentV irtualMachineProfilesFLOPS

)

normalizedCost = vmProfileCost
max(applicationComponentV irtualMachineProfilesCost

)

tradeOffvmProfile = normalizedFLOPS
normalizedCost

end for
solutionapplicationComponent = max(tradeOff)vmProfile

end for
end if

the predicted throughput and round-trip time (RTT) for each component. If no
historical data and performance models are available, each VM profile contains
the available FLOPS based on the processor architecture. The heuristic outputs
a solution, i.e. a mapping between each component and a selected VM profile.

This heuristic only focuses on selecting the good enough set of VM pro-
files for a set of application components. Furthermore, it only enforces 3 con-
straints: maximum price, maximum end-to-end RTT and minimum throughput.
Moreover, the enforcing is straightforward: the constraints is divided by the
number of components and then checked for each of them. For example, if the
maximum cost is set to 8 e and the application has 4 components, the heuristic
only searches for sub 2 e VM profiles. Each fitting solution is compared and

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 50 of 87

ranked based on a trade-off between throughput and monetary cost. The monet-
ary cost only includes the price of the VMs and excludes the cost of storage and
network transfers. If it is not possible to predict the throughput and RTT for a
given component and VM profile, i.e. no historical data and performance model,
the heuristic falls back to a simple trade-off between the FLOPS available on
each VM profile and their cost.

Implementation

Implementing Algorithm 2 is straightforward in any programming language.
As an exercise for the M18 prototype, we have implemented in Java a version
without MDDB access, i.e. without historical data, nor performance model. The
implementation exploits the Eclipse Modelling Framework (EMF) to extract in-
formation from the metamodel instances.

5.5 Meta-Solver
Overview

The Meta-Solver receives the deployment requirements from the Profiler and
extracts from this a set of variables to express the requirements as a deployment
problem. In the Reasoning architecture there are many algorithms, or solvers,
that can be used to assign values to the Deployment problem. When breaking
down the Profiler deployment requirements into the deployment problem the
Meta-Solver has to create a series of variables that the Solvers can process.

Variables created by the Meta-Solver have significant characteristics which
determine the choice of reasoning Solver. An initial factor is the nature of the
relationship between variables either linear or non-linear. In addition various
domain related characteristics has to be applied to the variables, such as intervals
over real numbers or as integers, including binary decision variables. The Meta-
Solver will select one or more solvers appropriate for the Deployment problem
based on the individual and available Solver characteristics.

The Meta-Solver when sending the deployment problem to one or more
Solvers will take into account the choice of Solver and break the variables into a
single problem or as parts of a problem to different Solvers. Deployment prob-
lems can be dispatched by the Meta-Solver as part of a workflow using results
from previous Solvers as input.

Finding the optimal configuration is normally only possible for certain re-
stricted problems, and in general one will have to evaluate every possible feas-
ible configurations in order to assess a posteriori the best configuration. This is
impractical for all but the smallest problems. In reality one will therefore need
to run the solvers for as many iterations as allowed by the time budget available

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 51 of 87

for finding a configuration. Thus, it is a task of the Meta-Solver to control the
execution of the individual solvers, and stop or pause them when a solution must
be returned.

Implementation

The Meta Solver will act as an initial point at which requirements are broken into
problems and sent to specific solvers for solutions. The duration at which the
solvers are run depends on other requirements taken into account by the Meta
Solver such as resource constraints or the output from the individual solvers.
The Meta Solver will communicate with other components using the Upperware
meta-model developed in WP3. It will not pass other data to Solvers and there-
fore does not parse or produce CAMEL. Implemented using Java the component
can be used as a standalone jar or scaled up into a RESTFUL web service to
allow distributed use.

5.6 Solution Evaluator
The Solution Evaluator component aims at offering a standardised func-
tion evaluation interface to all solvers. It interconnects solvers with the utility
Function Generator, the Simulation Wrapper, and the Metadata
Database (MDDB). Solution Evaluator gets the application model from
solvers with the function to evaluate and forwards it to the Utility Function
Generator, the Simulation Wrapper, or the Metadata Database (MDDB)
depending on the form of the function to evaluate. It communicates with other
PAASAGE components through interfaces provided by those components. In
the initial prototype (M18), Solution Evaluator is optional as it proposes
three distinct interfaces, one for every backend it supports. Therefore, it can be
bypass by other components. The Solution Evaluator component is a
simple dispatch component.

5.7 Utility Function Generator
Overview

Recall from Section 5.1 that a feasible configuration is defined as an assignment
of variable values that satisfies all the constraints of the deployment problem.
Thus only by addressing the user’s preferences and goals can we distinguish
between these feasible configurations. The only purpose of the utility function
is consequently to rank the various feasible configurations by assigning a nu-
merical value to each feasible configuration such that the configuration with the
largest utility value is the “better” configuration seen from the user.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 52 of 87

The utility function is the objective function for mathematical solvers, and
serves to train learning based solvers. Learning is by definition an iterative pro-
cess, and learning from trial and error in the real world will be unfeasible. Most
of the learning iterations will therefore be performed against the utility function
similar to the hybrid reinforcement learning approach used by Tesauro et al. for
autonomic resource allocation [31].

The concept of utility is well established in economics as a representation
of preferences over some goods and services, and has long been used for de-
cision making [32]. Chu and Halpern showed that essentially all decision rules
can be represented as a generalised notion of expected utility [33]. Arguably,
one of the first applications in computer science was when Sutherland designed
an auctioning system where users could bid for computer time depending on
their perceived utility of the computation [34]. The concept of utility for sys-
tem management and operation is closely linked with the vision of autonomic
computing [35] and was first used to allocate resources in a data centre [36], an
application close to the allocation problems considered in PaaSage. Kephart and
Das argued that both rule based policies and goal policies are in general insuffi-
cient and inflexible for decision making in autonomic systems when one has to
trade-off potentially conflicting goals, and showed how utility functions could
be seen as an extension of goal policies [37]. Furthermore, Walsh et al. have
shown how the attributes of high level services could be expressed in the utility
function in high-level business terms [38].

Utility functions were used for self-adaptive applications in the MADAM
project [39], seeding ideas that were carried forward for context aware ubiquit-
ous computing systems in the MUSIC project [40]. Extensive experimentation
with real applications revealed that even experienced software developers would
find it difficult to develop utility functions [41], and that they often reduced the
utility function to some kind of situation-action rule [42]. These experiments
thus confirmed the conjecture of Walsh et al. [38] who stated that “(...) humans
will often find it difficult to express their utility for various components of a
large, complex system. Carefully designed interfaces and preference elicitation
techniques are needed to represent human notions of value accurately.”

The DiVA project developed a model to assist the user in specifying impli-
citly the utility function as a sum of “properties” to be optimised under the cur-
rent configuration where the terms were weighted by a discrete priority factor
like “high”, “medium”, or “low” [43]. Although the configurations were ranked
by the utility function, different priority dimensions were balanced using prior-
ity rules. However, Cheng et al. realised that when more than one dimension
must be considered for adaptation “(...) updating and maintaining consistency
between the trade-off preferences quickly becomes unmanageable” [44].

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 53 of 87

Another approach to elicit a utility function was offered by Valetto et al. [45].
They instrumented the application with monitors extracting data on various per-
formance features in laboratory tests, and then tried to correlate the features
impacting the application utility. However, this approach requires significant
off-line testing of the application in the laboratory, and significant manual effort
in the statistical analysis of the recorded data.

Finding the optimal configuration is relatively easy if the utility function is a
linear combination of independent utility functions for the application’s artefacts
like components, modules, virtual machines, and similar. The utility function of
Kephart and Das was of this kind [37]. The best configuration can then be found
in polynomial time by an application of the Bellman-Ford algorithm [46] as ex-
plained in [47]. However, the experiments in MUSIC showed that decomposable
utility functions cannot be expected in general [42].

The approach to elicit and build a suitable utility functions currently under
investigation in PaaSage resembles the approach in DiVA where the user’s goals
will be captured as discrete preference sets over specific system properties. The
user will not be asked to formulate the utility function directly, but rather provide
certain rules for how the user would assess the application’s utility under differ-
ent situations. As an example consider that one can measure performance and
estimate the cost of the execution of a deployment. The user might then specify
the perceived utility as in the following examples.

R1: if performance is acceptable then utility is acceptable

R2: if performance is bad then utility is very low

R3: if cost is high then utility is low

The salient feature is that the different factors influencing the utility like per-
formance and cost, are classified and based on this classification the utility can
take values from subsets of all possible utility values. This is different from
the approach in DiVA where rules specified directly the property to be priorit-
ised, e.g. “if the battery runs low, the power consumption should prioritised over
performance” [43]. In PaaSage this is done as an implicit trade-off between the
various properties based on the parts of the utility value chosen for that property
value. One can for instance assume that the user setting the rules R1–R3 above
prioritises performance over cost since the utility will never be assessed as worse
than “low” even if the cost is “high” whereas the utility could be taken as “very
low” if the performance is “bad”.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 54 of 87

Implementation

Our intent is to use fuzzy numbers [48] to establish a utility value in the unit
interval, [0, 1]. This approach entails the following steps that are illustrated in
Figure 25.

Observation Fuzzification Evaluation Defuzzification Utility value

Figure 25: The steps needed in order to compute the fuzzy utility value.

1. Observation of the values of the property monitors. For each configur-
ation there are monitors stating how property values should be obtained,
and so in the example there must be ways to measure “performance” and
“cost” for the example rules above. In a real and simulated deployment,
the way to monitor the properties will be given by the infrastructures or
the simulator. In a utility function setting these values must be estimated
based on the configuration choices and historical information. One can
for instance assume that a large virtual machine with many cores will give
better performance than a smaller one, and from the price tables of the
Cloud providers and passed executions one can monitor the cost of a vir-
tual machine as a random variate with a given probability density function.

2. Fuzzyfication is the process of mapping the observed property value to
one of the possible alternatives. Each alternative is represented as a fuzzy
number. A fuzzy number is a fuzzy subset of the real numbers R and has
a membership function indicating on a scale from zero to unity whether
a given value is the fuzzy number. For instance the fuzzy number “bad
performance” will have a membership function that covers low values of
performance but drops off to zero as the performance value increases. An
observed value may consequently map to more than one fuzzy number if
their membership functions overlap, and can therefore fractionally repres-
ent several fuzzy numbers. This reflects the underlying variability of the
observations. In our example, the specific value measured for the Per-
formance property can belong, say, 0.65 to the fuzzy number “acceptable
performance”, and 0.35 to the fuzzy number “bad performance”.

3. Evaluation of the rules uses the fuzzy values to assess the conditions of
the rules. Continuing our example, this implies that we should “weight”
the outcome of the first rule with 0.65 and the second rule with 0.35 since
the measured value indicates that the performance is mostly acceptable,

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 55 of 87

but may also be bad. These conclusions can be mapped to utility values
by inverting the membership functions of the fuzzy utility values so that, in
our case, the utility resulting from the first rule is the real value which has a
membership value of at least 0.65 to the fuzzy number “acceptable utility”.
The “very low utility” set of the second rule may cover a different range
of utility values, and again the utility value is the one whose membership
value to this fuzzy number is larger than, or equal to 0.35.

4. Defuzzification is combining the evaluation of different rules into one
single utility value. It is not a simple sum of the different outputs of the
rule evaluation since the fuzzy numbers can overlap, e.g. the upper val-
ues in the “very bad utility” coverage can overlap with some of the lower
values in the “bad utility”. Popular ways of doing defuzzification is the
mean of maxima technique, the centroid technique, or the centre of max-
ima technique. The most intuitive one is the centroid technique that will
be tried first in PaaSage. It aims to find the “centre of gravity” of the
membership functions of the outcome of the evaluation of the different
rules. It integrates the area under the membership functions of the result-
ing fuzzy numbers, but truncates these at the level at which the rule made
the decision, and averages. In the example at hand, one would integrate
the membership function for the “acceptable utility” limiting the member-
ship values to 0.65, integrating the “very low utility” membership function
limiting the values to 0.35, and integrating the “low utility” to the level of
decision of rule number three. The single utility value returned will be the
one splitting this combined area in two equal parts (the center of gravity).

In order to use this approach, fuzzy numbers must be defined for the the input
properties, as well as for the different utility classes. For each fuzzy number
there must be a membership function defined. It is clear that the range covered
by each of these numbers and the corresponding membership function chosen
will influence the produced utility value. These choices are therefore crucial to
the usefulness of the fuzzy utility function.

The literature reports, however, that most of the fuzzy number membership
numbers are specified as either triangles or trapezoids, and as such it could be
that these functions will be good enough for PaaSage where the utility value has
no precise meaning in. It is only required to give a consistent ranking of the
deployment configurations.

Work has therefore started on evaluating this approach with the PaaSage end-
users to understand what will be the easiest way to formulate the utility function,
either directly or through the above outlined use of fuzzy numbers. This will
continue up to month 18. The fuzzy utility function will thus only be included
in the second phase of the project to be demonstrated at month 36.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 56 of 87

5.8 Simulator Wrapper
Overview

The goal of this component is to provide to the PAASAGE platform the ability
to evaluate different resources’ allocations of an application prior to deploying
it on Clouds. Based on the application model and the MDDB, an application
mockup is generated to simulate the behaviour of the application. Moreover,
based on historical data and/or analytic performance model, the resource con-
sumption of the different workloads of the application are generated. The same
is true for the platform based on information retrieved from the MDDB for the
performance and behaviour of the platform and from the application model for
the Cloud offering (VM type, price, etc.). Based on the application and CP mod-
els, Simulator Wrapper generates one or multiple applications to Cloud
resources mapping. Each simulation is then run by the selected simulator. By
analysing the simulator output, Simulator Wrapper computes a set of met-
rics and trade-offs between them. Using this information, it can rank the dif-
ferent mappings. Finally, it enhances the application and CP models with this
information. Simulator Wrapper could also be used during the description
of the application to evaluate different compositions of components but also the
impact of different functional and non-functional goals on the metrics. Doing so
will give finer insights of the predicted behaviour of the application to the Cloud
user and/or the application developer.

Design

Figure 26 describes how Simulator Wrapper component works internally.
First of all, based on the PAASAGE application and CP models but also using
information retrieved from the MDDB, a simulator view of the application is
generated. It contains all the information required to simulate an application:

• Application’s components and their compositions.

• A (set of) mapping(s) between the components and the Cloud resources.

• Synthetic or predicted workloads, i.e. the different request types and their
characteristics (request arrival, inter-request time, resource consumption
for each component, etc.).

• Performance model of the application and its components and connectors.

Figure 27 shows the internal representation of an application. An example is
presented in Section Example on page 63.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 57 of 87

Figure 26: Internal architecture of the Simulator Wrapper.

Furthermore, it is also required to generate an internal representation of the
considered platform. Based on information extracted from the MDDB, the in-
frastructure topology (network, physical machines, storage) of the platform and
performance models for each of its resources are generated. Furthermore, using
the MDDB and the PaaSage application model, the cost model of the platform is
also generated, i.e. the Cloud offers (VM types, storage solutions, prices, etc.).

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 58 of 87

Figure 27: Generic application model.

By modifying the next layer (layer #2 in Figure 26), it is possible to support
any simulator toolkit. Nonetheless, for the moment, we focus on the integration
of the SimGrid Cloud Broker (SGCB) Cloud simulator toolkit [49]. Based on the
internal representation of the platform and the application, the specific input for
the simulator are generated. First of all, the application model is used to generate
the code that will be used to simulate the application. This code also contains the
performance model of each components and connectors. In our case, the EMF
model is transformed into Java SGCB code.

Moreover, based on the workloads, the code for each request types and their
characteristics is generated. A generic model for n-Tier application requests
within SGCB is given in Figure 28. An example is presented in Section Ex-
ample on page 63. This code describes the data flow between components and
the consumption of resources on each components. Finally, it generates a (set
of) XML configuration file(s) for the simulator, i.e. one per mapping between
components and Cloud resources. An example of such file is given in Listing 2.

The layer #2 of the Simulator Wrapper component is also in charge
of generating the platform configuration file. In the case of SGCB, the file is

Figure 28: Generic request’s dataflow model.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 59 of 87

Listing 2: Example of a configuration file
<nTierApplication version="1">
[...]

<proxy>
<webProxy region="eu_1" instanceType="m1.small"/>
[...]

</proxy>

<services>
<webService>

<region name="eu_1">
<instance type="VM_TYPE_TIER_1" quantity="INSTANCE_NB_TIER_1

"/>
</region>

</webService>
[...]

</services>
</nTierApplication>

Listing 3: Example of the platform topology
<cluster bb_bw="1.25E9" bb_lat="1.0E-4" bw="1.25E8" core="4" id="

AS_usa_west_1_pm_m3.xlarge" lat="1.0E-4" power="1.5354508E10"
prefix="usa_west_1_pm_m3.xlarge-" radical="1-50" suffix=".
usa_west_1.broker.simgrid.org">

<prop id="memory" value="15000"/>
<prop id="disk" value="1690"/>
</cluster>

divided into 2 parts: one for the topology and one for the Cloud offers. The
topology file describes all the network links (latency and bandwidth), the phys-
ical machines (speed and number of cores, amount of memory and storage, etc.)
and their interconnections. An example of such file is given in Listing 3. As
one can see, the example describes a single Cluster with an output bandwidth of
1.25 GB/s, composed of 50 physical nodes with 4 cores, 15 GB of memory and
1,690 GB local hard drive.

The Cloud offers file describes all the different VM types and their char-
acteristics but also the other services, e.g. storage. An example of such file is
given in Listing 4. The example contains the description of the Cloud offering
of one VM type and the price of Internet data transfer. Moreover, the layer #2
of the simulator wrapper is also in charge of generating Java code based on the
platform performance models. Thanks to the modular architecture of SGCB, it
is simple to plug new platform performance models. Using this interface, the
simulator wrapper can generate on-the-fly code that describes and implements
the performance models of the targeted platform.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 60 of 87

Listing 4: Example of the Cloud offering.
[...]
<instance id="c1.xlarge" vcpu="8" computing_unit="2.5" memory="7000"

disk="1690">
<on_demand_price price="0.580"/>

</instance>
[...]
<data_transfer_prices>

<internet>
<input>

<range price="0.0"/>
</input>
<output>

<range begin="0" end="1" price="0.0"/>
<range begin="1" end="10000" price="0.120"/>
<range begin="10000" end="40000" price

="0.090"/>
<range begin="40000" end="100000" price

="0.070"/>
<range begin="100000" price="0.050"/>

</output>
[...]

The simulator is invoked (layer #3) for each configuration file, i.e. for each
component to resource mapping.

Then the Simulator Wrapper component retrieves the execution traces
of all the simulations. In the case of SGCB, the traces are in Paje binary format18.
The traces are converted to the CSV format to be analysed by the layer #4 of
Simulator Wrapper. These traces contain the billing of all resources, vir-
tual resources’ information, e.g. startup duration of each VM and overall and per
request application execution information. An example of such trace is given in
Listing 5. This trace represents the different states, i.e. step in the request’s
dataflow, of a request (REQTASK_STATE_mwthanr_439). For each state,
it contains where the state has changed, e.g. on the eu_1.m2.2xlarge.14
resource: for example, the request has changed its state to 16. Moreover, the
trace also contains when each state has begun and ended and its duration. Ac-
cordingly, it is possible to recreate a complete view of the execution of each
request. All the traces are merged and analysed through a set of R scripts19.
The R scripts generate a set of metrics (Throughput, RTT, Cost). Using these
metrics, Simulator Wrapper also produces trade-off curves between the
different metrics. An example of the performance analysis process is given in
Section Example on page 63. Finally, based on this trade-off, the layer #4 of the

18https://github.com/schnorr/pajeng
19http://www.r-project.org/

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 61 of 87

Listing 5: Example of the pre-analysis trace of a simulation.
Variable, node-1.broker.broker.simgrid.org, REQTASK_STATE_mwthanr_439,

56336.3, 65670, 9333.74, 0
Variable, eu_1.m1.small.2, REQTASK_STATE_mwthanr_439, 56345.7, 65670,

9324.31, 15
Variable, eu_1.m1.small.1, REQTASK_STATE_mwthanr_439, 56338.2, 65670,

9331.84, 8
Variable, eu_1.m1.small.0, REQTASK_STATE_mwthanr_439, 56337.9, 65670,

9332.19, 1
Variable, eu_1.m2.2xlarge.14, REQTASK_STATE_mwthanr_439, 56345.8,

56345.8, 0.041315, 16
Variable, eu_1.m2.2xlarge.14, REQTASK_STATE_mwthanr_439, 56345.8,

56345.8, 0.002897, 18
Variable, eu_1.m2.2xlarge.14, REQTASK_STATE_mwthanr_439, 56345.8,

56348.7, 2.86561, 19
Variable, eu_1.m2.2xlarge.14, REQTASK_STATE_mwthanr_439, 56348.7,

56348.7, 0.008236, 20
Variable, eu_1.m2.2xlarge.14, REQTASK_STATE_mwthanr_439, 56348.7,

65670, 9321.37, 21
Variable, eu_1.m2.2xlarge.8, REQTASK_STATE_mwthanr_439, 56338.2,

56342.8, 4.61757, 9
Variable, eu_1.m2.2xlarge.8, REQTASK_STATE_mwthanr_439, 56342.8,

56342.8, 0.002897, 11
Variable, eu_1.m2.2xlarge.8, REQTASK_STATE_mwthanr_439, 56342.8,

56345.7, 2.86561, 12
Variable, eu_1.m2.2xlarge.8, REQTASK_STATE_mwthanr_439, 56345.7,

56345.7, 0.008236, 13
Variable, eu_1.m2.2xlarge.8, REQTASK_STATE_mwthanr_439, 56345.7,

65670, 9324.33, 14
Variable, eu_1.m2.2xlarge.3, REQTASK_STATE_mwthanr_439, 56337.9,

56337.9, 0.007831, 2
Variable, eu_1.m2.2xlarge.3, REQTASK_STATE_mwthanr_439, 56337.9,

56337.9, 0.00029, 4
Variable, eu_1.m2.2xlarge.3, REQTASK_STATE_mwthanr_439, 56337.9,

56338.2, 0.286561, 5
Variable, eu_1.m2.2xlarge.3, REQTASK_STATE_mwthanr_439, 56338.2,

56338.2, 0.008236, 6
Variable, eu_1.m2.2xlarge.3, REQTASK_STATE_mwthanr_439, 56338.2,

65670, 9331.87, 7

Simulator Wrapper component ranks the different component to resource
mappings.

Using the information generated by the layer #4, the PaaSage application and
CP models are enhanced to contain the different performance metrics, trade-off
between them and the ranking number of each individual mapping. These two
enhanced models are the output of the Simulator Wrapper component.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 62 of 87

Figure 29: Generic application model for the RUBBoS application.

Implementation

At the moment, SGCB is available for the PAASAGE community20 but also its
extension21 for n-Tier applications. The combination of these 2 software al-
lows to simulate most of the use-cases selected in the PAASAGE project. Con-
sequently, the layer #3 is ready. The layer #1 and #2 are not available yet but
part of it is, e.g. the configuration file generator. The pre-analysing (paje traces
to CSV) and the analysis itself (R scripts) are available. But the layer #5 is not
available yet.

Example on a 3-tier application

This section presents a small example of the simulator wrapper for a 3-tier ap-
plication. It uses RUBBoS22 as test application, that is composed of an HTTP
front-end, an application server back-end and a database. Moreover, for each

20https://gforge.inria.fr/projects/sgcb/
21https://gforge.inria.fr/projects/sgcbntier/
22http://jmob.ow2.org/rubbos.html

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 63 of 87

Figure 30: Example of an instance of the RUBBoS application model.

Figure 31: 2 request types’ dataflow for the RUBBoS application.

tier, there is a tier load balancer that spreads the incoming requests between the
different instances of each components. Figure 29 presents a generic description
of the application. Furthermore, Figure 30 presents an instance of this generic
description where the amount of resources for each components has been fixed.
Accordingly, multiple instances of the generic description must be generated,
i.e. one for each combination of resources.

However, it is also required to generate the request data-flow and their re-
source consumption. Figure 31 presents the modelling as data-flow of two types
of RUBBoS requests.

First, the simulator requests resources, e.g. VMs in our case. Then, it starts
the components to the selected VMs. Finally, all the components are initialised
and run using the following workflow:

• For each Tier Server

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 64 of 87

0.25

0.50

0.75

1.00

m1.small m2.xlarge m2.2xlarge m2.4xlarge
InstanceType

M
et

ric

MetricType

Price

RTT

Throughput

Figure 32: Trade-off between the metrics for the RUBBoS application and the
horizontal scalability of the application tier.

1. Register to Tier Balancer

2. Launch X Tier Process (one per core by default)

3. Process requests

a) Receive requests
b) Read data
c) Compute requests
d) Write data
e) Send to next tier (optional)

4. De-register and die

• For each Tier Balancer

1. Receive registering requests

2. Process requests

a) Receive requests
b) Elect a tier server
c) Send to the selected tier server

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 65 of 87

Figure 32 shows the output of the performance analysis. The goal of this
experiment was to evaluate the horizontal scalability of the application tier. Ac-
cordingly, we run a simulation for each VM type available. Then, we gener-
ate price, round-trip time (RTT) and throughput metrics. Finally, we produce
Figure 32 that can be used to select the best trade-off by ranking the different
mapping.

5.9 Solver-to-deployment
Overview

The Reasoner consumes the CPIM received as input by the Profiler (cf. Sec-
tion 4) and produces a Cloud Platform Specific Model (CPSM) [2], that specifies
the target deployment of applications. Solver-to-deployer is a glue layer
between the Reasoner and the Adapter (cf. Section 6). It participates to lower-
ing the dependencies of solvers to the remaining of PAASAGE. As described
in Section 3, Upperware metamodels aim at enabling interactions between the
Profiler and the Reasoner while lowering dependencies to CAMEL. Solvers pro-
duce solutions using these Upperware metamodels. The main objective of the
Solver-to-deployment component is to translate the output of the Solvers
into the Deployment Model CPSM. Figure 33 describes the various subcompon-
ents that compose the Solver-to-deployer component.

Model Processor

* Load CP and PaaSage
 Application Models

Derivator
* Parse CP and PaaSage
 Application Models
* CP and PaaSage Application
 Models to CloudML

CloudML Generator
* Generator CloudML

Figure 33: Solver-to-deployer-overview.

The Model Processor component loads the models received as input
and passes them to the Derivator component, that encapsulates the func-
tionality to parse and extract the elements required to build the CPSM. The
Derivator component is concerned with matching the CP and PaaSage Ap-
plication Models of applications with the concepts in the CPSM. Finally, the

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 66 of 87

CloudML Generator component is concerned with serialising the CPSM
models.

Matching Algorithm

The Paasage Application Metamodel (cf. Section 3.2) defines concepts to char-
acterise an application to be deployed. This metamodel allows a solver to specify
a target deployment model of the application. In particular, the following con-
cepts can be expressed:

• Providers: It represents a cloud infrastructure provider. The Provider
concept is defined with a specific position, i.e. continent, country or city.

• Virtual Machines: Virtual Machines (VM) are represented through two
concepts in the metamodel, VirtualMachineProfiles and VirtualMachines.
The former represents the types of VM supported by providers or defined
by the users themselves. The latter represents concrete instances of Virtu-
alMachineProfiles that will potentially enable the application execution.

• Application Components: Application Components are represented through
two concepts in the metamodel, the ApplicationComponentProfiles and
ApplicationComponent. The former represents the application compon-
ents in terms of name, version and application type. The latter represents
concrete instances of the ApplicationComponentProfiles.

On the other side, CloudML allows expressing the following concepts: Re-
source, Providers, Component, Communication, and containment.

• Resource: A Resource represents an artefact (e.g., scripts, binaries, con-
figuration files, etc.) adopted to manage the deployment life-cycle (e.g.,
download, configure, install, and start, stop).

• Provider: A Provider represents a collection of virtual machines on a par-
ticular cloud provider with a specific position, i.e. continent, country or
city.

• Component: A Component represents a reusable type of component of
a cloud-based application. A Component can be an ExternalComponent,
meaning that it is managed by an external Provider, or an InternalCom-
ponent, meaning that it is managed by the PaaSage platform. An External-
Component can be a VM and an InternalComponent can be an application
component.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 67 of 87

Paasage App. Metamodel Concepts CloudML Concepts
Provider Provider
VirtualMachineProfiles ExternalComponent
VirtualMachines VMInstance
ApplicationComponentProfiles InternalComponent
ApplicationComponent ComponentInstance

Table 1: Matching table.

• Communication: Communication represents a reusable type of commu-
nication binding between Components, ExternalComponent or Internal-
Component.

• Containment: A Containment represents a reusable type of containment
binding between Required- and a ProvidedContainmentPort. A Contain-
ment can be associated to Resources specifying how to configure the com-
ponents so that the contained component can be deployed on the container
component.

The correspondence between the two models (Paasage Application
and CloudML models) is performed using the matching in Table 1. When
parsing the loaded models of the target deployment of the application, a cor-
responding CloudML instance is created for every Paasage Application
Metamodel instance.

Implementation

The current implementation of the Solver-to-deployment has a Model
Processor for the Paasage Application and CP Metamodels used for the input
description. This Model Processor exploits the Eclipse Modeling Frame-
work23 (EMF) to load an object representation of the target CP and Application
models. The Derivator component for PaaSage Application and CP Mod-
els fills the CPSM with information related to virtual machine profiles and their
related Cloud providers as well as to the different elements that compose the
application. The CloudML Generator is based on the CloudML library24.

23EMF: http://www.eclipse.org/modeling/emf/
24The CloudML library: https://github.com/SINTEF-9012/cloudml

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 68 of 87

6 Adapter
The purpose of the Adapter is twofold: (1) It transforms the currently running ap-
plication configuration into the target configuration in an efficient and safe way,
and (2) it implements high-level management policies involving multiple clouds.
The Adapter is composed of three components, the Adaptation Manager,
the Plan Generator, and the Application Controller, as shown in
Figure 34. These three components are discussed in the following sections.

Figure 34: Adapter Architecture.

6.1 Adaptation Manager
Overview

Adaptation Manager drives the overall reconfiguration process. It has
three main responsibilities: (1) validating reconfiguration plans, (2) applying
the plans to the running system in an efficient and safe way, and (3) maintaining
an up-to-date representation of the current system state. It communicates with
the Reasoner to obtain target deployment models, with the Plan Generator
to obtain plans, with the Application Controller to provide high-level
rules, and with the Executionware to collect information and to execute recon-
figuration actions.

Implementation

The Adaptation Manager is decomposed into four main components shown in
Figure 35. The Reasoner Interfacer loads the Cloud Platform Specific

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 69 of 87

Figure 35: Adaptation Manager structure.

Model (CPSM) delivered by the Reasoner. The ExecutionWare Interfacer
provides a wrapper interface to the REST API used for Upperware-Executionware
interactions (see the next section). The Validator is a pluggable component
that decides whether a reconfiguration plan is allowed. Validator decisions
are based on analysing the reconfiguration benefits (e.g. increases in application
performance) and costs (e.g. disruption of application operation, risk for re-
configuration failures). This analysis uses information about the current system
state, past application executions as well as past application reconfigurations. Fi-
nally, the Coordinator directs the other components and maintains a CPSM
model that reflects the state of the current system.

The following workflow illustrates the reconfiguration process.

1. The Reasoner Interfacer loads a new target deployment model
from the Reasoner (cf. Section 5.9).

2. The Plan Generator receives the target model along with the current
model and produces a reconfiguration plan.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 70 of 87

3. The Validator verifies that the plan execution will be beneficial to the
system.

4. The Coordinator extracts from the plan any rules that involve multiple
clouds and passes them to the Adaptation Controller.

5. The Coordinator invokes the ExecutionWare Interfacer to
apply the actions in the plan and to verify their correct execution.

6. The Coordinator updates the current deployment model.

At Step 3, if validation fails, the Coordinator obtains a new target de-
ployment model through the Reasoner Interfacer. At Step 5, the Coordinator
must handle failures and timeouts, a challenging but common problem in distrib-
uted systems. The simple approach that is initially adopted is to discontinue the
adaptation and ask the Plan Generator for a new reconfiguration plan start-
ing from the updated state.

The M18 prototype of the Adaptation Manager focuses on initial de-
ployment rather than full-scale dynamic reconfiguration. It runs as a JAVA
process that uses the CloudML library25 and the Jersey REST library. The
Validator component is currently based on performing simple syntactical
checks.

Upperware-Executionware REST API

Interactions between the Upperware and the Executionware rely on a REST API.
The API is based on the main concepts of CloudML, namely, applications, com-
ponents, component instances, relationships, and virtual machines. It exposes
operations for obtaining information about the running application (e.g. retriev-
ing the state of a particular component instance) and sending reconfiguration
commands (e.g. deploying an application or adding a new instance). Resource
representations are in JSON. To deploy an application, the API client makes
an HTTP POST request with a JSON representation corresponding to the CPSM
model and including information on components, component instances, relation-
ships, and scalability rules. Successful deployment produces a set of linked re-
sources that enables the client to monitor and manipulate the application through
HTTP requests.

Table 2 provides an overview of the API, which is currently being elaborated
in collaboration with WP5. Listing 6 presents an excerpt of the HTTP POST
request for deploying the Simple Application.

25The CloudML library: https://github.com/SINTEF-9012/cloudml

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 71 of 87

Table 2: REST API.

Operations Description

GET applications
POST applications
GET applications/{appId}
DELETE applications/{appId}

Query, deploy, undeploy ap-
plications

GET applications/{appId}/components
POST applications/{appId}/components
GET components/{compId}
DELETE components/{compId}
POST components/{compId}

Query, deploy, undeploy, per-
form actions on components
(e.g. start, stop instances)

POST relationships
DELETE relationships/{relId}
GET relationships/{relId}

Create, destroy, query rela-
tionships (communication or
containment)

GET components/{compId}/instances
POST components/{compId}/instances
DELETE instances/{instanceId}
GET instances/{instanceId}
POST instances/{instanceId}

Query, add, delete, query,
perform actions on compon-
ent instances (e.g. start, stop)

GET virtualMachines/{vmId} Query virtual machines

Listing 6: Example of HTTP POST request for the Simple Application.
POST /applications HTTP/1.1
Content-Type: application/json

{
"name": "simpleApp",
"description": "My simple application",
"components": [

{
"name": "simpleAppBundle",
"lifecycle": {

"init": "myinit.sh",
"start": "myrun.sh",
"stop": "...",
[...]

},

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 72 of 87

"requiredVM": {
"provider": "AmazonEC2",
"location": "EU",
"minRam": 4096,
"minCores": 4,
"os": "ubuntu",
[...]

},
[...]

}
]

}

6.2 Plan Generator
Overview

The Plan Generator component generates a reconfiguration plan for modi-
fying the configuration of the running application. The inputs of Plan Generator
are two CloudML deployment models, namely current and target. The
current model describes the actual system deployment at the time when the
comparison is launched, and the target model represents the deployment de-
sired by the Reasoner. The output is a list of actions representing the required
changes from the current to the target model. The types of potential actions are
listed in Table 3.

Implementation

The comparison process follows the order from virtual machine, application
component, to communications, according to the logical dependencies between
these concepts.

The Plan Generator first compares the set of virtual machine instances
from the current model, and the set of virtual machine instances in the target.
It compares every pair of virtual machine instances from the Cartesian product
of these two sets, and identifies the matched paired based on the virtual ma-
chine names. For each un-matched virtual machine in the current set, it creates a
removeVM action with this VM as the argument, and for each un-matched VM
in the target set, it creates a addVM for it.

After finishing the virtual machine comparison, Plan Generator com-
pares the application component instances on each VM. On each pair of matched
virtual machine, it extracts the set of components deployed on the virtual ma-
chine in the current model, and also the set of components on the VM in the
target model. The comparison of these two sets are similar to the VM compar-
ison: Plan Generator identifies the matching pairs of components, gener-
ates addComponent actions for the unmatched components in the target set,

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 73 of 87

Table 3: Action types output by Plan Generator.

Action Parameter Effect
addVM VM deploy a new virtual

machine
removeVM VM terminate a virtual ma-

chine
addComponent Component, VM deploy the application

component on the tar-
get virtual machine

removeComponent Component remove the application
component instance
from its current host

addCommunication Communication create a communication
instance

setRequired Communication, Port set and configure the re-
quired port of the com-
munication

setProvided Communication, Port set and configure the
provided port of the
communication

removeCommunication Communication remove the communic-
ation

and generates removeComponent actions for the unmatched ones in the cur-
rent set. To decide if a pair of application components are matched, it util-
ises both the names of application components, and also their types. Beside
the comparison of components on the matched pair of virtual machines, Plan
Generator also creates addComponent actions for all the components on
the newly added virtual machine instances, and similarly creates removeComponent
actions for all the components on the removed virtual machine instances.

Plan Generator compares the communications in the last step. It also
firsts identifies the matched pairs of communications between current and tar-
get models, based on the communication name and type. For the matched
pairs, it goes on to compare the required and provided ports, to generate the
setRequired and setProvided actions. For the un-matched ports, it cre-
ates the addCommunication, removeCommunication actions, as well
as the corresponding actions on their port.

It is worth noting that at this stage, Plan Generator always gives a
higher priority to the target model, which means that, for example, any virtual
machine instance in the target model that does exist in the current one will be

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 74 of 87

regarded as one that needs to be created, and any virtual machine that does not
exist in the target model any more will be removed. This works well when there
is no change on the current system during the time of reasoning, otherwise the
system changes happened during the reasoning time will be flushed. This is kept
as future work.

6.3 Application Controller
Overview

The Application Controller component implements high-level man-
agement policies that need global knowledge or involve multiple clouds. An
example is a policy that bursts an application from a private to a public cloud
in response to increased demand. Another example is a policy that migrates
an application across public clouds in response to relative price or availabil-
ity variations. Such policies cannot be enforced by the Executionware, which
only supports low-level scalability operations on a per-component and per-cloud
basis.

Implementation

Application Controller receives as input a set of high-level rules and
is responsible for enforcing them. The rules are expressed in the DSL for scalab-
ility rules and are based on the Event-Condition-Action format. Events may ori-
ginate from monitored or historical information and actions are commands of the
Upperware-Executionware REST API. One possible action taken by Application
Controller is to inform Application Manager that a new deployment model
is needed. This enables the implementation of rules that trigger a change in
the deployment model if the system behaviour moves outside acceptable bounds
(e.g. maximum response time).

The implementation of the Application Controller component is
out of scope for the M18 prototype. The plan is to use a rule engine that sup-
ports the scalability rules DSL, which is being defined in Task 2.3. This engine
will be integrated with components that interface with the Executionware and
Metadata Database in order to collect the necessary information and to send
reconfiguration commands.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 75 of 87

7 Conclusion
The Prototype Upperware is made of three major components: the Profiler, the
Adapter, and the Adapter. Interactions with other PAASAGE elements (CAMEL,
MDDB, Executionware) have been well identified and the proposed Upperware
prototype architecture tries to localise them to few elements.

The Profiler is mainly made of two sub-components, with distinct object-
ives. The CP Generator Model-to-Solver produces a constraint prob-
lem description that is improved by the Rule Processor by removing re-
dundancies and verifying the list of Cloud providers candidates. These are the
sub-components that would have to be adapted in case of evolution of CAMEL.

The Reasoner currently supports several kinds of solvers, so as to let us eval-
uate various strategies to efficiently compute a deployment. Hence, we have
defined an architecture where new solvers could be integrated at low cost. Cur-
rent efforts are geared towards developing a Learning Automata based solver,
making use of exiting solvers (CP Solver and MILP Solver), developing some
simple heuristics as proof of concepts, and developing a Meta Solver for anticip-
ated complex situations. The Reasoner also contains several helper components
to evaluate solutions. Currently, it provides three mechanisms: a utility func-
tion evaluation, an access to historical data stored in the MDDB, and a cloud
simulator wrapper of SimGrid.

The Adapter is made of three sub-components, only two being integrated
into the M18 prototype. The Plan Generator transforms the target deployment
computed by the Reasoner in a set of actions. The Adaptation Manager is re-
sponsible for driving the (re)configuration process, and in particular interacting
with the Reasoner and the Executionware.

This document describes our views of the Upperware Prototype at M18.
During the integration phase, as well as when gaining experience by actually
supporting more and more use cases, the Upperware architecture may evolve.
Therefore, interactions with other PAASAGE research partners (in particular from
other work-package) may have some impacts on well identified sub-components.
Interactions with the industrial partners in PAASAGE will provide feedbacks on
the actual usage of the Reasoner, and its relevance to fulfil requirements.

All these interactions and evaluations will contribute to the evolution of the
Upperware. The M36 deliverable will describe the final version of the Upper-
ware, i.e. the Product Upperware.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 76 of 87

References
[1] Keith Jeffery, Geir Horn, Lutz Schubert, Philippe Massonet, Kostas Magoutis,

Brian Matthews, Tom Kirkham, Christian Perez and Alessandro Rossini.
Deliverable D1.6.1 - Initial Architecture Design. 2013.

[2] Alessandro Rossini, Arnor Solberg, Daniel Romero, Jörg Domaschka,
Kostas Magoutis, Nicolas Ferry and Tom Kirkham. Deliverable D2.1.1
- CloudML Guide and Assessment Report. 2013.

[3] Clément Quinton, Daniel Romero and Laurence Duchien. “Cardinality-
Based Feature Models With Constraints: A Pragmatic Approach”. In:
SPLC - 17th International Software Product Line Conference - 2013.
Tokyo, Japan, Aug. 2013, pp. 162–166.

[4] Livia Predoiu and Heiner Stuckenschmidt. “Probabilistic Models for the
Semantic Web: A Survey”. In: Web Technologies: Concepts, Methodo-
logies, Tools, and Applications. Ed. by Arthur Tatnall. Chapter 102. IGI
Global, 5th July 2013, pp. 1896–1928. ISBN: 9781605669823. URL: doi:
10.4018/978-1-60566-982-3.

[5] Ben Goertzel, Matthew Iklé, Izabela Freire Goertzel and Ari Heljakka.
Probabilistic Logic Networks: A Comprehensive Framework for Uncer-
tain Inference. DOI: 10.1007/978-0-387-76872-4. Springer, 2008. 336 pp.
ISBN: 978-0-387-76872-4. URL: http://www.springer.com/
computer/ai/book/978-0-387-76871-7.

[6] Pei Wang. Non-Axiomatic Logic: A Model of Intelligent Reasoning. World
Scientific, July 2013. 276 pp. ISBN: 978-981-4440-29-5. URL: http:
//www.worldscientific.com/worldscibooks/10.1142/
8665.

[7] Costas P. Pappis and Constantinos I. Siettos. “Fuzzy Reasoning”. In: Search
Methodologies: Introductory Tutorials in Optimization and Decision Sup-
port Techniques. Ed. by Edmund K. Burke and Graham Kendall. Chapter
15. Springer, 2005, pp. 437–474. ISBN: 978-0-387-23460-1, 978-0-387-
28356-2. URL: http://link.springer.com/chapter/10.
1007/0-387-28356-0_15 (visited on 05/07/2013).

[8] David G. Luenberger and Yinyu Ye. Linear and Nonlinear Programming.
3rd. Springer, 2008. 546 pp. ISBN: 978-0387745022.

[9] Laurence A. Wolsey. “Mixed Integer Programming”. In: Wiley Encyclo-
pedia of Computer Science and Engineering. DOI: 10.1002/9780470050118.ecse244.
John Wiley & Sons, Inc., 2008, pp. 1–10. ISBN: 9780470050118. URL:
http://onlinelibrary.wiley.com/doi/10.1002/9780470050118.
ecse244/abstract (visited on 05/07/2013).

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 77 of 87

[10] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory
and Algorithms. 4th. Vol. 21. Algorithms and Combinatorics. Berlin Heidel-
berg: Springer, 2008. 627 pp. ISBN: 978-3-540-71843-7. URL: http:
//www.springer.com/new+%26+forthcoming+titles+
%28default%29/book/978-3-540-71843-7.

[11] Pascal Van Hentenryck and Russell Bent. Online Stochastic Combinator-
ial Optimization. The MIT Press, 2009. ISBN: 0262513471, 9780262513470.

[12] Aharon Ben-Tal, Laurent El Ghaoui and Arkadii Semenovich Nemirovskii.
Robust optimization. Princeton Series in Applied Mathematics. Princeton:
Princeton University Press, 2009. ISBN: 9781400831050 1400831059 9780691143682
0691143684. URL: http://public.eblib.com/EBLPublic/
PublicView.do?ptiID=457706 (visited on 07/07/2013).

[13] Dimitris Bertsimas and Melvyn Sim. “Robust discrete optimization and
network flows”. In: Mathematical Programming 98.1 (Sept. 2003), pp. 49–
71. ISSN: 0025-5610, 1436-4646. DOI: 10.1007/s10107- 003-
0396-4. URL: http://link.springer.com/article/10.
1007/s10107-003-0396-4 (visited on 07/07/2013).

[14] James C. Spall. Introduction to Stochastic Search and Optimization: Es-
timation, Simulation, and Control. Wiley, Apr. 2003. 618 pp. ISBN: 978-0-
471-33052-3. URL: http://eu.wiley.com/WileyCDA/WileyTitle/
productCd-0471330523.html.

[15] Richard S. Sutton and Andrew G. Barto. Reinforcement learning. Vol. 9.
Boston, MA, USA: MIT Press, 1998. ISBN: 0-262-19398-1.

[16] Kumpati S. Narendra and Mandayam A. L. Thathachar. Learning Auto-
mata: An Introduction. Prentice Hall, May 1989. ISBN: 0134855582.

[17] Alexander Semenovich Poznyak and Kaddour Najim. Learning Automata
and Stochastic Optimization. Vol. 225. Lecture Notes in Control and In-
formation Sciences. DOI: 10.1007/BFb0015102. Springer Berlin Heidel-
berg, 1997. ISBN: 978-3-540-76154-9, 978-3-540-40938-0. URL: http:
/ / link . springer . com / book / 10 . 1007 / BFb0015102 /
page/1.

[18] Norio Baba. “On the Learning Behaviors of Variable-Structure Stochastic
Automaton in the General N-Teacher Environment”. In: IEEE Transac-
tions on Systems, Man, and Cybernetics SMC-13.3 (Mar. 1983), pp. 224–
231.

[19] Mandayam A. L. Thathachar and P. S. Sastry. Networks of Learning Auto-
mata: Techniques for Online Stochastic Optimization. 1st ed. Boston, MA,
USA: Kluwer Academic, 2004. ISBN: 1-4020-7691-6.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 78 of 87

[20] Geir Horn and B. John Oommen. “Solving Multiconstraint Assignment
Problems Using Learning Automata”. In: IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics 40.1 (Feb. 2010), pp. 6–18.
ISSN: 1083-4419. DOI: 10.1109/TSMCB.2009.2032528.

[21] Carl Hewitt, Peter Bishop and Richard Steiger. “A Universal Modular
ACTOR Formalism for Artificial Intelligence”. In: Proceedings of the 3rd
International Joint Conference on Artificial Intelligence. IJCAI’73. Con-
ference location: San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1973, 235–245. URL: http://dl.acm.org/citation.cfm?
id=1624775.1624804 (visited on 25/03/2014).

[22] Mikhail L’vovich Tsetlin. “On the Behavior of Finite Automata in Ran-
dom Media”. In: Automation and Remote Control 22.10 (1961), pp. 1210–
1219. ISSN: 1608-3032.

[23] V. I. Varshavskii and I. P. Vorontsova. “On the Behaviour of Stochastic
Automata with a Variable Structure”. In: Automation and remote control
24 (Mar. 1963), pp. 327–333.

[24] George James McMurtry and K. S. Fu. “A variable structure automaton
used as a multimodal searching technique”. In: IEEE Transactions on
Automatic Control AC-11.3 (July 1966), pp. 379–387. ISSN: 0018-9286.
DOI: 10.1109/TAC.1966.1098374.

[25] B. Chandrasekaran and David W. C. Shen. “On Expediency and Conver-
gence in Variable-Structure Automata”. In: IEEE Transactions on Systems
Science and Cybernetics SSC-4.1 (Mar. 1968), pp. 52–60. ISSN: 0536-
1567. DOI: 10.1109/TSSC.1968.300188.

[26] R. Viswanathan and Kumpati S. Narendra. Application of stochastic auto-
mata models to learning systems with multimodal performance criteria.
Technical Report CT-40. No copies are available at Yale, but a copy can
be obtained from the author of this work. New Haven, Connecticut, USA:
Becton Center, Yale University, June 1971.

[27] George Baryannis, Panagiotis Garefalakis, Kyriakos Kritikos, Kostas Magoutis,
Antonis Papaioannou, Dimitris Plexousakis and Chrysostomos Zeginis.
“Lifecycle management of service-based applications on multi-clouds:
a research roadmap.” In: Proceedings of the 2013 international work-
shop on Multi-cloud applications and federated clouds (MultiCloud ’13).
Prague, Czech Republic, 2013, pp. 13–20.

[28] Maciej Malawski, Bartosz Baliś, Dariusz Król and Achilleas Achilleos.
Deliverable D6.1.3 - Initial Requirements. 2013.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 79 of 87

[29] Maciej Malawski, Kamil Figiela and Jarek Nabrzyski. “Cost minimiza-
tion for computational applications on hybrid cloud infrastructures”. In:
Future Generation Computer Systems 29.7 (2013), pp. 1786 –1794. ISSN:
0167-739X. DOI: http://dx.doi.org/10.1016/j.future.
2013.01.004.

[30] Mike Steglich. CMPL (Coin Mathematical Programming Language): https:
//projects.coin-or.org/Cmpl. 2014.

[31] Gerald Tesauro, Nicholas K. Jong, Rajarshi Das and Mohamed N. Ben-
nani. “A Hybrid Reinforcement Learning Approach to Autonomic Re-
source Allocation”. In: Proceedings of the 3rd IEEE International Con-
ference on Autonomic Computing (ICAC ’06). IEEE International Confer-
ence on Autonomic Computing, 2006. ICAC ’06. Ed. by Manish Parashar,
Jeffrey O. Kephart, Omer Rana and Mazin Yousif. Conference location:
Dublin, Ireland: IEEE Computer Society, 12th June 2006, pp. 65–73. DOI:
10.1109/ICAC.2006.1662383.

[32] Peter C Fishburn. Utility theory for decision making. New York: Wiley,
1970. ISBN: 0471260606 9780471260608. URL: http://oai.dtic.
mil/oai/oai?verb=getRecord&metadataPrefix=html&
identifier=AD0708563 (visited on 30/03/2014).

[33] Francis C. Chu and Joseph Y. Halpern. “Great expectations. Part II: gen-
eralized expected utility as a universal decision rule”. In: Artificial In-
telligence 159.1 (Nov. 2004), pp. 207–229. ISSN: 0004-3702. DOI: 10.
1016/j.artint.2004.05.007. URL: http://www.sciencedirect.
com/science/article/pii/S0004370204000979 (visited on
01/04/2014).

[34] I. E. Sutherland. “A Futures Market in Computer Time”. In: Communic-
ations of the ACM 11.6 (June 1968), 449–451. ISSN: 0001-0782. DOI:
10.1145/363347.363396. URL: http://doi.acm.org/10.
1145/363347.363396 (visited on 30/03/2014).

[35] Jeffrey O. Kephart and David M. Chess. “The vision of autonomic com-
puting”. In: Computer 36.1 (2003), pp. 41–50. ISSN: 0018-9162. DOI:
10.1109/MC.2003.1160055.

[36] Terence Kelly. “Utility-Directed Allocation”. In: Proceedings of the First
Workshop on Algorithms and Architectures for Self-Managing Systems.
San Diego, California, USA: ACM, 11th June 2003. URL: http://
tesla.hpl.hp.com/self-manage03/.

[37] Jeffrey O. Kephart and Rajarshi Das. “Achieving Self-Management via
Utility Functions”. In: IEEE Internet Computing 11.1 (2007), pp. 40–48.
ISSN: 1089-7801. DOI: 10.1109/MIC.2007.2.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 80 of 87

[38] William E. Walsh, Gerald Tesauro, Jeffrey O. Kephart and Rajarshi Das.
“Utility functions in autonomic systems”. In: Proceedings of the Inter-
national Conference on Autonomic Computing. IEEE, 17th May 2004,
pp. 70–77. ISBN: 0-7695-2114-2. DOI: 10.1109/ICAC.2004.1301349.

[39] Kurt Geihs et al. “A comprehensive solution for application-level adapta-
tion”. In: Software: Practice and Experience 39.4 (2009), 385–422. ISSN:
1097-024X. DOI: 10.1002/spe.900. URL: http://onlinelibrary.
wiley.com/doi/10.1002/spe.900/abstract (visited on
07/07/2013).

[40] Svein Hallsteinsen, Kurt Geihs, Nearchos Paspallis, Frank Eliassen, Geir
Horn, Jorge Lorenzo, Alessandro Mamelli and George A. Papadopoulos.
“A development framework and methodology for self-adapting applica-
tions in ubiquitous computing environments”. In: Journal of Systems and
Software 85.12 (Dec. 2012), pp. 2840–2859. ISSN: 0164-1212. DOI: 10.
1016/j.jss.2012.07.052. URL: http://www.sciencedirect.
com/science/article/pii/S0164121212002245 (visited on
17/12/2012).

[41] Jacqueline Floch, Svein Hallsteinsen, Erlend Stav, Frank Eliassen, Ketil
Lund and Eli Gjørven. “Using architecture models for runtime adaptab-
ility”. In: IEEE Software 23.2 (2006), pp. 62–70. ISSN: 0740-7459. DOI:
10.1109/MS.2006.61.

[42] Jacqueline Floch et al. “Playing MUSIC — building context-aware and
self-adaptive mobile applications”. In: Software: Practice and Experience
43.3 (Mar. 2013), pp. 359–388. ISSN: 1097-024X. DOI: 10.1002/spe.
2116. URL: http://onlinelibrary.wiley.com/doi/10.
1002/spe.2116/abstract (visited on 30/03/2014).

[43] Franck Fleurey and Arnor Solberg. “A Domain Specific Modeling Lan-
guage Supporting Specification, Simulation and Execution of Dynamic
Adaptive Systems”. In: Model Driven Engineering Languages and Sys-
tems: Proceedings of the 12 International conference (MODELS 2009).
Ed. by Andy Schürr and Bran Selic. Vol. 5795. Lecture Notes in Computer
Science. Conference location: Denver, Colorado, USA: Springer, 4th Oct.
2009, pp. 606–621. ISBN: 978-3-642-04424-3, 978-3-642-04425-0. DOI:
10.1007/978-3-642-04425-0_47. URL: http://link.
springer.com/chapter/10.1007/978-3-642-04425-
0_47 (visited on 07/08/2013).

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 81 of 87

[44] Shang-Wen Cheng, David Garlan and Bradley Schmerl. “Architecture-
based Self-adaptation in the Presence of Multiple Objectives”. In: Pro-
ceedings of the 2006 International Workshop on Self-adaptation and Self-
managing Systems (SEAMS’06). Ed. by Betty H. C. Cheng, Rogério de
Lemos, Stephen Fickas, David Garlan, Jeff Magee, Hausi Müller and
Richard Taylor. SEAMS ’06. Conference Location: Shanghai, China: ACM,
20th May 2006, 2–8. ISBN: 1-59593-403-0. DOI: 10.1145/1137677.
1137679. URL: http://doi.acm.org/10.1145/1137677.
1137679 (visited on 01/04/2014).

[45] Giuseppe Valetto, Paul deGrandis and Dale Seybold Jr. “Synthesis of
application-level utility functions for autonomic self-assessment”. In: Cluster
Computing 14.3 (Sept. 2011), pp. 275–293. ISSN: 1386-7857, 1573-7543.
DOI: 10.1007/s10586-010-0130-y. URL: http://link.
springer.com/article/10.1007/s10586-010-0130-y
(visited on 30/03/2014).

[46] Richard E. Bellman. “On a Routing Problem”. In: Quarterly of Applied
Mathematics 16 (1958), pp. 87–90.

[47] Mourad Alia, Geir Horn, Frank Eliassen, Mohammad Ullah Khan, Rolf
Fricke and Roland Reichle. “A Component-Based Planning Framework
for Adaptive Systems”. In: On the Move to Meaningful Internet Systems
2006: Proceedings of the OTM Confederated International Conferences
CoopIS, DOA, GADA, and ODBASE. Ed. by Robert Meersman and Za-
hir Tari. Vol. Part II. Lecture Notes in Computer Science. Montpellier,
France: Springer Berlin Heidelberg, 29th Nov. 2006, pp. 1686–1704. ISBN:
978-3-540-48274-1, 978-3-540-48283-3. DOI: 10.1007/11914952_
45. URL: http://link.springer.com/chapter/10.1007/
11914952_45 (visited on 12/02/2014).

[48] James J. Buckley and Esfandiar Eslami. An introduction to fuzzy logic
and fuzzy sets. Berlin Heidelberg: Physica-Verlag, 2002. 285 pp. ISBN:
3790814474 9783790814477. URL: http://www.springer.com/
computer/ai/book/978-3-7908-1447-7?otherVersion=
978-3-7908-1799-7.

[49] Frédéric Desprez and Jonathan Rouzaud-Cornabas. SimGrid Cloud Broker:
Simulating the Amazon AWS Cloud. Anglais. Rapport de recherche RR-
8380. INRIA, Nov. 2013, p. 30. URL: http://hal.inria.fr/hal-
00909120.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 82 of 87

A Common Metamodels

PaaSage App
Metamodel

CP Metamodel Type Metamodel

PaaSage Type
Metamodel

Figure 36: Metamodels overview.

Figure 36 provides an overview of the Upperware metamodels and their re-
lationships.

The Constraint Problem Metamodel (CP Metamodel) and Types Metamodel
enable the definition of the Cloud provider selection problem as a constraint
problem. They are fully describes on Page 84.

The PaaSage Application Metamodel (PaaSage App Metamodel) and PaaS-
age Type Metamodel establish the relationship between concepts from the Cloud
and constraint problem worlds. They are fully described on Page 85.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 83 of 87

<<Abstract>>
Value

<<Abstract>>
Num

ericValue

-value:int
IntegerValue

-value:long
LongValue

-value:double
DoubleValue

type:BasicTypeEnum
Constant

from

<<Abstract>>
Dom

ainNum
ericListDom

ain

-type:BasicTypeEnum
Num

ericDom
ain

RangeDom
ain

<<Abstract>>
Num

ericValue
to

values

Variable

value
0..1

dom
ain

variables

1..*

<<Abstract>>
Expression

-id:String

<<Abstract>>
CPElem

ent

-operator:O
peratorEnum

Com
posedExpression

expressions

exp2
exp1

2..*

-com
parator:Com

paratorEnum
Com

parisonExpression

goal:G
oalTypeEnum
G
oalexpression

G
oal

auxExpressions
0..*

constraints
0..*

-plus
-m

inus
-tim

es
-div

<<enum
eration>>

O
peratorEnum

-greaterThan
-lessThan
-greaterO

rEqualTo
-lessO

rEqualTo
-equalTo
-different

<<enum
eration>>

Com
paratorEnum

-Integer
-Float
-Double
-Long <<enum

eration>>
BasicTypeEnum

-value:float
FloatValue
value

1..*

<<Abstract>>
Num

ericExpression
-com

parator:Com
paratorEnum

Com
parisonExpression

<<Abstract>>
Expression

goals

type:BasicTypeEnum
Constant

ConstraintProblem

constants

-m
ax

-m
in <<enum

eration>>
G
oalTypeEnum

0..*
0..*

Type M
etam

odel

CP M
etam

odel

Legend

<<Abstract>>
BooleanExpression

-value:string
StringValue

ListDom
ain

values

1..*

<<Abstract>>
Value

M
ultiRangeDom

ain

ranges
2..*

<<Abstract>>
Num

ericExpression

-value:boolean
BooleanValue

Figure
37:C

P
and

Type
M

etam
odels.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 84 of 87

-M
Hz

-G
Hz

<<
en
um

er
at
io
n>
>

Fr
eq
ue
nc
yE
nu
m

-M
B

-G
B

-T
B

<<
en
um

er
at
io
n>
>

Da
ta
Un
itE
nu
m

co
m

po
ne

nt
s

1.
.* Co
nt
in
en
t

co
un

try

co
nt

in
en

t Ci
ty

Co
un
try

lo
ca

tio
n

<<
Ab
st
ra
ct
>>

Cl
ou
dM
LE
le
m
en
t

pr
ov

id
er

s
vm

Pr
ofi

le
s

lo
ca

tio
n

<<
Ab
st
ra
ct
>>

Cl
ou
dM
LE
le
m
en
t

-fr
eq

ue
nc

y:
Fr

eq
ue

nc
yE

nu
m

-c
or

es
:in

t

CP
U

-u
ni

t:D
at

aU
ni

tE
nu

m
M
em

or
y

-u
ni

t:D
at

aU
ni

tE
nu

m
St
or
ag
e

cp
u

0.
.1

<<
Ab
st
ra
ct
>>

Nu
m
er
ic
Va
lu
e

<<
Ab
st
ra
ct
>>

Re
so
ur
ce va

lu
e

0.
.1

0.
.1

m
em

or
y

st
or

ag
e

0.
.*

vm
s

1.
.*

-id
:S

tri
ng

Vi
rtu
al
M
ac
hi
ne

pr
ofi

le

-id
:S

tri
ng

Vi
rtu
al
M
ac
hi
ne

0.
.*

pr
ef

er
re

dL
oc

at
io

ns

vm

-n
am

e:
St

rin
g

-v
er

sio
n:

St
rin

g
-a

rc
hi

te
ct

ur
e:

O
SA

rc
hi

te
ct

ur
eE

nu
m

O
S

os

-p
aa

sa
ge

Ty
pe

: V
ar

ia
bl

eE
le

m
en

tT
yp

eE
nu

m
Pa
aS
ag
eV
ar
ia
bl
e

Va
ria
bl
e

re
la

te
dE

le
m

en
t

-ty
pe

Id
:in

t

<<
Ab
st
ra
ct
>>

Pa
aS
ag
eC
PE
le
m
en
t

-ty
pe

Id
:in

t

<<
Ab
st
ra
ct
>>

Pa
aS
ag
eC
PE
le
m
en
t

-n
am

e:
St

rin
g

-a
lte

rn
at

ive
Na

m
es

:L
ist

<<
Ab
st
ra
ct
>>

Lo
ca
tio
n

-ty
pe

Id
:in

t

<<
Ab
st
ra
ct
>>

Pa
aS
ag
eC
PE
le
m
en
t

va
ria

bl
es

0.
.*

-G
eo

Lo
ca

tio
n

-P
hy

sic
al

Lo
ca

tio
n

-V
irt

ua
lL

oc
at

io
n

-R
es

po
ns

eT
im

e
-P

ro
vid

er<<
en
um

er
at
io
n>
>

Va
ria
bl
eE
le
m
en
tT
yp
eE
nu
m

au
xE

xp
re

ss
io

ns

-c
om

pa
ra

to
r:C

om
pa

ra
to

rE
nu

m
Co
m
pa
ris
on
Ex
pr
es
si
on

co
ns

tra
in

ts

-A
nd

-O
r<<

en
um

er
at
io
n>
>

Lo
gi
cO
pe
ra
to
rE
nu
m

-p
ar

am
et

er
s:

Li
st

Ac
tio
n

ac
tio

n

-id
:S

tri
ng

El
as
tic
ity
Ru
le

co
nd

itio
n

Bo
ol
ea
nE
xp
re
ss
io
n

ex
p1

-o
pe

ra
to

r:L
og

icO
pe

ra
to

rE
nu

m
Co
nd
iti
on

ex
p2

0.
.1

-id
:S

tri
ng

El
as
tic
ity
Ru
le

ru
le

s
0.

.*

go
al

s

Ty
pe

 M
et

am
od

el

CP
 M

et
am

od
el

Le
ge
nd

Pa
aS

ag
e

Ap
pl

ica
tio

n
M

et
am

od
el

Pa
aS

ag
e

Ty
pe

s
M

et
am

od
el

0.
.1

-s
ize

:V
M

Si
ze

En
um

Vi
rtu
al
M
ac
hi
ne
Pr
ofi
le

re
qu

ire
dP

ro
file

0.
.*

0.
.*

0.
.*

-id
:S

tri
ng

Pa
aS
ag
eC
on
fig
ur
at
io
n

<<
Ab
st
ra
ct
>>

Ex
pr
es
si
on

<<
Ab
st
ra
ct
>>

Bo
ol
ea
nE
xp
re
ss
io
n

-n
am

e:
st

rin
g

-v
er

sio
n:

st
rin

g

<<
Ab
st
ra
ct
>>

Ap
pl
ic
at
io
nC
om

po
ne
nt
Pr
ofi
le

pr
ofi

le

-id
:s

tri
ng

Ap
pl
ic
at
io
nC
om

po
ne
nt
Ty
pe

ty
pe

-id
:s

tri
ng

VM
Si
ze
Ty
pe

siz
e

-id
:s

tri
ng

Pr
ov
id
er
Ty
pe

-id
.S

tri
ng
Pr
ov
id
er

ty
pe

-id
:s

tri
ng

Ac
tio
nT
yp
e

ty
pe

-id
:s

tri
ng

Fu
nc
tio
nT
yp
e

fu
nc

tio
n

-M
in

-M
ax

<<
en
um

er
at
io
n>
>

G
oa
lT
yp
eE
nu
m

-c
os

t:d
ou

bl
e

Pr
ov
id
er
Co
st

Vi
rtu
al
M
ac
hi
ne
Pr
ofi
le

potentialProviders

-id
:S

tri
ng

-fe
at

ur
es

:L
ist

Ap
pl
ic
at
io
nC
om

po
ne
nt

-fe
at

ur
e:

st
rin

g
Re
qu
ire
dF
ea
tu
re

re
qu

ire
dF

ea
tu

re
s

0.
.*

pr
ov

id
ed

By

-id
.S

tri
ng
Pr
ov
id
er

pr
ov

id
er

-id
:S

tri
ng

-g
oa

l:G
oa

lT
yp

eE
nu

m

Pa
aS
ag
eG
oa
l

<<
Ab
st
ra
ct
>>

Re
so
ur
ce

m
on

ito
re

dD
im

en
sio

ns

-id
:s

tri
ngDi
m
en
si
on

pr
ef

er
re

d
Pr

ov
id

er
s

1.
.*

-ty
pe

Id
:in

t

<<
Ab
st
ra
ct
>>

Pa
aS
ag
eC
PE
le
m
en
t

0.
.1

-X
S

-S -M -L -X
L

-X
XL

-A
6

-A
7

<<
en
um

er
at
io
n>
>

VM
Si
ze
En
um

Fi
gu

re
38

:P
aa

Sa
ge

Ty
pe

an
d

A
pp

lic
at

io
n

M
et

am
od

el
.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 85 of 87

B CPIM of Simple Application Example

<?xml version="1.0" encoding="UTF-8"?>
<net.cloudml:CloudMLModel xmi:version="2.0" xmlns:xmi="http://www.omg.

org/XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:net.cloudml="http://cloudml.net" name="SimpleAppModel" xsi:
schemaLocation="http://cloudml.net ../../metamodel/CloudML-2.0.
ecore">

<providers name="AmazonEC2" credentials="./credentials_aws"/>
<providers name="ElasticHosts" credentials="./credentials_eh"/>
<components xsi:type="net.cloudml:VM" name="ML" provider="AmazonEC2"

location="EU" minRam="4096" minCores="4" minStorage="102400" os
="ubuntu" securityGroup="simpleApp" sshKey="simpleApp" privateKey
="/simpleapp.pem" groupName="simpleApp">

<providedContainmentPorts name="mlProvided" owner="ML"/>
</components>
<components xsi:type="net.cloudml:VM" name="MW" provider="

ElasticHosts" location="EU" minRam="4096" minCores="4" minStorage
="102400" os="windows" securityGroup="simpleApp" sshKey="
simpleApp" privateKey="/simpleapp.pem" groupName="simpleApp">

<providedContainmentPorts name="mwProvided" owner="MW"/>
</components>
<components xsi:type="net.cloudml:InternalComponent" name="SimpleApp

">
<requiredContainmentPort name="tomcatRequired" owner="SimpleApp"/>

</components>
<components xsi:type="net.cloudml:InternalComponent" name="tomcat">
<providedContainmentPorts name="tomcatProvided" owner="tomcat"/>
<requiredContainmentPort name="mRequired" owner="tomcat"/>

</components>
</net.cloudml:CloudMLModel>

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 86 of 87

C Saloon Ontology

Thing

Technical
Element

Provisioning

Countable
Concept

Application
Server

Database

Language

Framework

Countable
Concept

Tomcat

Jetty

GlassFish

Tomcat 6.0

Tomcat 7.0

Jetty 6.1

GlassFish
3.1

SQL

NoSQL

MySQL

PostgreSQL

MariaDB

MongoDB

CouchDB

Java

Ruby

PHP

Resource

Countable
Concept

MongoDB
2.2

MongoDB
2.2.X

MongoDB
2.4.X

Database Size Quantifiable
Concept

Cloudant

Database Size

MongoDB
2.0.2

IronCache

RedisGreen

CouchDB
1.2Database Size

MongoHQ

MongoLab

MongoDB
2.2.X

MongoDB
2.4.X

MongoDB
2.0.2

Quantifiable
Concept

MariaDB
10

MariaDB
5.5

PostgreSQL
8.4

PostgreSQL
9.2

MySQL 5.5

Treasure
Data PG Backups ClearDB

MySQL Amazon RDS Windows
Azure SQL

SQL
Premium

SQL Web
and Business

DatabaseSize

Java 6

Java 7

Ruby 2.0.0

Python Python 2.7

Python
2.7.5

Python
3.3.2

PHP 5.3

PHP 5.4

Clojure Clojure
1.5.1

Tomcat
7.0.X

JavaScript

Scala

TomEE+

Spring

Node.js

Rails

Play

Play 1.2.3

Rails 3.X

Rails 4.X

Noje.js
0.4.7

Noje.js
0.6.17

Noje.js
0.6.20

Noje.js
0.84

Unit Frequency
Unit MHz

GHz

Stockage
Unit MB

GB

TB

Memory

CPU
Frequency

Bandwidth

Transfer
Rate Unit BitPerSecond

KBPerSecond

MBPerSecond

GBPerSecond

Storage

Cache

Search
Engine

Cache Cache
Service

IronCache

Cachely

MemCachier

MemCached

Search
Engine Web Solr

Flying
Sphinx

Bonsai Elastic
Search

Found Elastic
SearchThing

Quantifiable
Concept

Quantifiable
Concept

Provider

Provider Heroku

Google App
Engine

Windows
Azure

PostgreSQL
9.3

Heroku
Postgres 2.0

PostgreSQL

Legend

Abstract Concept

Concrete Concept

is a

uses

ElasticHosts

AmazonEC2

Virtual
Machine

OSUbuntu
Server

Virtual
Machine

OS

Windows
Server

Figure 39: Saloon Ontology.

D3.1.1 / D3.1.3 - Prototype Upperware Report Page 87 of 87

